1
|
Kohara J, Bai L, Takeshima SN, Matsumoto Y, Hirai T, Aida Y. Correlation between the Biodistribution of Bovine Leukemia Virus in the Organs and the Proviral Load in the Peripheral Blood during Early Stages of Experimentally Infected Cattle. Pathogens 2023; 12:130. [PMID: 36678478 PMCID: PMC9867250 DOI: 10.3390/pathogens12010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Shin-nosuke Takeshima
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Yuki Matsumoto
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tsunao Hirai
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Fulton BE, Portella M, Radke K. Dissemination of bovine leukemia virus-infected cells from a newly infected sheep lymph node. J Virol 2006; 80:7873-84. [PMID: 16873244 PMCID: PMC1563808 DOI: 10.1128/jvi.00529-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the early establishment of bovine leukemia virus (BLV) infection, we injected BLV-infected or mock-infected allogeneic cells into the shoulder of sheep in which an efferent lymphatic duct of the draining prescapular lymph node had been cannulated. Rare mononuclear cells acting as centers of BLV infection in culture were present within 4 to 6 days in efferent lymph and within 6 to 10 days in blood. Soon after BLV injection, immunoglobulin M+ (IgM+) and CD8+ cells increased in efferent lymph and oscillated reciprocally in frequency. CD8+ blasts increased on days 4 to 6, when infectious centers increased 100-fold in lymph. On days 6 and 7, both lymph and blood were enriched with CD8+ cells that were labeled late on day 5 with an intravenous pulse of 5-bromo-2'-deoxyuridine (BrdU). Lymph, but not blood, was enriched with BrdU+ B cells on day 7. Capsid-specific antibodies became detectable in efferent lymph on days 6 to 8 and surface glycoprotein-specific antibodies on day 9, preceding their detection in serum by 9 to 14 days. Systemic dissemination of BLV-infected cells was thus accompanied by an increase in proliferating CD8+ cells and the onset of BLV-specific antibodies in lymph. Infectious centers reached maximum frequencies of 0.2% in lymph by days 11 to 13, and then their frequencies increased by 5- to 40-fold in blood cells, suggesting that many infected blood cells do not recirculate back into lymph. Beginning on days 10 to 13, a subpopulation of B cells having high levels of surface IgM increased sharply in peripheral blood. Such cells were not present in lymph. After a day 16 pulse of BrdU, recently proliferated cells that stained intensely for surface IgM appeared in blood within 15 h. Predominantly B lymphocytes contained the viral capsid protein when lymph and blood cells were cultured briefly to allow BLV expression. However, both early in lymph and later in blood, BrdU+ B cells greatly exceeded productively infected cells, indicating that new BLV infections stimulate proliferation of two different populations of B cells.
Collapse
Affiliation(s)
- B E Fulton
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616-8521, USA
| | | | | |
Collapse
|
4
|
Ferens WA, Cobbold R, Hovde CJ. Intestinal Shiga toxin-producing Escherichia coli bacteria mitigate bovine leukemia virus infection in experimentally infected sheep. Infect Immun 2006; 74:2906-16. [PMID: 16622229 PMCID: PMC1459712 DOI: 10.1128/iai.74.5.2906-2916.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/08/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
Ruminants often carry gastrointestinal Shiga toxin (Stx)-producing Escherichia coli (STEC). Stxs belong to a large family of ribosome-inactivating proteins (RIPs), found in many plants and some bacteria. Plant RIPs, secreted into extracellular spaces, limit the spread of viruses through plant tissues by penetrating and killing virally infected cells. Previously, we showed Stx activity against bovine leukemia virus (BLV)-infected cells in vitro and hypothesized that STEC bacteria have antiviral activity in ruminant hosts. Here, we investigated the impact of STEC on the initial phases of BLV infection in sheep. Sheep were treated with biweekly oral doses of E. coli O157:H7 (an STEC) or an isogenic stx mutant strain. A different group of sheep were similarly treated with five naturally occurring ovine STEC isolates or stx-negative E. coli. Intestinal STEC bacteria were enumerated and identified by standard fecal culture and DNA hybridization. Oral STEC treatment did not always result in carriage of STEC, although many animals consistently presented with >10(4) CFU/g feces. BLV viremia was assessed by spontaneous lymphocyte proliferation (SLP) in cultures of blood mononuclear cells and by syncytium formation in cocultures of the same with F-81 indicator cells. SLP was lower (P < 0.05) and syncytia were fewer (P < 0.05) in STEC-treated sheep than in untreated sheep. Both lower SLP and fewer syncytia positively correlated with fecal STEC numbers. Average weight gain post-BLV challenge was higher in STEC-treated sheep than in untreated sheep (P < 0.05). These results support the hypothesis that in ruminants, intestinal STEC bacteria have antiviral activity and mitigate BLV-induced disease.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
5
|
Johnston ER, Albritton LM, Radke K. Envelope proteins containing single amino acid substitutions support a structural model of the receptor-binding domain of bovine leukemia virus surface protein. J Virol 2002; 76:10861-72. [PMID: 12368329 PMCID: PMC136609 DOI: 10.1128/jvi.76.21.10861-10872.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional domains of the strikingly conserved envelope (Env) glycoproteins of bovine leukemia virus (BLV) and its close relative, human T-cell leukemia virus type 1 (HTLV-1), are still being defined. We have used BLV Env protein variants to gain insights into the structure and function of this important determinant of viral infectivity. Each of 23 different single amino acid variants found in cDNA clones of env transcripts present after short-term culture of peripheral blood mononuclear cells from BLV-infected sheep was expressed in COS-1 cells and tested for the ability to mediate cell fusion and to be cleaved to surface (SU) and transmembrane (TM) protein subunits. Of 11 Env variants that failed to induce syncytia or did so poorly, 7 contained changes in amino acids identical or chemically conserved in the HTLV-1 Env protein. These seven included the four variants that showed aberrant proteolytic cleavage and poor cell surface expression, underscoring their importance for Env structure. Ten of 12 variants that retained wild-type syncytium-inducing ability clustered in the N-terminal half of BLV SU, which forms the putative receptor-binding domain (RBD). Several variants in the RBD showed evidence of subtle misfolding, as judged by reduced binding to monoclonal antibodies recognizing conformational epitopes F, G, and H formed by the N terminus of SU. We modeled the BLV RBD by aligning putative structural elements with known elements of the ecotropic Friend murine leukemia virus RBD monomer. All the variant RBD residues but one are exposed on the surface of this BLV model. These variants as well as function-altering, antibody-reactive residues defined by other investigators group on one face of the molecular model. They are strikingly absent from the opposite face, implying that it is likely to face inward in Env complexes. This surface might interact with the C-terminal domain of SU or with an adjacent monomer in the Env oligomer. This location suggests an orientation for the monomer of ecotropic Friend murine leukemia virus RBD.
Collapse
Affiliation(s)
- Elizabeth R Johnston
- Department of Animal Science and Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
6
|
Johnston ER, Powers MA, Kidd LC, Radke K. Peripheral blood mononuclear cells from sheep infected with a variant of bovine leukemia virus synthesize envelope glycoproteins but fail to induce syncytia in culture. J Virol 1996; 70:6296-303. [PMID: 8709257 PMCID: PMC190655 DOI: 10.1128/jvi.70.9.6296-6303.1996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) infected with the oncogenic retrovirus bovine leukemia virus (BLV) produce virus when cultured briefly. BLV can be transmitted in cocultures to adherent susceptible cells, which become infected, express viral proteins, and fuse into multinucleated syncytia several days later. PBMCs from 3 of 10 BLV-infected sheep displayed a lifelong deficiency in induction of syncytium formation among indicator cells in culture, although large numbers of PBMCs synthesized viral transcripts or capsid protein. Since the infected, syncytium-deficient PBMCs were > or = 97% B cells, the deficiency could not be attributed to altered host cell tropism. The syncytium-deficient phenotype was recapitulated in newly infected sheep, demonstrating that this property is regulated by the viral genotype. The alteration in the BLV genome delayed but did not prohibit the establishment of BLV infection in vivo. Envelope glycoproteins were synthesized in syncytium-deficient PBMCs, translocated to the cell surface, and incorporated into virions. However, monoclonal antibodies specific for the BLV surface glycoprotein did not stain fixed PBMCs of the syncytium-deficient phenotype. Moreover, an animal with syncytium-deficient PBMCs had lower titers of neutralizing antibodies throughout the first 5 years of infection than an animal with similar numbers of infected PBMCs of the syncytium-inducing phenotype. The syncytium-deficient variant productively infected indicator cells at greatly reduced efficiency, showing that the alteration affects an early step in viral entry or replication. These results suggest that the alteration maps in the env gene or in a gene whose product affects the maturation or conformation, and consequently the function, of the envelope protein complex.
Collapse
MESH Headings
- Animals
- Antibodies, Viral
- B-Lymphocytes/physiology
- B-Lymphocytes/virology
- Capsid/biosynthesis
- Cattle
- Cells, Cultured
- Coculture Techniques
- DNA, Viral/blood
- Gene Products, env/biosynthesis
- Genes, env
- Giant Cells
- In Situ Hybridization
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Membrane Proteins/biosynthesis
- Membrane Proteins/blood
- Neutralization Tests
- Phenotype
- Proviruses/physiology
- RNA, Viral/biosynthesis
- Sheep
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- E R Johnston
- Department of Avian Sciences, University of California, Davis 95616-8532, USA
| | | | | | | |
Collapse
|
7
|
Powers MA, Radke K. Activation of bovine leukemia virus transcription in lymphocytes from infected sheep: rapid transition through early to late gene expression. J Virol 1992; 66:4769-77. [PMID: 1378509 PMCID: PMC241304 DOI: 10.1128/jvi.66.8.4769-4777.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine leukemia virus (BLV) expression is mostly silent in peripheral blood mononuclear cells (PBMCs) of infected animals. However, when infected cells are cultured, they are stimulated to produce virus. We studied viral transcription in PBMCs taken from BLV-infected sheep because the pattern of transcriptional activation in these cells should closely mimic activation of virus expression within mononuclear cells in vivo. BLV transcription was activated as early as 30 min after PBMCs were cultured. Expression was characterized by early and late stages, each distinguished by a unique pattern of cytoplasmic RNAs. In early expression, cytoplasmic viral RNA was exclusively the doubly spliced tax/rex transcript, although all transcripts were present in the nucleus. Early expression gave way rapidly to late expression, in which all viral transcripts accumulated in the cytoplasm. The polyclonal B-cell activator lipopolysaccharide increased the amount of viral RNA by at least twofold but did not alter the pattern of transcription. The transition from early to late expression required new protein synthesis and was blocked by the inhibitor cycloheximide. This requirement reflects the essential role of the viral Rex protein in the transition, but synthesis of cellular factors may be required as well. These results provide the first demonstration of staged viral expression in lymphocytes naturally infected by either BLV or the closely related human T-cell leukemia virus (HTLV) and validate the model of BLV and HTLV gene expression that previously was derived from transfection experiments performed mainly in nonlymphoid cells.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Capsid/analysis
- Capsid/genetics
- Cell Nucleus/physiology
- Cells, Cultured
- Genes, Regulator
- Genes, Viral
- Kinetics
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/growth & development
- Leukemia Virus, Bovine/isolation & purification
- Leukemia, Experimental/microbiology
- Lymphocytes/microbiology
- Poly A/genetics
- Poly A/isolation & purification
- RNA/genetics
- RNA/isolation & purification
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Sheep
- Transcription, Genetic
- Virus Activation
Collapse
Affiliation(s)
- M A Powers
- Department of Avian Sciences, University of California, Davis 95616-8532
| | | |
Collapse
|
8
|
Radke K, Sigala TJ, Grossman D. Transcription of bovine leukemia virus in peripheral blood cells obtained during early infection in vivo. Microb Pathog 1992; 12:319-31. [PMID: 1323740 DOI: 10.1016/0882-4010(92)90095-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bovine leukemia virus (BLV) is transcriptionally silent in most circulating peripheral blood mononuclear cells (PBMCs) of animals with well-established infections. Using PBMCs from a newly infected sheep, we asked whether viral transcription proceeded differently during the initial months of infection, when the prevalence of BLV-infected cells and the host's immunological response change markedly. Shortly after being injected with BLV, the animal displayed a characteristic, transient increase in PBMCs that transcribed BLV when cultured. Even when transcriptionally competent PBMCs were most prevalent (1.2%), only rare cells in the circulation (1 in 50,000) contained enough BLV transcripts to be identified readily by in situ hybridization. However, at one point several weeks later, some PBMCs appeared to contain small amounts of BLV RNA as soon as they had been purified from blood. Throughout this period, BLV-transcribing PBMCs greatly outnumbered virus-producing cells, which were counted using a new infectious centers assay. Its viscous medium reduced cell to cell contact among PBMCs, enabling increased detection of BLV-producing cells at a time when virus-specific killer cells might be active. Early infection was polyclonal, and most infected PBMCs transcribed BLV upon being cultured. By 2 months after infection, provirus-containing cells were as abundant as they had been earlier, but few cells transcribed BLV. These results suggest that BLV-infected cells are more easily stimulated to transcribe the provirus and produce infectious virus during the early months of a new infection.
Collapse
Affiliation(s)
- K Radke
- Department of Avian Sciences, University of California, Davis 95616-8532
| | | | | |
Collapse
|
9
|
Powers MA, Grossman D, Kidd LC, Radke K. Episodic occurrence of antibodies against the bovine leukemia virus Rex protein during the course of infection in sheep. J Virol 1991; 65:4959-65. [PMID: 1651415 PMCID: PMC248958 DOI: 10.1128/jvi.65.9.4959-4965.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection by bovine leukemia virus (BLV) is characterized by a long clinical latency after which some individuals develop B-cell tumors. The contributions of the viral regulatory proteins Tax and Rex during clinical latency and disease are incompletely understood. To learn about Rex expression in the host, we used a sensitive immunoprecipitation assay to detect Rex antibodies throughout the course of BLV infection in sheep. Sixty percent of the infected animals produced Rex antibodies in intermittent episodes. This pattern differed markedly from that of antibodies to virion structural proteins, which were maintained in all animals throughout infection. Only one of two animals that developed tumors had detectable Rex antibodies at the time, although the other had previously demonstrated an especially strong Rex antibody response. We examined the Rex response in the context of BLV infection by comparing it with the frequency of circulating mononuclear blood cells that could transcribe BLV RNA or produce infectious virus. Episodes of Rex antibody occurrence followed some but not all increases in the number of BLV-transcribing cells. Since the appearance of circulating antibodies requires that the intracellular Rex protein be available to serve as antigen, the episodic pattern of occurrence of Rex antibodies could result from intermittent killing by virus-specific cytotoxic cells. Fluctuations in titer that were observed during some episodes of Rex response could be due to antibody retention by antigen present in lymphoid tissue.
Collapse
Affiliation(s)
- M A Powers
- Department of Avian Sciences, University of California, Davis 95616-8532
| | | | | | | |
Collapse
|
10
|
Radke K, Grossman D, Kidd LC. Humoral immune response of experimentally infected sheep defines two early periods of bovine leukemia virus replication. Microb Pathog 1990; 9:159-71. [PMID: 1964997 DOI: 10.1016/0882-4010(90)90019-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have correlated the virus-specific humoral immune response of sheep newly infected with bovine leukemia virus (BLV) with the appearance in their blood of cells that transcribe BLV RNA or produce virus in culture. Neutralizing antibodies and antibodies binding to the viral capsid protein were present in most animals early after infection, often before BLV-expressing cells were first detected in blood. Neutralizing antibodies increased rapidly during the period when the number of cells that expressed BLV was also increasing. However, the titers developed by individual animals were independent of the maximum number of BLV-expressing cells. Antibodies that bound to the viral surface glycoprotein on immunoblots became evident at the same time as large peaks in the numbers of BLV-expressing cells. Despite ensuing sharp drops in BLV-expressing cells, neutralizing titers remained relatively constant through the rest of the first 8 months after infection. Two early phases of BLV replication were thus defined: initial, low-level replication that induced neutralizing and capsid-specific antibodies followed by a second period of intense replication that induced sharp increases in antiviral antibodies and preceded the release of many infected cells into the blood.
Collapse
Affiliation(s)
- K Radke
- Department of Avian Sciences, University of California, Davis 95616
| | | | | |
Collapse
|