1
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 PMCID: PMC11725911 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Nicole A. Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael J. Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Goring AK, Hale S, Dasika P, Chen Y, Clubb RT, Loo JA. The Exoproteome and Surfaceome of Toxigenic Corynebacterium diphtheriae 1737 and Its Response to Iron Restriction and Growth on Human Hemoglobin. J Proteome Res 2025; 24:77-93. [PMID: 39692319 DOI: 10.1021/acs.jproteome.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Toxin-producing Corynebacterium diphtheriae strains are the etiological agents of the severe upper respiratory disease, diphtheria. A global phylogenetic analysis revealed that biotype gravis is particularly lethal as it produces diphtheria toxin and a range of other virulence factors, particularly when it encounters low levels of iron at sites of infection. To gain insight into how it colonizes its host, we have identified iron-dependent changes in the exoproteome and surfaceome of C. diphtheriae strain 1737 using a combination of whole-cell fractionation, intact cell surface proteolysis, and quantitative proteomics. In total, we identified 1414 of the predicted 2265 proteins (62%) encoded by its reference genome. For each protein, we quantified its degree of secretion and surface exposure, revealing that exoproteases and hydrolases predominate in the exoproteome, while the surfaceome is enriched with adhesins, particularly DIP2093. Our analysis provides insight into how components in the heme-acquisition system are positioned, showing pronounced surface exposure of the strain-specific ChtA/ChtC paralogues and high secretion of the species-conserved heme-binding HtaA protein, suggesting it functions as a hemophore. Profiling the response of the exoproteome and surfaceome after microbial exposure to human hemoglobin and iron limitation reveals potential virulence factors that may be expressed at sites of infection. Data are available via ProteomeXchange with identifier PXD051674.
Collapse
|
3
|
Peng ED, Lyman LR, Schmitt MP. Identification and characterization of zinc importers in Corynebacterium diphtheriae. J Bacteriol 2024; 206:e0012424. [PMID: 38809016 PMCID: PMC11332173 DOI: 10.1128/jb.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Corynebacterium diphtheriae is the causative agent of diphtheria, a severe respiratory disease in humans. C. diphtheriae colonizes the human upper respiratory tract, where it acquires zinc, an essential metal required for survival in the host. While the mechanisms for zinc transport by C. diphtheriae are not well characterized, four putative zinc ABC-type transporter loci were recently identified in strain 1737: iutABCD/E (iut), znuACB (znu), nikABCD1 (nik1), and nikABCD2 (nik2). A mutant deleted for all four loci (Δ4) exhibited similar growth to that of the wild-type strain in a zinc-limited medium, suggesting there are additional zinc transporters. Two additional gene loci predicted to be associated with metal import, mntABCD (mnt) and sidAB (sid), were deleted in the Δ4 mutant to construct a new mutant designated Δ6. The C. diphtheriae Δ6 mutant exhibited significantly reduced growth under zinc limitation relative to the wild type, suggesting a deficiency in zinc acquisition. Strains retaining the iut, znu, mnt, or sid loci grew to near-wild-type levels in the absence of the other five loci, indicating that each of these transporters may be involved in zinc uptake. Plasmid complementation with cloned iut, znu, mnt, or nik1 loci also enhanced the growth of the Δ6 mutant. Quantification of intracellular zinc content by inductively coupled plasma mass spectrometry was consistent with reduced zinc uptake by Δ6 relative to the wild type and further supports a zinc uptake function for the transporters encoded by iut, znu, and mnt. This study demonstrates that C. diphtheriae zinc transport is complex and involves multiple zinc uptake systems.IMPORTANCEZinc is a critical nutrient for all forms of life, including human bacterial pathogens. Thus, the tools that bacteria use to acquire zinc from host sources are crucial for pathogenesis. While potential candidates for zinc importers have been identified in Corynebacterium diphtheriae from gene expression studies, to date, no study has clearly demonstrated this function for any of the putative transporters. We show that C. diphtheriae encodes at least six loci associated with zinc import, underscoring the extent of redundancy for zinc acquisition. Furthermore, we provide evidence that a previously studied manganese-regulated importer can also function in zinc import. This study builds upon our knowledge of bacterial zinc transport mechanisms and identifies potential targets for future diphtheria vaccine candidates.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Analysis of the HbpA Protein from Corynebacterium diphtheriae Clinical Isolates and Identification of a Putative Hemoglobin-Binding Site on HbpA. J Bacteriol 2022; 204:e0034922. [PMID: 36346227 PMCID: PMC9765017 DOI: 10.1128/jb.00349-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Corynebacterium diphtheriae hemoglobin-binding protein HbpA is critical for the acquisition of iron from the hemoglobin-haptoglobin complex (Hb-Hp). Previous studies using C. diphtheriae strain 1737 showed that large aggregates formed by HbpA are associated with iron transport activity and enhanced binding to Hb-Hp; however, specific regions within HbpA required for Hb-Hp binding or iron uptake have not been identified. In this study, we characterized two clinical isolates from Austria, designated 07-18 and 09-15, which express HbpA proteins that share only 53% and 44% sequence identity, respectively, to the strain 1737 HbpA protein. The HbpA proteins expressed by the Austrian strains had functional and structural properties similar to those of the HbpA protein in strain 1737 despite the limited sequence similarity. These shared characteristics between the HbpA proteins included similar cellular localization, aggregate formation, and Hb and Hb-Hp binding. Additionally, the Austrian strains were able to acquire iron from Hb and Hb-Hp, and deletion of the hbpA gene from these two clinical isolates reduced their ability to use Hb-Hp as an iron source. A sequence comparison between the HbpA proteins from 1737 and the Austrian strains assisted in the identification of a putative Hb-binding site that shared similar characteristics with the Hb-binding regions in Staphylococcus aureus NEAT domains. Amino acid substitutions within this conserved Hb-binding region significantly reduced Hb and Hb-Hp binding and diminished the hemin-iron uptake function of HbpA. These findings represent important advances in our understanding of the interaction of HbpA with human hemoproteins. IMPORTANCE Hemoglobin (Hb) is the primary source of iron in humans, and the acquisition of hemin-iron from Hb is critical for many bacterial pathogens to infect and survive in the human host. In this study, we have examined the C. diphtheriae Hb-binding protein HbpA in two clinical isolates and show that these proteins, despite limited sequence similarity, are functionally equivalent to the previously described HbpA protein in strain 1737. A sequence comparison between these three strains led to the identification of a conserved Hb-binding site, which will further our understanding of how this novel protein functions in hemin-iron transport and, more generally, will expand our knowledge on how Hb interacts with proteins.
Collapse
|
5
|
Rodriguez GM, Sharma N, Biswas A, Sharma N. The Iron Response of Mycobacterium tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics. Front Cell Infect Microbiol 2022; 12:876667. [PMID: 35646739 PMCID: PMC9132128 DOI: 10.3389/fcimb.2022.876667] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Most pathogenic bacteria require iron for growth. However, this metal is not freely available in the mammalian host. Due to its poor solubility and propensity to catalyze the generation of reactive oxygen species, host iron is kept in solution bound to specialized iron binding proteins. Access to iron is an important factor in the outcome of bacterial infections; iron limitation frequently induces virulence and drives pathogenic interactions with host cells. Here, we review the response of Mycobacterium tuberculosis to changes in iron availability, the relevance of this response to TB pathogenesis, and its potential for the design of new therapeutic interventions.
Collapse
|
6
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
7
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Kiefer MC, Motyka NI, Clements JD, Bitoun JP. Enterotoxigenic Escherichia coli Heat-Stable Toxin Increases the Rate of Zinc Release from Metallothionein and Is a Zinc- and Iron-Binding Peptide. mSphere 2020; 5:e00146-20. [PMID: 32238569 PMCID: PMC7113584 DOI: 10.1128/msphere.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies have identified heat-stable enterotoxin (ST)-producing ETEC as one of the major diarrhea-causing pathogens in children younger than five years. In this study, we examined iron and zinc binding by both human and porcine ST variants and determined how host metallothionein could detoxify ST. We found that ST purified from ETEC culture supernatants eluted as a doublet during C18 reverse-phase chromatography. Leading edge fractions of the ST doublet were found to be devoid of iron, while trailing edge fractions of the ST doublet were found to contain measurable iron. Next, we found that purified ST could be reconstituted with iron under reducing and anaerobic conditions, and iron-bound ST attenuated the induction of cGMP in T84 epithelial cells. Moreover, we demonstrated that supernatants of ETEC 214-4 grown under increasing iron concentrations were only able to induce cGMP at iron concentrations greater than 5 μM. In vitro studies also demonstrated that ST binds zinc, and once bound, zinc removal from ST required denaturing conditions. Zinc-bound ST also failed to induce cGMP. We found that ST contributes disulfide bonds to the perceived oxidized glutathione pool, increases the rate of zinc release from metallothionein, and can be detoxified by metallothionein. Lastly, we showed ST induces transcriptional changes in genes previously shown to be regulated by deferoxamine. These studies demonstrate ST ETEC pathogenesis may be tied intimately to host mucosal metal status.IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries, deployed military personnel, and travelers to regions of endemicity. The heat-stable toxin (ST) is a small nonimmunogenic secreted peptide with 3 disulfide bonds. It has been appreciated that dietary disulfides modulate intestinal redox potential and that ST could be detoxified using exogenous reductants. Using biochemical and spectroscopic approaches, we demonstrated that ST can separately bind iron and zinc under reducing conditions, thereby reducing ST toxicity. Moreover, we demonstrated that ST modulates the glutathione (GSH)/oxidized glutathione (GSSG) ratio and that ST should be considered a toxin oxidant. ST can be detoxified by oxidizing zinc-loaded metallothionine, causing free zinc to be released. These studies help lay a foundation to understand how diarrheal pathogens modulate intestinal redox potential and may impact how we design therapeutics and/or vaccines for the pathogens that produce them.
Collapse
Affiliation(s)
- Mallory C Kiefer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Natalya I Motyka
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jacob P Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
9
|
Peng ED, Schmitt MP. Identification of zinc and Zur-regulated genes in Corynebacterium diphtheriae. PLoS One 2019; 14:e0221711. [PMID: 31454392 PMCID: PMC6711530 DOI: 10.1371/journal.pone.0221711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022] Open
Abstract
Corynebacterium diphtheriae is a Gram-positive bacterial pathogen and the causative agent of diphtheria, a severe disease of the upper respiratory tract of humans. Factors required for C. diphtheriae to survive in the human host are not well defined, but likely include the acquisition of essential metals such as zinc. In C. diphtheriae, zinc-responsive global gene regulation is controlled by the Zinc Uptake Regulator (Zur), a member of the Fur-family of transcriptional regulators. In this study, we use transcriptomics to identify zinc-regulated genes in C. diphtheriae by comparing gene expression of a wild-type strain grown without and with zinc supplementation. Zur-regulated genes were identified by comparing wild-type gene expression with that of an isogenic zur mutant. We observed zinc repression of several putative surface proteins, the heme efflux system hrtBA, various ABC transporters, and the non-ribosomal peptide synthetase/polyketide synthase cluster sidAB. Furthermore, increased gene expression in response to zinc was observed for the alcohol dehydrogenase, adhA. Zinc and Zur regulation were confirmed for several genes by complementing the zur deletion and subsequent RT-qPCR analysis. We used MEME to predict Zur binding sites within the promoter regions of zinc- and Zur-regulated genes, and verified Zur binding by electrophoretic mobility shift assays. Additionally, we characterized cztA (dip1101), which encodes a putative cobalt/zinc/cadmium efflux family protein. Deletion of cztA results in increased sensitivity to zinc, but not to cobalt or cadmium. This study advances our knowledge of changes to Zur-dependent global gene expression in response to zinc in C. diphtheriae. The identification of zinc-regulated ABC transporters herein will facilitate future studies to characterize zinc transport in C. diphtheriae.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration,Silver Spring, MD, United States of America
- * E-mail: (MS); (EP)
| |
Collapse
|
10
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
11
|
Corynebacterium diphtheriae Iron-Regulated Surface Protein HbpA Is Involved in the Utilization of the Hemoglobin-Haptoglobin Complex as an Iron Source. J Bacteriol 2018; 200:JB.00676-17. [PMID: 29311283 DOI: 10.1128/jb.00676-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae utilizes various heme-containing proteins, including hemoglobin (Hb) and the hemoglobin-haptoglobin complex (Hb-Hp), as iron sources during growth in iron-depleted environments. The ability to utilize Hb-Hp as an iron source requires the surface-anchored proteins HtaA and either ChtA or ChtC. The ability to bind hemin, Hb, and Hb-Hp by each of these C. diphtheriae proteins requires the previously characterized conserved region (CR) domain. In this study, we identified an Hb-Hp binding protein, HbpA (38.5 kDa), which is involved in the acquisition of hemin iron from Hb-Hp. HbpA was initially identified from total cell lysates as an iron-regulated protein that binds to both Hb and Hb-Hp in situ HbpA does not contain a CR domain and has sequence similarity only to homologous proteins present in a limited number of C. diphtheriae strains. Transcription of hbpA is regulated in an iron-dependent manner that is mediated by DtxR, a global iron-dependent regulator. Deletion of hbpA from C. diphtheriae results in a reduced ability to utilize Hb-Hp as an iron source but has little or no effect on the ability to use Hb or hemin as an iron source. Cell fractionation studies showed that HbpA is both secreted into the culture supernatant and associated with the membrane, where its exposure on the bacterial surface allows HbpA to bind Hb and Hb-Hp. The identification and analysis of HbpA enhance our understanding of iron uptake in C. diphtheriae and indicate that the acquisition of hemin iron from Hb-Hp may involve a complex mechanism that requires multiple surface proteins.IMPORTANCE The ability to utilize host iron sources, such as heme and heme-containing proteins, is essential for many bacterial pathogens to cause disease. In this study, we have identified a novel factor (HbpA) that is crucial for the use of hemin iron from the hemoglobin-haptoglobin complex (Hb-Hp). Hb-Hp is considered one of the primary sources of iron for certain bacterial pathogens. HbpA has no similarity to the previously identified Hb-Hp binding proteins, HtaA and ChtA/C, and is found only in a limited group of C. diphtheriae strains. Understanding the function of HbpA may significantly increase our knowledge of how this important human pathogen can acquire host iron that allows it to survive and cause disease in the human respiratory tract.
Collapse
|
12
|
Suwanpatcharakul M, Pakdeecharoen C, Visuttitewin S, Pesirikan N, Chauvatcharin S, Pongtharangkul T. Process optimization for an industrial-scale production of Diphtheria toxin by Corynebacterium diphtheriae PW8. Biologicals 2016; 44:534-539. [DOI: 10.1016/j.biologicals.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022] Open
|
13
|
Bennett EH, Akbas N, Adrian SA, Lukat-Rodgers GS, Collins DP, Dawson JH, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry 2015; 54:6598-609. [PMID: 26478504 PMCID: PMC4943319 DOI: 10.1021/acs.biochem.5b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.
Collapse
Affiliation(s)
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Seth A. Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtni E. Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| |
Collapse
|
14
|
Wroblewski LE, Piazuelo MB, Chaturvedi R, Schumacher M, Aihara E, Feng R, Noto JM, Delgado A, Israel DA, Zavros Y, Montrose MH, Shroyer N, Correa P, Wilson KT, Peek RM. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 2015; 64:720-30. [PMID: 25123931 PMCID: PMC4329117 DOI: 10.1136/gutjnl-2014-307650] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Helicobacter pylori strains that express the oncoprotein CagA augment risk for gastric cancer. However, the precise mechanisms through which cag(+) strains heighten cancer risk have not been fully delineated and model systems that recapitulate the gastric niche are critical for understanding pathogenesis. Gastroids are three-dimensional organ-like structures that provide unique opportunities to study host-H. pylori interactions in a preclinical model. We used gastroids to inform and direct in vitro studies to define mechanisms through which H. pylori modulates expression of the cancer-associated tight junction protein claudin-7. DESIGN Gastroids were infected by luminal microinjection, and MKN28 gastric epithelial cells were cocultured with H. pylori wild-type cag(+) strains or isogenic mutants. β-catenin, claudin-7 and snail localisation was determined by immunocytochemistry. Proliferation was assessed using 5-ethynyl-2'-deoxyuridine, and levels of claudin-7 and snail were determined by western blot and flow cytometry. RESULTS Gastroids developed into a self-organising differentiation axis and H. pylori induced mislocalisation of claudin-7 and increased proliferation in a CagA- and β-catenin-dependent manner. In MKN28 cells, H pylori-induced suppression of claudin-7 was regulated by β-catenin and snail. Similarly, snail expression was increased and claudin-7 levels were decreased among H. pylori-infected individuals. CONCLUSIONS H. pylori increase proliferation in a strain-specific manner in a novel gastroid system. H. pylori also alter expression and localisation of claudin-7 in gastroids and human epithelial cells, which is mediated by β-catenin and snail activation. These data provide new insights into molecular interactions with carcinogenic potential that occur between H. pylori and epithelial cells within the gastric niche.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer M Noto
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alberto Delgado
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dawn A Israel
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Noah Shroyer
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Pelayo Correa
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Keith T Wilson
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Richard M Peek
- Division of Gastroenterology, Departments of Medicine and Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J Bacteriol 2014; 197:553-62. [PMID: 25404705 DOI: 10.1128/jb.02413-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of hemin iron by Corynebacterium diphtheriae requires the DtxR- and iron-regulated ABC hemin transporter HmuTUV and the secreted Hb-binding protein HtaA. We recently described two surface anchored proteins, ChtA and ChtC, which also bind hemin and Hb. ChtA and ChtC share structural similarities to HtaA; however, a function for ChtA and ChtC was not determined. In this study, we identified additional host iron sources that are utilized by C. diphtheriae. We show that several C. diphtheriae strains use the hemoglobin-haptoglobin (Hb-Hp) complex as an iron source. We report that an htaA deletion mutant of C. diphtheriae strain 1737 is unable to use the Hb-Hp complex as an iron source, and we further demonstrate that a chtA-chtC double mutant is also unable to use Hb-Hp iron. Single-deletion mutants of chtA or chtC use Hb-Hp iron in a manner similar to that of the wild type. These findings suggest that both HtaA and either ChtA or ChtC are essential for the use of Hb-Hp iron. Enzyme-linked immunosorbent assay (ELISA) studies show that HtaA binds the Hb-Hp complex, and the substitution of a conserved tyrosine (Y361) for alanine in HtaA results in significantly reduced binding. C. diphtheriae was also able to use human serum albumin (HSA) and myoglobin (Mb) but not hemopexin as iron sources. These studies identify a biological function for the ChtA and ChtC proteins and demonstrate that the use of the Hb-Hp complex as an iron source by C. diphtheriae requires multiple iron-regulated surface components.
Collapse
|
16
|
Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J Bacteriol 2013; 195:2852-63. [PMID: 23585541 DOI: 10.1128/jb.00244-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corynebacterium diphtheriae utilizes hemin and hemoglobin (Hb) as iron sources during growth in iron-depleted environments, and recent studies have shown that the surface-exposed HtaA protein binds both hemin and Hb and also contributes to the utilization of hemin iron. Conserved (CR) domains within HtaA and in the associated hemin-binding protein, HtaB, are required for the ability to bind hemin and Hb. In this study, we identified and characterized two novel genetic loci in C. diphtheriae that encode factors that bind hemin and Hb. Both genetic systems contain two-gene operons that are transcriptionally regulated by DtxR and iron. The gene products of these operons are ChtA-ChtB and ChtC-CirA (previously DIP0522-DIP0523). The chtA and chtB genes are carried on a putative composite transposon associated with C. diphtheriae isolates that dominated the diphtheria outbreak in the former Soviet Union in the 1990s. ChtA and ChtC each contain a single N-terminal CR domain and exhibit significant sequence similarity to each other but only limited similarity with HtaA. The chtB and htaB gene products exhibited a high level of sequence similarity throughout their sequences, and both proteins contain a single CR domain. Whole-cell binding studies as well as protease analysis indicated that all four of the proteins encoded by these two operons are surface exposed, which is consistent with the presence of a transmembrane segment in their C-terminal regions. ChtA, ChtB, and ChtC are able to bind hemin and Hb, with ChtA showing the highest affinity. Site-directed mutagenesis showed that specific tyrosine residues within the ChtA CR domain were critical for hemin and Hb binding. Hemin iron utilization assays using various C. diphtheriae mutants indicate that deletion of the chtA-chtB region and the chtC gene has no affect on the ability of C. diphtheriae to use hemin or Hb as iron sources; however, a chtB htaB double mutant exhibits a significant decrease in hemin iron use, indicating a role in hemin transport for HtaB and ChtB.
Collapse
|
17
|
Lau CKY, Ishida H, Liu Z, Vogel HJ. Solution structure of Escherichia coli FeoA and its potential role in bacterial ferrous iron transport. J Bacteriol 2013; 195:46-55. [PMID: 23104801 PMCID: PMC3536175 DOI: 10.1128/jb.01121-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/17/2012] [Indexed: 12/22/2022] Open
Abstract
Iron is an indispensable nutrient for most organisms. Ferric iron (Fe(3+)) predominates under aerobic conditions, while during oxygen limitation ferrous (Fe(2+)) iron is usually present. The Feo system is a bacterial ferrous iron transport system first discovered in Escherichia coli K-12. It consists of three genes, feoA, feoB, and feoC (yhgG). FeoB is thought to be the main transmembrane transporter while FeoC is considered to be a transcriptional regulator. Using multidimensional nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structure of E. coli FeoA. The structure of FeoA reveals a Src-homology 3 (SH3)-like fold. The structure is composed of a β-barrel with two α-helices where one helix is positioned over the barrel. In comparison to the standard eukaryotic SH3 fold, FeoA has two additional α-helices. FeoA was further characterized by heteronuclear NMR dynamics measurements, which suggest that it is a monomeric, stable globular protein. Model-free analysis of the NMR relaxation results indicates that a slow conformational dynamic process is occurring in β-strand 4 that may be important for function. (31)P NMR-based GTPase activity measurements with the N-terminal domain of FeoB (NFeoB) indicate a higher GTP hydrolysis rate in the presence of potassium than with sodium. Further enzymatic assays with NFeoB suggest that FeoA may not act as a GTPase-activating protein as previously proposed. These findings, together with bioinformatics and structural analyses, suggest that FeoA may have a different role, possibly interacting with the cytoplasmic domain of the highly conserved core portion of the FeoB transmembrane region.
Collapse
Affiliation(s)
- Cheryl K Y Lau
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
18
|
Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 2012; 123:479-92. [PMID: 23257361 DOI: 10.1172/jci64373] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022] Open
Abstract
Gastric adenocarcinoma is strongly associated with Helicobacter pylori infection; however, most infected persons never develop this malignancy. H. pylori strains harboring the cag pathogenicity island (cag+), which encodes CagA and a type IV secretion system (T4SS), induce more severe disease outcomes. H. pylori infection is also associated with iron deficiency, which similarly augments gastric cancer risk. To define the influence of iron deficiency on microbial virulence in gastric carcinogenesis, Mongolian gerbils were maintained on iron-depleted diets and infected with an oncogenic H. pylori cag+ strain. Iron depletion accelerated the development of H. pylori-induced premalignant and malignant lesions in a cagA-dependent manner. H. pylori strains harvested from iron-depleted gerbils or grown under iron-limiting conditions exhibited enhanced virulence and induction of inflammatory factors. Further, in a human population at high risk for gastric cancer, H. pylori strains isolated from patients with the lowest ferritin levels induced more robust proinflammatory responses compared with strains isolated from patients with the highest ferritin levels, irrespective of histologic status. These data demonstrate that iron deficiency enhances H. pylori virulence and represents a measurable biomarker to identify populations of infected persons at high risk for gastric cancer.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Correa P, Cover TL, Amieva MR, Peek RM. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 2012. [PMID: 23257361 DOI: 10.1172/jci6437364373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric adenocarcinoma is strongly associated with Helicobacter pylori infection; however, most infected persons never develop this malignancy. H. pylori strains harboring the cag pathogenicity island (cag+), which encodes CagA and a type IV secretion system (T4SS), induce more severe disease outcomes. H. pylori infection is also associated with iron deficiency, which similarly augments gastric cancer risk. To define the influence of iron deficiency on microbial virulence in gastric carcinogenesis, Mongolian gerbils were maintained on iron-depleted diets and infected with an oncogenic H. pylori cag+ strain. Iron depletion accelerated the development of H. pylori-induced premalignant and malignant lesions in a cagA-dependent manner. H. pylori strains harvested from iron-depleted gerbils or grown under iron-limiting conditions exhibited enhanced virulence and induction of inflammatory factors. Further, in a human population at high risk for gastric cancer, H. pylori strains isolated from patients with the lowest ferritin levels induced more robust proinflammatory responses compared with strains isolated from patients with the highest ferritin levels, irrespective of histologic status. These data demonstrate that iron deficiency enhances H. pylori virulence and represents a measurable biomarker to identify populations of infected persons at high risk for gastric cancer.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim JS, Holmes RK. Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae. PLoS One 2012; 7:e31709. [PMID: 22438866 PMCID: PMC3306370 DOI: 10.1371/journal.pone.0031709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H(2)O(2). In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ~2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H(2)O(2). In contrast, exposure of C. diphtheriae C7(β) to H(2)O(2) did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H(2)O(2) sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H(2)O(2). In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H(2)O(2) resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position -55 to -10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H(2)O(2).
Collapse
Affiliation(s)
| | - Randall K. Holmes
- Dept of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 2011; 193:5374-85. [PMID: 21803991 DOI: 10.1128/jb.05508-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Corynebacterium diphtheriae utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. The use of hemin iron in C. diphtheriae involves the dtxR- and iron-regulated hmu hemin uptake locus, which encodes an ABC hemin transporter, and the surface-anchored hemin binding proteins HtaA and HtaB. Sequence analysis of HtaA and HtaB identified a conserved region (CR) of approximately 150 amino acids that is duplicated in HtaA and present in a single copy in HtaB. The two conserved regions in HtaA, designated CR1 and CR2, were used to construct glutathione S-transferase (GST) fusion proteins (GST-CR1 and GST-CR2) to assess hemin binding by UV-visual spectroscopy. These studies showed that both domains were able to bind hemin, suggesting that the conserved sequences are responsible for the hemin binding property previously ascribed to HtaA. HtaA and the CR2 domain were also shown to be able to bind hemoglobin (Hb) by the use of an enzyme-linked immunosorbent assay (ELISA) method in which Hb was immobilized on a microtiter plate. The CR1 domain exhibited a weak interaction with Hb in the ELISA system, while HtaB showed no significant binding to Hb. Competitive binding studies demonstrated that soluble hemin and Hb were able to inhibit the binding of HtaA and the CR domains to immobilized Hb. Moreover, HtaA was unable to bind to Hb from which the hemin had been chemically removed. Alignment of the amino acid sequences of CR domains from various Corynebacterium species revealed several conserved residues, including two highly conserved tyrosine (Y) residues and one histidine (H) residue. Site-directed mutagenesis studies showed that Y361 and H412 were critical for the binding to hemin and Hb by the CR2 domain. Biological assays showed that Y361 was essential for the hemin iron utilization function of HtaA. Hemin transfer experiments demonstrated that HtaA was able to acquire hemin from Hb and that hemin bound to HtaA could be transferred to HtaB. These findings are consistent with a proposed mechanism of hemin uptake in C. diphtheriae in which hemin is initially obtained from Hb by HtaA and then transferred between surface-anchored proteins, with hemin ultimately transported into the cytosol by an ABC transporter.
Collapse
|
22
|
Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 2010; 78:4850-9. [PMID: 20805337 DOI: 10.1128/iai.00435-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a globally significant zoonosis caused by Leptospira spp. Iron is essential for growth of most bacterial species. Since iron availability is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In many bacteria, expression of iron uptake and storage proteins is regulated by Fur. L. interrogans encodes four predicted Fur homologs; we have constructed a mutation in one of these, la1857. We conducted microarray analysis to identify iron-responsive genes and to study the effects of la1857 mutation on gene expression. Under iron-limiting conditions, 43 genes were upregulated and 49 genes were downregulated in the wild type. Genes encoding proteins with predicted involvement in inorganic ion transport and metabolism (including TonB-dependent proteins and outer membrane transport proteins) were overrepresented in the upregulated list, while 54% of differentially expressed genes had no known function. There were 16 upregulated genes of unknown function which are absent from the saprophyte L. biflexa and which therefore may encode virulence-associated factors. Expression of iron-responsive genes was not significantly affected by mutagenesis of la1857, indicating that LA1857 is not a global regulator of iron homeostasis. Upregulation of heme biosynthetic genes and a putative catalase in the mutant suggested that LA1857 is more similar to PerR, a regulator of the oxidative stress response. Indeed, the la1857 mutant was more resistant to peroxide stress than the wild type. Our results provide insights into the role of iron in leptospiral metabolism and regulation of the oxidative stress response, including genes likely to be important for virulence.
Collapse
|
23
|
The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol 2010; 192:4606-17. [PMID: 20639324 DOI: 10.1128/jb.00525-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme-associated signal by the N-terminal sensor domain of ChrS and the transcriptional activation of the hrtAB genes.
Collapse
|
24
|
Leclère V, Beaufort S, Dessoy S, Dehottay P, Jacques P. Development of a biological test to evaluate the bioavailability of iron in culture media. J Appl Microbiol 2009; 107:1598-605. [DOI: 10.1111/j.1365-2672.2009.04345.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol 2009; 191:2638-48. [PMID: 19201805 DOI: 10.1128/jb.01784-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many human pathogens, including Corynebacterium diphtheriae, the causative agent of diphtheria, use host compounds such as heme and hemoglobin as essential iron sources. In this study, we examined the Corynebacterium hmu hemin transport region, a genetic cluster that contains the hmuTUV genes encoding a previously described ABC-type hemin transporter and three additional genes, which we have designated htaA, htaB, and htaC. The hmu gene cluster is composed of three distinct transcriptional units. The htaA gene appears to be part of an iron- and DtxR-regulated operon that includes hmuTUV, while htaB and htaC are transcribed from unique DtxR-regulated promoters. Nonpolar deletion of either htaA or the hmuTUV genes resulted in a reduced ability to use hemin as an iron source, while deletion of htaB had no effect on hemin iron utilization in C. diphtheriae. A comparison of the predicted amino acid sequences of HtaA and HtaB showed that they share some sequence similarity, and both proteins contain leader sequences and putative C-terminal transmembrane regions. Protein localization studies with C. diphtheriae showed that HtaA is associated predominantly with the cell envelope when the organism is grown in minimal medium but is secreted during growth in nutrient-rich broth. HtaB and HmuT were detected primarily in the cytoplasmic membrane fraction regardless of the growth medium. Hemin binding studies demonstrated that HtaA and HtaB are able to bind hemin, suggesting that these proteins may function as cell surface hemin receptors in C. diphtheriae.
Collapse
|
26
|
Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. J Bacteriol 2008; 191:1595-603. [PMID: 19074382 DOI: 10.1128/jb.01392-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.
Collapse
|
27
|
Bibb LA, Kunkle CA, Schmitt MP. The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 2007; 75:2421-31. [PMID: 17353293 PMCID: PMC1865786 DOI: 10.1128/iai.01821-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Corynebacterium diphtheriae hmuO gene, which encodes a heme oxygenase involved in heme iron utilization, is activated in a heme- or hemoglobin-dependent manner in part by the two-component system ChrA-ChrS. Mutation of either the chrA or the chrS gene resulted in a marked reduction of hemoglobin-dependent activation at the hmuO promoter in C. diphtheriae; however, it was observed that significant levels of hemoglobin-dependent expression were maintained in the mutants, suggesting that an additional activator is involved in regulation. A BLAST search of the C. diphtheriae genome sequence revealed a second two-component system, encoded by DIP2268 and DIP2267, that shares similarity with ChrS and ChrA, respectively; we have designated these genes hrrS (DIP2268) and hrrA (DIP2267). Analysis of hmuO promoter expression demonstrated that hemoglobin-dependent activity was fully abolished in strains from which both the chrA-chrS and the hrrA-hrrS two-component systems were deleted. Similarly, deletion of the sensor kinase genes chrS and hrrS or the genes encoding both of the response regulators chrA and hrrA also eliminated hemoglobin-dependent activation at the hmuO promoter. We also show that the regulators ChrA-ChrS and HrrA-HrrS are involved in the hemoglobin-dependent repression of the promoter upstream of hemA, which encodes a heme biosynthesis enzyme. Evidence for cross talk between the ChrA-ChrS and HrrA-HrrS systems is presented. In conclusion, these findings demonstrate that the ChrA-ChrS and HrrA-HrrS regulatory systems are critical for full hemoglobin-dependent activation at the hmuO promoter and also suggest that these two-component systems are involved in the complex mechanism of the regulation of heme homeostasis in C. diphtheriae.
Collapse
Affiliation(s)
- Lori A Bibb
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
Kunkle CA, Schmitt MP. Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol 2007; 189:3650-4. [PMID: 17322319 PMCID: PMC1855885 DOI: 10.1128/jb.00056-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed defined deletions in the hmuO gene from Corynebacterium diphtheriae and Corynebacterium ulcerans and show that the C. ulcerans hmuO mutation results in a significant reduction in hemoglobin-iron utilization, whereas in C. diphtheriae strains, deletion of hmuO caused no or only partial reduction in the utilization of heme as an iron source. We also show that expression from the C. ulcerans hmuO promoter exhibits minimal regulation by iron and heme whereas transcription from the C. diphtheriae hmuO promoter shows both significant iron repression and heme-dependent activation. These findings indicate that variability in HmuO function and expression exists among Corynebacterium species.
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Adminisstration, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Oram M, Woolston JE, Jacobson AD, Holmes RK, Oram DM. Bacteriophage-based vectors for site-specific insertion of DNA in the chromosome of Corynebacteria. Gene 2006; 391:53-62. [PMID: 17275217 PMCID: PMC1913493 DOI: 10.1016/j.gene.2006.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/18/2022]
Abstract
In Corynebacterium diphtheriae, diphtheria toxin is encoded by the tox gene of some temperate corynephages such as beta. beta-like corynephages are capable of inserting into the C. diphtheriae chromosome at two specific sites, attB1 and attB2. Transcription of the phage-encoded tox gene, and many chromosomally encoded genes, is regulated by the DtxR protein in response to Fe(2+) levels. Characterizing DtxR-dependent gene regulation is pivotal in understanding diphtheria pathogenesis and mechanisms of iron-dependent gene expression; although this has been hampered by a lack of molecular genetic tools in C. diphtheriae and related Coryneform species. To expand the systems for genetic manipulation of C. diphtheriae, we constructed plasmid vectors capable of integrating into the chromosome. These plasmids contain the beta-encoded attP site and the DIP0182 integrase gene of C. diphtheriae NCTC13129. When these vectors were delivered to the cytoplasm of non-lysogenic C. diphtheriae, they integrated into either the attB1 or attB2 sites with comparable frequency. Lysogens were also transformed with these vectors, by virtue of the second attB site. An integrated vector carrying an intact dtxR gene complemented the mutant phenotypes of a C. diphtheriae DeltadtxR strain. Additionally, strains of beta-susceptible C. ulcerans, and C. glutamicum, a species non-permissive for beta, were each transformed with these vectors. This work significantly extends the tools available for targeted transformation of both pathogenic and non-pathogenic Corynebacterium species.
Collapse
Affiliation(s)
- Mark Oram
- Department of Biomedical Sciences, University of Maryland Baltimore Baltimore MD 21201, USA
| | - Joelle E. Woolston
- Department of Biomedical Sciences, University of Maryland Baltimore Baltimore MD 21201, USA
| | - Andrew D. Jacobson
- University of Colorado School of Medicine, Department of Microbiology, Aurora, CO 80045, USA
| | - Randall K. Holmes
- University of Colorado School of Medicine, Department of Microbiology, Aurora, CO 80045, USA
| | - Diana M. Oram
- Department of Biomedical Sciences, University of Maryland Baltimore Baltimore MD 21201, USA
- *Corresponding author: Department of Biomedical Sciences. Rm 4E-04, University of Maryland Dental School, 666 W. Baltimore St., Baltimore, MD 21201, Phone: 00 1 410 706 8705, Fax: 00 1 410 706 0865,
| |
Collapse
|
30
|
Dertz EA, Stintzi A, Raymond KN. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J Biol Inorg Chem 2006; 11:1087-97. [PMID: 16912897 DOI: 10.1007/s00775-006-0151-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Hexadentate bacillibactin is the siderophore of Bacillus subtilis and is structurally similar to the better known enterobactin of Gram-negative bacteria such as Escherichia coli. Although both are triscatecholamide trilactones, the structural differences of these two siderophores result in opposite metal chiralities, different affinity for ferric ion, and dissimilar iron transport behaviors. Bacillibactin was first reported as isolated from Corynebacterium glutamicum and called corynebactin. However, failure of iron-starved C. glutamicum to transport 55Fe bacillibactin and lack of required bacillibactin biosynthetic genes suggest that bacillibactin is not the siderophore produced by this organism. Iron transport mediated by siderophores in B. subtilis occurs through a transport process that is specific for the iron chelating moiety, with parallel pathways for catecholates and hydroxamates. For bacillibactin, enterobactin, and their analogs, neither chirality nor presence of an amino acid spacer affects the uptake and transport process, but alteration of the net charge and size of the molecule impedes the recognition.
Collapse
Affiliation(s)
- Emily A Dertz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
| | | | | |
Collapse
|
31
|
Hansmeier N, Chao TC, Kalinowski J, Pühler A, Tauch A. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 2006; 6:2465-76. [PMID: 16544277 DOI: 10.1002/pmic.200500360] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Secreted proteins of the human pathogen Corynebacterium diphtheriae might be involved in important pathogen-host cell interactions. Here, we present the first systematic reference map of the extracellular and cell surface proteome fractions of the type strain C. diphtheriae C7s(-)tox-. The analysis window of 2-DE covered the pI range from 3 to 10 along with a MW range from 8 to 150 kDa. Computational analysis of the 2-D gels detected almost 150 protein spots in the extracellular proteome fraction and about 80 protein spots of the cell surface proteome. MALDI-TOF-MS and PMF with trypsin unambiguously identified 107 extracellular protein spots and 53 protein spots of the cell surface, representing in total 85 different proteins of C. diphtheriae C7s(-)tox-. Several of the identified proteins are encoded by pathogenicity islands and might represent virulence factors of C. diphtheriae. Additionally, four solute-binding proteins (HmuT, Irp6A, CiuA, and FrgD) of different iron ABC transporters were identified, with the hitherto uncharacterized FrgD protein being the most abundant one of the cell surface proteome of C. diphtheriae C7s(-)tox-.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
32
|
Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun 2006; 74:1171-80. [PMID: 16428766 PMCID: PMC1360317 DOI: 10.1128/iai.74.2.1171-1180.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of Mn2+ is 1,000-fold higher in secretions than it is at internal sites of the body, making it a potential signal by which bacteria can sense a shift from a mucosal environment to a more invasive site. PsaR, a metal-dependent regulator in Streptococcus pneumoniae, was found to negatively affect the transcription of psaBCA, pcpA, rrgA, rrgB, rrgC, srtBCD, and rlrA in the presence of Mn2+. psaBCA encode an ABC-type transporter for Mn2+. pcpA, rrgA, rrgB, and rrgC encode several outer surface proteins. srtBCD encode a cluster of sortase enzymes, and rlrA encodes a transcriptional regulator. Steady-state RNA levels are high under low Mn2+ concentrations in the wild-type strain and are elevated under both high and low Mn2+ concentrations in a psaR mutant strain. RlrA is an activator of rrgA, rrgB, rrgC, and srtBCD (D. Hava and A. Camilli, Mol. Microbiol. 45:1389-1406, 2002), suggesting that PsaR may indirectly control these genes through rlrA, while PsaR-dependent repression of psaBCA, pcpA, and rlrA transcription is direct. The impact of Mn2+-dependent regulation on virulence was further examined in mouse models of pneumonia and nasopharyngeal carriage. The abilities of DeltapsaR, pcpA, and DeltapsaR DeltapcpA mutant strains to colonize the lung were reduced compared to those of the wild type, confirming that both PcpA-mediated gene regulation and PsaR-mediated gene regulation are required for full virulence in the establishment of pneumonia. Neither PcpA nor PsaR was found to be required for colonization of the nasopharynx in a carriage model. This is the first demonstration of Mn2+ acting as a signal for the expression of virulence factors within different host sites.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, University of Iowa, BSB 3-401, 51 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
33
|
De Zoysa A, Efstratiou A, Hawkey PM. Molecular characterization of diphtheria toxin repressor (dtxR) genes present in nontoxigenic Corynebacterium diphtheriae strains isolated in the United Kingdom. J Clin Microbiol 2005; 43:223-8. [PMID: 15634975 PMCID: PMC540142 DOI: 10.1128/jcm.43.1.223-228.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontoxigenic strains of Corynebacterium diphtheriae represent a potential reservoir for the emergence of toxigenic C. diphtheriae strains if they possessed functional diphtheria toxin repressor (dtxR) genes. We studied the predominant strain of nontoxigenic C. diphtheriae circulating in the United Kingdom to see if they possessed dtxR genes and ascertain whether they were functional. A total of 26 nontoxigenic C. diphtheriae strains isolated in the United Kingdom during 1995 and 4 nontoxigenic strains isolated in other countries were analyzed by PCR and direct sequencing to determine the presence and intactness of the dtxR genes. The functionality of the DtxR proteins was assayed by testing for the production of siderophore in medium containing high and low concentrations of iron. PCR amplification and sequence analysis of the dtxR genes revealed four variants of the predicted DtxR protein among the nontoxigenic strains isolated in the United Kingdom. Production of siderophore in medium containing a low concentration of iron and repression of siderophore production in medium containing a high concentration of iron demonstrated that in all the strains the dtxR genes were functional. These findings demonstrate that, if lysogenised by a bacteriophage, nontoxigenic strains circulating in the United Kingdom could produce toxin and therefore represent a potential reservoir for toxigenic C. diphtheriae.
Collapse
Affiliation(s)
- Aruni De Zoysa
- Respiratory and Systemic Infection Laboratory, Specialist and Reference Microbiology Division, Health Protection Agency, London NW9 5HT, United Kingdom.
| | | | | |
Collapse
|
34
|
Kunkle CA, Schmitt MP. Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae. J Bacteriol 2005; 187:422-33. [PMID: 15629913 PMCID: PMC543566 DOI: 10.1128/jb.187.2.422-433.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report describes a genetic locus associated with siderophore biosynthesis and transport in Corynebacterium diphtheriae. A BLAST search of the C. diphtheriae genome identified a seven-gene cluster that included four genes, designated ciuA, ciuB, ciuC, and ciuD, whose predicted products are related to ABC-type iron transporters. Downstream from ciuD is the ciuE gene, whose predicted product is similar to the aerobactin biosynthetic enzymes IucA and IucC. The CiuE protein, which has a predicted mass of 121,582 Da and is approximately twice the size of either IucC or IucA, is homologous to each of these proteins in both its N- and C-terminal regions. C. diphtheriae ciuE deletion mutants exhibited a defect in siderophore production, iron uptake, and growth in low-iron medium. Mutations in the ciuA gene, whose predicted product is a lipoprotein component of an iron transport system, resulted in a severe defect in iron uptake and reduced ability to use the C. diphtheriae siderophore as an iron source. Site-directed mutations in irp6A, a gene previously reported to be associated with siderophore transport, had no effect on iron uptake or the utilization of the C. diphtheriae siderophore as an iron source. Transcriptional analysis demonstrated that expression of ciuA and ciuE is DtxR and iron regulated, and DNase I protection experiments confirmed the presence of DtxR binding sites upstream from each of these genes. Thus, this iron- and DtxR-regulated gene cluster is involved in the synthesis and transport of the C. diphtheriae siderophore.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/physiology
- Biological Transport, Active
- Corynebacterium diphtheriae/genetics
- Corynebacterium diphtheriae/growth & development
- Corynebacterium diphtheriae/metabolism
- Culture Media/chemistry
- DNA Footprinting
- DNA-Binding Proteins/metabolism
- Deoxyribonuclease I/metabolism
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Iron/metabolism
- Lipoproteins/genetics
- Lipoproteins/physiology
- Molecular Weight
- Multigene Family
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Siderophores/biosynthesis
- Siderophores/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Bacterial Toxins, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Kunkle CA, Schmitt MP. Analysis of the Corynebacterium diphtheriae DtxR regulon: identification of a putative siderophore synthesis and transport system that is similar to the Yersinia high-pathogenicity island-encoded yersiniabactin synthesis and uptake system. J Bacteriol 2004; 185:6826-40. [PMID: 14617647 PMCID: PMC262719 DOI: 10.1128/jb.185.23.6826-6840.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor, DtxR, is a global iron-dependent regulatory protein in Corynebacterium diphtheriae that controls gene expression by binding to 19-bp operator sequences. To further define the DtxR regulon in C. diphtheriae, a DtxR repressor titration assay (DRTA) was developed and used to identify 10 previously unknown DtxR binding sites. Open reading frames downstream from seven of the newly identified DtxR binding sites are predicted to encode proteins associated with iron or heme transport. Electrophoretic mobility shift assays indicated that DtxR was able to bind to DNA fragments carrying the 19-bp operator regions, and transcriptional analysis of putative promoter elements adjacent to the binding site sequences revealed that most of these regions displayed iron- and DtxR-regulated activity. A putative siderophore biosynthesis and transport operon located downstream from one of the DtxR binding sites, designated sid, is similar to the yersiniabactin synthesis and uptake genes encoded on the Yersinia pestis high pathogenicity island. The siderophore biosynthetic genes in the sid operon contained a large deletion in the C. diphtheriae C7 strain, but the sid genes were unaffected in four clinical isolates that are representative of the dominant strains from the recent diphtheria epidemic in the former Soviet Union. Mutations in the siderophore biosynthetic genes in a clinical strain had no effect on siderophore synthesis or growth in low-iron conditions; however, a mutation in one of the putative transport proteins, cdtP, resulted in reduced growth in iron-depleted media, which suggests that this system may have a role in iron uptake. The findings from this study indicate that C. diphtheriae contains at least 18 DtxR binding sites and that DtxR may affect the expression of as many as 40 genes.
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Bacterial Toxins, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
36
|
Ando M, Manabe YC, Converse PJ, Miyazaki E, Harrison R, Murphy JR, Bishai WR. Characterization of the role of the divalent metal ion-dependent transcriptional repressor MntR in the virulence of Staphylococcus aureus. Infect Immun 2003; 71:2584-90. [PMID: 12704132 PMCID: PMC153293 DOI: 10.1128/iai.71.5.2584-2590.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DtxR-type metal ion-dependent repressors, present in many bacterial pathogens, may regulate expression of virulence genes such as that encoding diphtheria toxin. SirR, a DtxR homologue initially identified in Staphylococcus epidermidis, governs the expression of the adjacent sitABC operon encoding a putative metal ion ABC transporter system. We identified a sirR homologue, mntR, in Staphylococcus aureus and demonstrated by gel shift assay that the corynebacterial repressor DtxR binds to the S. aureus mntABC operator in the presence of Fe(2+) or Mn(2+). Since a mutant DtxR, DtxR(E175K), functions as an iron-independent hyperrepressor in certain settings, we constructed a heterodiploid S. aureus strain expressing dtxR(E175K) from the native mntR promoter. Transcription of the S. aureus mntABC operon was repressed in the presence of Fe(2+) or Mn(2+) in wild-type and heterodiploid S. aureus strains. Under metal ion-limiting conditions, mntABC transcription was reduced but not abolished in S. aureus isolates expressing dtxR(E175K) compared with an isogenic control, suggesting that DtxR(E175K) binds the S. aureus MntR box in vivo. Under all conditions tested, mntABC transcription in the dtxR(E175K)-expressing strain was reduced relative to the isogenic control, indicating that DtxR(E175K) function was constitutively active. In the mouse skin abscess model, dtxR(E175K)-expressing S. aureus recombinants showed significantly reduced CFU levels compared with the isogenic wild-type control. We conclude that the S. aureus MntR box is recognized by corynebacterial DtxR proteins and thus belongs to the DtxR family of metal-dependent operator sites. Moreover, constitutive repression by DtxR(E175K) reduces the virulence of S. aureus in the mouse skin abscess model.
Collapse
Affiliation(s)
- Masaru Ando
- Division of Disease Control, Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Spiering MM, Ringe D, Murphy JR, Marletta MA. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc Natl Acad Sci U S A 2003; 100:3808-13. [PMID: 12655054 PMCID: PMC153003 DOI: 10.1073/pnas.0737977100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor in Corynebacterium diphtheriae. DtxR is an iron sensor; metal-bound DtxR represses transcription of genes downstream of the tox operator. Wild-type DtxR [DtxR(wt)] and several mutant forms were overexpressed and purified from Escherichia coli. DtxR was isolated without bound metal. Metal reconstitution gave a binding stoichiometry of 2 per monomer for DtxR(wt) and 1 per monomer for DtxR(H79A) and DtxR(M10A). DNA binding of DtxR(H79A) and DtxR(M10A) indicates that metal site 2 is essential for activity. Metal binding lowers the dimerization K(d) of DtxR from low micromolar to 33 nM. Gel electrophoretic mobility-shift assays show that Fe(2+) and not Fe(3+) activates DtxR for DNA binding. This finding suggests that gene regulation by DtxR may be sensitive not only to iron levels but also to redox state of the iron. Mutations in the tox operator sequence indicate that DtxR dimers binding to DNA may be highly cooperative.
Collapse
Affiliation(s)
- Michelle M Spiering
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
38
|
Schmitt MP. Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol 2002; 184:6882-92. [PMID: 12446639 PMCID: PMC135481 DOI: 10.1128/jb.184.24.6882-6892.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DtxR protein is a global iron-dependent repressor in Corynebacterium diphtheriae that regulates transcription from multiple promoters. A search of the partially completed C. diphtheriae genome identified a gene, mntR, whose predicted product has significant homology with the DtxR repressor protein. The mntR gene is the terminal gene in a five-gene operon that also carries the mntABCD genes, whose predicted products are homologous to ABC metal transporters. Transcription of this genetic system, as measured by expression of an mntA-lacZ reporter fusion, is strongly repressed by Mn(2+). The divalent metals Fe(2+), Cu(2+), and Zn(2+) did not repress expression of the mntA-lacZ construct. A mutation in the mntR gene abolished Mn(2+)-dependent repression of the mntA-lacZ fusion, demonstrating that MntR is essential for the Mn(2+)-dependent regulation of this promoter. Footprinting experiments showed that MntR protects from DNase I digestion an approximately 73-bp AT-rich region that includes the entire mntA promoter. This large region protected from DNase I suggests that as many as three MntR dimer pairs may bind to this region. Binding studies also revealed that DtxR failed to bind to the MntR binding site and that MntR exhibited weak and diffuse binding at the DtxR binding site at the tox promoter. A C. diphtheriae mntA mutant grew as well as the wild type in a low-Mn(2+) medium, which suggests that the mntABCD metal transporter is not required for growth in a low-Mn(2+) medium and that additional Mn(2+) transport systems may be present in C. diphtheriae. This study reports the characterization of MntR, a Mn(2+)-dependent repressor, and the second member of the family of DtxR-like metalloregulatory proteins to be identified in C. diphtheriae.
Collapse
Affiliation(s)
- Michael P Schmitt
- Laboratory of Bacterial Toxins, Division of Bacterial, Allergenic and Parasitic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
39
|
Oram DM, Avdalovic A, Holmes RK. Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol 2002; 184:5723-32. [PMID: 12270831 PMCID: PMC139604 DOI: 10.1128/jb.184.20.5723-5732.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe(2+) concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
40
|
Qian Y, Lee JH, Holmes RK. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol 2002; 184:4846-56. [PMID: 12169610 PMCID: PMC135300 DOI: 10.1128/jb.184.17.4846-4856.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) uses Fe(2+) as a corepressor and inhibits transcription from iron-regulated promoters (IRPs) in Corynebacterium diphtheriae. A new IRP, designated IRP6, was cloned from C. diphtheriae by a SELEX-like procedure. DtxR bound to IRP6 in vitro only in the presence of appropriate divalent metal ions, and repression of IRP6 by DtxR in an Escherichia coli system was iron dependent. The open reading frames (ORFs) downstream from IRP6 and previously described promoter IRP1 were found to encode proteins homologous to components of ATP-binding cassette (ABC) transport systems involved in high-affinity iron uptake in other bacteria. IRP1 and IRP6 were repressed under high-iron conditions in wild-type C. diphtheriae C7(beta), but they were expressed constitutively in C7(beta) mutant strains HC1, HC3, HC4, and HC5, which were shown previously to be defective in corynebactin-dependent iron uptake. A clone of the wild-type irp6 operon (pCM6ABC) complemented the constitutive corynebactin production phenotype of HC1, HC4, and HC5 but not of HC3, whereas a clone of the wild-type irp1 operon failed to complement any of these strains. Complementation by subclones of pCM6ABC demonstrated that mutant alleles of irp6A, irp6C, and irp6B were responsible for the phenotypes of HC1, HC4, and HC5, respectively. The irp6A allele in HC1 and the irp6B allele in HC5 encoded single amino acid substitutions in their predicted protein products, and the irp6C allele in HC4 caused premature chain termination of its predicted protein product. Strain HC3 was found to have a chain-terminating mutation in dtxR in addition to a missense mutation in its irp6B allele. These findings demonstrated that the irp6 operon in C. diphtheriae encodes a putative ABC transporter, that specific mutant alleles of irp6A, irp6B, and irp6C are associated with defects in corynebactin-dependent iron uptake, and that complementation of these mutant alleles restores repression of corynebactin production under high-iron growth conditions, most likely as a consequence of restoring siderophore-dependent iron uptake mediated by the irp6 operon.
Collapse
Affiliation(s)
- Yilei Qian
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
41
|
Feese MD, Ingason BP, Goranson-Siekierke J, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at 2.0-A resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem 2001; 276:5959-66. [PMID: 11053439 DOI: 10.1074/jbc.m007531200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-dependent regulators are primary transcriptional regulators of virulence factors and iron scavenging systems that are important for infection by several bacterial pathogens. Here we present the 2.0-A crystal structure of the wild type iron-dependent regulator from Mycobacterium tuberculosis in its fully active holorepressor conformation. Clear, unbiased electron density for the Src homology domain 3-like third domain, which is often invisible in structures of iron-dependent regulators, was revealed by density modification and averaging. This domain is one of the rare examples of Src homology domain 3-like folds in bacterial proteins, and, in addition, displays a metal binding function by contributing two ligands, one Glu and one Gln, to the pentacoordinated cobalt atom at metal site 1. Both metal sites are fully occupied, and tightly bound water molecules at metal site 1 ("Water 1") and metal site 2 ("Water 2") are identified unambiguously. The main chain carbonyl of Leu4 makes an indirect interaction with the cobalt atom at metal site 2 via Water 2, and the adjacent residue, Val5, forms a rare gamma turn. Residues 1-3 are well ordered and make numerous interactions. These ordered solvent molecules and the conformation and interactions of the N-terminal pentapeptide thus might be important in metal-dependent activation.
Collapse
Affiliation(s)
- M D Feese
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
42
|
Rodriguez GM, Gold B, Gomez M, Dussurget O, Smith I. Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 2000; 79:287-98. [PMID: 10707257 DOI: 10.1054/tuld.1999.0219] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SETTING Low iron availability in the host induces the expression of iron acquisition systems and virulence genes in many pathogens. IdeR is a mycobacterial iron dependent regulator that controls the iron starvation and oxidative stress responses in Mycobacterium smegmatis. It is important to determine the role of IdeR and its regulon in M. tuberculosis, as identification of iron regulated genes can aid in the design of new drugs and generation of attenuated strains. OBJECTIVE A potential IdeR binding site was found in the M. tuberculosis genome flanked by two divergently oriented open reading frames, irg1 and irg2. The aim of this study was to determine whether irg1 and irg2 were iron and IdeR regulated genes. DESIGN Interaction of IdeR with the putative binding sequence was examined by gel shift and footprinting assays. Transcriptional fusions of irg1 and irg2 to IacZ were used to study the effect of iron levels on the expression of these genes. RESULTS IdeR binds to the predicted binding site, which overlaps with the irg1 promoter. irg1 and irg2 expression was decreased by iron in M. tuberculosis and in wild type M. smegmatis, but not in a M. smegmatis ideR mutant. CONCLUSION Two M. tuberculosis iron/IdeR regulated genes were identified. irg1 is predicted to be the M. tuberculosis hisE gene, which is involved in histidine biosynthesis. It is directly upstream of the M. tuberculosis hisG. irg2 encodes a putative membrane protein that is a member of the PPE family.
Collapse
Affiliation(s)
- G M Rodriguez
- TB Center, Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
43
|
Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 2000; 181 Suppl 1:S156-67. [PMID: 10657208 DOI: 10.1086/315554] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diphtheria toxin (DT) is an extracellular protein of Corynebacterium diphtheriae that inhibits protein synthesis and kills susceptible cells. The gene that encodes DT (tox) is present in some corynephages, and DT is only produced by C. diphtheriae isolates that harbor tox+ phages. The diphtheria toxin repressor (DtxR) is a global regulatory protein that uses Fe2+ as co-repressor. Holo-DtxR represses production of DT, corynebacterial siderophore, heme oxygenase, and several other proteins. Diagnostic tests for toxinogenicity of C. diphtheriae are based either on immunoassays or on bioassays for DT. Molecular analysis of tox and dtxR genes in recent clinical isolates of C. diphtheriae revealed several tox alleles that encode identical DT proteins and multiple dtxR alleles that encode five variants of DtxR protein. Therefore, recent clinical isolates of C. diphtheriae produce a single antigenic type of DT, and diphtheria toxoid continues to be an effective vaccine for immunization against diphtheria.
Collapse
Affiliation(s)
- R K Holmes
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
44
|
Lee JH, Holmes RK. Characterization of specific nucleotide substitutions in DtxR-specific operators of Corynebacterium diphtheriae that dramatically affect DtxR binding, operator function, and promoter strength. J Bacteriol 2000; 182:432-8. [PMID: 10629190 PMCID: PMC94293 DOI: 10.1128/jb.182.2.432-438.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) of Corynebacterium diphtheriae uses Fe(2+) as a corepressor. Holo-DtxR inhibits transcription from the iron-regulated promoters (IRPs) designated IRP1 through IRP5 as well as from the promoters for the tox and hmuO genes. DtxR binds to 19-bp operators with the consensus sequence 5'-TTAGGTTAGCCTAACCTAA-3', a perfect 9-bp palindrome interrupted by a single C. G base pair. Among the seven known DtxR-specific operators, IRP3 exhibits the weakest binding to DtxR. The message (sense) strand of the IRP3 operator (5'-TTAGGTGAGACGCACCCAT-3' [nonconsensus nucleotides underlined]) overlaps by 2 nucleotides at its 5' end with the putative -10 sequence of the IRP3 promoter. The underlined C at position +7 from the center of the IRP3 operator [C(+7)] is unique, because T is conserved at that position in other DtxR-specific operators. The present study examined the effects of nucleotide substitutions at position +7 or -7 in the IRP3 operator. In gel mobility shift assays, only the change of C(+7) to the consensus nucleotide T caused a dramatic increase in the binding of DtxR, whereas other nucleotide substitutions for C(+7) or replacements for A(-7) had only small positive or negative effects on DtxR binding. All substitutions for C(+7) or A(-7) except for A(-7)C dramatically decreased IRP3 promoter strength. In contrast, the A(-7)C variant caused increased promoter strength at the cost of nearly eliminating repressibility by DtxR. The message (sense) strand of the IRP1 operator (5'-TTAGGTTAGCCAAACCTTT-3') includes the -35 region of the IRP3 promoter. A T(+7)C variant of the IRP1 operator was also constructed, and it was shown to exhibit decreased binding to DtxR, decreased repressibility by DtxR, and increased promoter strength. The nucleotides at positions +7 and -7 in DtxR-specific operators are therefore important determinants of DtxR binding and repressibility of transcription by DtxR, and they also have significant effects on promoter activity for IRP3 and IRP1.
Collapse
Affiliation(s)
- J H Lee
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
45
|
Goranson-Siekierke J, Pohl E, Hol WG, Holmes RK. Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor. Infect Immun 1999; 67:1806-11. [PMID: 10085021 PMCID: PMC96531 DOI: 10.1128/iai.67.4.1806-1811.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homodimeric diphtheria toxin repressor (DtxR) uses Fe2+ as a corepressor, binds to iron-regulated promoters, and negatively regulates the syntheses of diphtheria toxin, corynebacterial siderophore, and several other Corynebacterium diphtheriae products. The crystal structure of DtxR shows that the second domain of each monomer has two binding sites for Fe2+ or certain other divalent metal ions. In addition, site 1 binds a sulfate or phosphate anion, suggesting that phosphate may function intracellularly as a co-corepressor. The effects of alanine substitutions for selected residues in sites 1 and 2 were determined by measuring the beta-galactosidase activities of a tox operator/promoter-lacZ reporter construct in Escherichia coli strains expressing each DtxR variant. Our studies demonstrated that single alanine substitutions for the anion-binding residues in site 1 (R80A, S126A, or N130A) caused severely decreased DtxR activity, similar to the effects of alanine substitutions for metal-binding residues in site 2 (C102A, E105A, or H106A) and greater than the effects of alanine substitutions for metal-binding residues in site 1 (H79A, E83A, or H98A) reported previously by other investigators. Various combinations of alanine substitutions for site 1 and site 2 residues were also analyzed to further elucidate the roles of these cation- and anion-binding ligands in DtxR activity. Furthermore, the interaction between residue E20 in the DNA binding domain and R80 in anion/cation binding site 1 was analyzed, and the E20A variant of DtxR was shown to have a phenotype indistinguishable from that of the R80A variant. Our data demonstrated for the first time that the anion-binding residues R80, S126, and N130 at site 1 are essential for DtxR activity. The data also showed that the interaction of E20 in domain 1 with R80 in domain 2, first revealed by X-ray crystallography in apo-DtxR and holo-DtxR, is a structural feature of DtxR that is important for its repressor activity.
Collapse
Affiliation(s)
- J Goranson-Siekierke
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
46
|
Schmitt MP, Talley BG, Holmes RK. Characterization of lipoprotein IRP1 from Corynebacterium diphtheriae, which is regulated by the diphtheria toxin repressor (DtxR) and iron. Infect Immun 1997; 65:5364-7. [PMID: 9393842 PMCID: PMC175775 DOI: 10.1128/iai.65.12.5364-5367.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Corynebacterium diphtheriae irp1 gene is negatively regulated by DtxR and iron. The nucleotide sequence of irp1 revealed that it has homology with genes involved in iron acquisition. Expression of the irp1 gene showed that it encodes a lipoprotein (IRP1) with a predicted size of 38 kDa. Northern blot experiments indicated that transcription from the irp1 promoter is repressed in high-iron medium and suggested that irp1 is part of an iron-regulated operon.
Collapse
Affiliation(s)
- M P Schmitt
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
47
|
Schmitt MP. Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme. Infect Immun 1997; 65:4634-41. [PMID: 9353044 PMCID: PMC175665 DOI: 10.1128/iai.65.11.4634-4641.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hmuO gene is required for the utilization of heme and hemoglobin as iron sources by Corynebacterium diphtheriae. The product of hmuO has homology to eukaryotic heme oxygenases which are involved in the degradation of heme and the release of iron. To investigate the mechanism of hmuO regulation, a promoterless lacZ gene present on the promoter-probe vector pCM502 was placed under transcriptional control of the hmuO promoter. In C. diphtheriae C7, optimal expression from the hmuO promoter was obtained only in the presence of heme or hemoglobin under low-iron conditions. Expression of hmuO in high-iron medium containing heme was repressed five- to sixfold from that seen under low-iron conditions in the presence of heme. Transcription from the hmuO promoter in the absence of heme or hemoglobin was fully repressed in high-iron medium and was expressed at very low levels in iron-depleted conditions. Expression studies with tile hmuO-lacZ fusion construct in C7hm723, a dtxR mutant of C7, and in a hmuO mutant of C. diphtheriae HC1 provided further evidence that transcription of the hmuO promoter is repressed by DtxR and iron and activated by heme. In Escherichia coli, the hmuO promoter was expressed at very low levels under all conditions examined. Gel mobility shift assays and DNase I footprinting experiments indicated that DtxR binds in a metal-dependent manner to a sequence that overlaps the putative hmuO promoter. Total cellular RNA isolated from C. diphtheriae was used to identify the transcriptional start site for the hmuO gene. Northern blot analysis suggested that the hmuO mRNA was monocistronic and that transcription was heme inducible.
Collapse
Affiliation(s)
- M P Schmitt
- Division of Bacterial Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
48
|
Meyer M, Telford JR, Cohen SM, White DJ, Xu J, Raymond KN. High-Yield Synthesis of the Enterobactin Trilactone and Evaluation of Derivative Siderophore Analogs1. J Am Chem Soc 1997. [DOI: 10.1021/ja970718n] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Lee JH, Wang T, Ault K, Liu J, Schmitt MP, Holmes RK. Identification and characterization of three new promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. Infect Immun 1997; 65:4273-80. [PMID: 9317037 PMCID: PMC175613 DOI: 10.1128/iai.65.10.4273-4280.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DtxR is a dimeric, sequence-specific, DNA-binding protein that functions as an iron-dependent, negative global regulator in Corynebacterium diphtheriae. Under high-iron conditions, DtxR represses the synthesis of diphtheria toxin, corynebacterial siderophore, and other components of the high-affinity iron uptake system. Three DtxR-regulated promoter/operators designated tox, IRP1, and IRP2 were reported previously. In this study, we identified and characterized three additional DtxR-regulated promoter/operators from C. diphtheriae designated IRP3, IRP4, and IRP5. When beta-galactosidase was expressed from these three new promoter/ operators in Escherichia coli containing dtxR+ on pDSK29, enzyme levels were 5- to 30-fold lower during high-iron growth than during low-iron growth. In gel shift assays, the mobility of DNA fragments containing each promoter/operator decreased in the presence of purified DtxR and Co2+. In footprinting assays, DtxR protected 36-, 35-, and 30-bp regions of IRP3, IRP4, and IRP5, respectively, from cleavage by DNase I. In the 19-bp core of each promoter/operator, 12 or 13 bp matched the consensus for the DtxR-binding site. The putative polypeptides encoded by the open reading frames (ORFs) downstream from IRP3 and IRP4 were homologous, respectively, to several bacterial transcriptional regulators and to the deduced polypeptide encoded by an ORF located between the E. coli genes for primosomal replication protein N and adenine phosphoribosyltransferase. The putative polypeptide encoded by the ORF downstream from IRP5 was not homologous to any sequence in the protein database at the National Center for Biotechnology Information. When the ORFs downstream from IRP3 and IRP4 were expressed under the control of the phage T7 promoter in E. coli, polypeptide products of the predicted sizes were detected in small amounts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- J H Lee
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
50
|
Crosa JH. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 1997; 61:319-36. [PMID: 9293185 PMCID: PMC232614 DOI: 10.1128/mmbr.61.3.319-336.1997] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and enterobactin systems in Pseudomonas species; the irgB system in Vibrio cholerae; and the plasmid-mediated anguibactin system in Vibrio anguillarum. I hope that by using these diverse paradigms, I will be able to convey a unifying picture of these mechanism and their importance in the maintenance and prosperity of bacteria within their ecological niches.
Collapse
Affiliation(s)
- J H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|