1
|
Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzięciołowska D, Błaszczyk M, Gajniak P, Słowińska K, Niepolski L, Walkowiak J, Mądry E. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia—A Narrative Review. Nutrients 2022; 14:nu14173478. [PMID: 36079734 PMCID: PMC9458173 DOI: 10.3390/nu14173478] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events. Therefore, this review aimed to provide insight into the physiological mechanisms of iron management and investigate the state of knowledge of the relationship between iron supplementation, inflammatory status and changes in gut microbiota milieu in diseases typically complicated with IDA and considered as having an inflammatory background such as in inflammatory bowel disease, colorectal cancer or obesity. Understanding the precise mechanisms critical to iron metabolism and the awareness of serious adverse effects associated with iron supplementation may lead to the provision of better IDA treatment. Well-planned research, specific to each patient category and disease, is needed to find measures and methods to optimise iron treatment and reduce adverse effects.
Collapse
Affiliation(s)
- Ida J. Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Jakub Winkler-Galicki
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Aleksandra Nowicka
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Marta Błaszczyk
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paulina Gajniak
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Karolina Słowińska
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Leszek Niepolski
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| |
Collapse
|
2
|
Sousa Gerós A, Simmons A, Drakesmith H, Aulicino A, Frost JN. The battle for iron in enteric infections. Immunology 2020; 161:186-199. [PMID: 32639029 PMCID: PMC7576875 DOI: 10.1111/imm.13236] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for almost all living organisms, but can be extremely toxic in high concentrations. All organisms must therefore employ homeostatic mechanisms to finely regulate iron uptake, usage and storage in the face of dynamic environmental conditions. The critical step in mammalian systemic iron homeostasis is the fine regulation of dietary iron absorption. However, as the gastrointestinal system is also home to >1014 bacteria, all of which engage in their own programmes of iron homeostasis, the gut represents an anatomical location where the inter-kingdom fight for iron is never-ending. Here, we explore the molecular mechanisms of, and interactions between, host and bacterial iron homeostasis in the gastrointestinal tract. We first detail how mammalian systemic and cellular iron homeostasis influences gastrointestinal iron availability. We then focus on two important human pathogens, Salmonella and Clostridia; despite their differences, they exemplify how a bacterial pathogen must navigate and exploit this web of iron homeostasis interactions to avoid host nutritional immunity and replicate successfully. We then reciprocally explore how iron availability interacts with the gastrointestinal microbiota, and the consequences of this on mammalian physiology and pathogen iron acquisition. Finally, we address how understanding the battle for iron in the gastrointestinal tract might inform clinical practice and inspire new treatments for important diseases.
Collapse
Affiliation(s)
- Ana Sousa Gerós
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Alison Simmons
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Hal Drakesmith
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Anna Aulicino
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Translational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Joe N. Frost
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Alegado RA, Chin CY, Monack DM, Tan MW. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol 2011; 13:1618-37. [PMID: 21790938 DOI: 10.1111/j.1462-5822.2011.01645.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of enteric pathogens to perceive and adapt to distinct environments within the metazoan intestinal tract is critical for pathogenesis; however, the preponderance of interactions between microbe- and host-derived factors remain to be fully understood. Salmonella enterica serovar Typhimurium is a medically important enteric bacterium that colonizes, proliferates and persists in the intestinal lumen of the nematode Caenorhabditis elegans. Several Salmonella virulence factors important in murine and tissue culture models also contribute to worm mortality and intestinal persistence. For example, PhoP and the virulence plasmid pSLT are virulence factors required for resistance to the C. elegans antimicrobial peptide SPP-1. To uncover additional determinants required for Salmonella typhimurium pathogenesis in vivo, we devised a genetic screen to identify bacterial mutants defective in establishing a persistent infection in the intestine of C. elegans. Here we report on identification of 14 loci required for persistence in the C. elegans intestine and characterization of KdpD, a sensor kinase of a two-component system in S. typhimurium pathogenesis. We show that kdpD mutants are profoundly attenuated in intestinal persistence in the nematode and in macrophage survival. These findings may be attributed to the essential role KdpD plays in promoting resistance to osmotic, oxidative and antimicrobial stresses.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
4
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Macvanin M, Ballagi A, Hughes D. Fusidic acid-resistant mutants of Salmonella enterica serovar typhimurium have low levels of heme and a reduced rate of respiration and are sensitive to oxidative stress. Antimicrob Agents Chemother 2004; 48:3877-83. [PMID: 15388448 PMCID: PMC521928 DOI: 10.1128/aac.48.10.3877-3883.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the translation elongation factor G (EF-G) make Salmonella enterica serovar Typhimurium resistant to the antibiotic fusidic acid. Fus(r) mutants are hypersensitive to oxidative stress and rapidly lose viability in the presence of hydrogen peroxide. We show that this phenotype is associated with reduced activity of two catalase enzymes, HPI (a bifunctional catalase-hydroperoxidase) and HPII (a monofunctional catalase). These catalases require the iron-binding cofactor heme for their activity. Fus(r) mutants have a reduced rate of transcription of hemA, a gene whose product catalyzes the first committed step in heme biosynthesis. Hypersensitivity of Fus(r) mutants to hydrogen peroxide is abolished by the presence of delta-aminolevulinic acid, the precursor of heme synthesis, in the growth media and by the addition of glutamate or glutamine, amino acids required for the first step in heme biosynthesis. Fluorescence measurements show that the level of heme in a Fus(r) mutant is significantly lower than it is in the wild type. Heme is also an essential cofactor of cytochromes in the electron transport chain of respiration. We found that the rate of respiration is reduced significantly in Fus(r) mutants. Sequestration of divalent iron in the growth media decreases the sensitivity of Fus(r) mutants to oxidative stress. Taken together, these results suggest that Fus(r) mutants are hypersensitive to oxidative stress because their low levels of heme reduce both catalase activity and respiration capacity. The sensitivity of Fus(r) mutants to oxidative stress could be associated with loss of viability due to iron-mediated DNA damage in the presence of hydrogen peroxide. We argue that understanding the specific nature of antibiotic resistance fitness costs in different environments may be a generally useful approach in identifying physiological processes that could serve as novel targets for antimicrobial agents.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Cell and Molecular Biology, Uppsala University, Box 596, S751 24 Uppsala, Sweden
| | | | | |
Collapse
|
6
|
Cano DA, Pucciarelli MG, Martínez-Moya M, Casadesús J, García-del Portillo F. Selection of small-colony variants of Salmonella enterica serovar typhimurium in nonphagocytic eucaryotic cells. Infect Immun 2003; 71:3690-8. [PMID: 12819049 PMCID: PMC161971 DOI: 10.1128/iai.71.7.3690-3698.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica strains are enteropathogenic bacteria that survive and proliferate within vacuolar compartments of epithelial and phagocytic cells. Recently, it has been reported that fibroblast cells are capable of restricting S. enterica serovar Typhimurium intracellular growth. Here, we show that prolonged residence of bacteria in the intracellular environment of fibroblasts results in the appearance of genetically stable small-colony variants (SCV). A total of 103 SCV isolates, obtained from four independent infections, were subjected to phenotypic analysis. The following phenotypes were observed: (i) delta-aminolevulinic acid auxotrophy; (ii) requirement for acetate or succinate for growth in glucose minimal medium; (iii) auxotrophy for aromatic amino acids; and (iv) reduced growth rate under aerobic conditions not linked to nutrient auxotrophy. The exact mutations responsible for the SCV phenotype in three representative isolates were mapped in the lpd, hemL, and aroD genes, which code for dihydrolipoamide dehydrogenase, glutamate-1-semyaldehyde aminotransferase, and 3-dehydroquinate dehydratase, respectively. The lpd, hemL, and aroD mutants had intracellular persistence rates in fibroblasts that were 3 to 4 logs higher than that of the parental strain and decreased susceptibility to aminoglycoside antibiotics. All three of these SCV isolates were attenuated in the BALB/c murine typhoid model. Complementation with lpd(+), hem(+), and aroD(+) genes restored the levels of intracellular persistence and antibiotic susceptibility to levels of the wild-type strain. However, virulence was not exhibited by any of the complemented strains. Altogether, our data demonstrate that similar to what it has been reported for SCV isolates of other pathogens, S. enterica SCV display enhanced intracellular persistence in eucaryotic cells and are impaired in the ability to cause overt disease. In addition, they also suggest that S. enterica SCV may be favored in vivo.
Collapse
Affiliation(s)
- David A Cano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | |
Collapse
|
7
|
Conner CP, Heithoff DM, Mahan MJ. In vivo gene expression: contributions to infection, virulence, and pathogenesis. Curr Top Microbiol Immunol 1997; 225:1-12. [PMID: 9386325 DOI: 10.1007/978-3-642-80451-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C P Conner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | |
Collapse
|
8
|
Abstract
In many pathogens, virulence can be conferred by a single region of the genome. In contrast, the facultative intracellular lifestyle of Salmonella demands a large number of genes distributed around the chromosome. The evolution of Salmonella has been marked by the acquisition of several 'pathogenicity islands', each contributing to the unique virulence properties of this microorganism.
Collapse
Affiliation(s)
- E A Groisman
- Dept of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO 63110-1093, USA.
| | | |
Collapse
|
9
|
Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci U S A 1997; 94:934-9. [PMID: 9023360 PMCID: PMC19617 DOI: 10.1073/pnas.94.3.934] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vivo expression technology (IVET) has been used to identify > 100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites.
Collapse
Affiliation(s)
- D M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
11
|
Abstract
For most bacterial species, virulence is viewed as a derived state, whereby pathogens acquire certain loci and are rendered virulent. The majority of virulence genes in Salmonella are present in closely related nonpathogenic species, and most genes known to be confined to the salmonellae are not essential for virulence. Alternative evolutionary scenarios may explain the origins of pathogenicity in Salmonella.
Collapse
Affiliation(s)
- E A Groisman
- Washington University School of Medicine, Dept of Molecular Microbiology, St Louis, MO 63110
| | | |
Collapse
|
12
|
Chatfield S, Roberts M, Londono P, Cropley I, Douce G, Dougan G. The development of oral vaccines based on live attenuated Salmonella strains. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1993; 7:1-7. [PMID: 8364518 DOI: 10.1111/j.1574-695x.1993.tb00374.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Safe, live attenuated Salmonella strains can be produced by introducing defined non-reverting mutations into the chromosome. Such rationally attenuated strains have proved to be excellent oral vaccines in several animal species and can therefore be considered as candidate vaccines against invasive salmonellosis in both animals and man. A panel of attenuating lesions is now available from which it is possible to tailor the level of attenuation and hence produce strains with different immunogenic properties. Because of the spectrum of immune responses produced by such Salmonella vaccine strains they have been utilised extensively as vectors for delivering heterologous antigens to the mammalian immune system. We have focussed on the development of a single dose oral tetanus vaccine based on attenuated Salmonella strains expressing a non-toxic, immunogenic protein derived from tetanus toxin (fragment C). Several different expression systems have been used for fragment C and candidate vaccine strains have been constructed that are capable of protecting orally immunised mice against a lethal challenge with tetanus toxin. An oral tetanus vaccine may help to reduce the mortality rate from tetanus in the developing world by overcoming the problems associated with the implementation of vaccine programmes using the current parenteral vaccine.
Collapse
Affiliation(s)
- S Chatfield
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci U S A 1992; 89:11939-43. [PMID: 1465423 PMCID: PMC50673 DOI: 10.1073/pnas.89.24.11939] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The production of antibacterial peptides is a host defense strategy used by various species, including mammals, amphibians, and insects. Successful pathogens, such as the facultative intracellular bacterium Salmonella typhimurium, have evolved resistance mechanisms to this ubiquitous type of host defense. To identify the genes required for resistance to host peptides, we isolated a library of 20,000 MudJ transposon insertion mutants of a virulent peptide-resistant S. typhimurium strain and screened it for hypersensitivity to the antimicrobial peptide protamine. Eighteen mutants had heightened susceptibility to protamine and 12 of them were characterized in detail. Eleven mutants were attenuated for virulence in vivo when inoculated into BALB/c mice by the intragastric route, and 8 of them were also avirulent following intraperitoneal inoculation. The mutants fell into different phenotypic classes with respect to their susceptibility to rabbit defensin NP-1, frog magainin 2, pig cecropin P1, and the insect venom-derived peptides mastoparan and melittin. The resistance loci mapped to eight distinct locations in the genome. Characterization of the mutants showed that one had a defective lipopolysaccharide and another mutant harbored a mutation in phoP, a locus previously shown to control expression of Salmonella virulence genes. Our data indicate that the ability to resist the killing effect of host antimicrobial peptides is a virulence property and that several resistance mechanisms operate in S. typhimurium.
Collapse
Affiliation(s)
- E A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | |
Collapse
|