1
|
Pulagam KR, Gómez-Vallejo V, Llop J, Rejc L. Radiochemistry: A Useful Tool in the Ophthalmic Drug Discovery. Curr Med Chem 2020; 27:501-522. [PMID: 31142249 DOI: 10.2174/0929867326666190530122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/04/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are ultra-sensitive, fully translational and minimally invasive nuclear imaging techniques capable of tracing the spatiotemporal distribution of positron (PET) or gamma (SPECT) emitter-labeled molecules after administration into a living organism. Besides their impact in the clinical diagnostic, PET and SPECT are playing an increasing role in the process of drug development, both during the evaluation of the pharmacokinetic properties of new chemical entities as well as in the proof of concept, proof of mechanism and proof of efficacy studies. However, they have been scarcely applied in the context of ophthalmic drugs. In this paper, the basics of nuclear imaging and radiochemistry are briefly discussed, and the few examples of the use of these imaging modalities in ophthalmic drug development reported in the literature are presented and discussed. Finally, in a purely theoretical exercise, some labeling strategies that could be applied to the preparation of selected ophthalmic drugs are proposed and potential applications of nuclear imaging in ophthalmology are projected.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | | | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| | - Luka Rejc
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, San Sebastian, Spain
| |
Collapse
|
2
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Cortés González MA, Nordeman P, Bermejo Gómez A, Meyer DN, Antoni G, Schou M, Szabó KJ. [18F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid, simple radiosynthesis, purification and application for fluorine-18 labelling. Chem Commun (Camb) 2018; 54:4286-4289. [DOI: 10.1039/c8cc00526e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrophilic 18F transfer reagent was synthetized by rapid, operationally simple ligand exchange from a hypervalent iodine and [18F]TBAF.
Collapse
Affiliation(s)
| | | | - Antonio Bermejo Gómez
- Department of Organic Chemistry
- Stockholm University
- Sweden
- AstraZeneca PET Centre at Karolinska Institutet
- Stockholm
| | | | - Gunnar Antoni
- Department of Medicinal Chemistry
- Uppsala University
- Sweden
| | - Magnus Schou
- AstraZeneca PET Centre at Karolinska Institutet
- Stockholm
- Sweden
| | | |
Collapse
|
4
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
5
|
Methods for the synthesis of fluorine-18-labeled aromatic amino acids, radiotracers for positron emission tomography (PET). Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
7
|
Campbell MG, Ritter T. Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis. Chem Rev 2014; 115:612-33. [PMID: 25474722 DOI: 10.1021/cr500366b] [Citation(s) in RCA: 564] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael G Campbell
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
8
|
Liang T, Neumann CN, Ritter T. Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed Engl 2013; 52:8214-64. [PMID: 23873766 DOI: 10.1002/anie.201206566] [Citation(s) in RCA: 1970] [Impact Index Per Article: 179.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 01/20/2023]
Abstract
Over the past decade, the most significant, conceptual advances in the field of fluorination were enabled most prominently by organo- and transition-metal catalysis. The most challenging transformation remains the formation of the parent C-F bond, primarily as a consequence of the high hydration energy of fluoride, strong metal-fluorine bonds, and highly polarized bonds to fluorine. Most fluorination reactions still lack generality, predictability, and cost-efficiency. Despite all current limitations, modern fluorination methods have made fluorinated molecules more readily available than ever before and have begun to have an impact on research areas that do not require large amounts of material, such as drug discovery and positron emission tomography. This Review gives a brief summary of conventional fluorination reactions, including those reactions that introduce fluorinated functional groups, and focuses on modern developments in the field.
Collapse
Affiliation(s)
- Theresa Liang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
9
|
|
10
|
|
11
|
Abstract
Molecular imaging has witnessed an upsurge in growth, with positron emission tomography leading the way. This trend has encouraged numerous synthetic chemists to enter the field of (18) F-radiochemistry and provide generic solutions to address the well-recognized challenges of late-stage fluorination. This Minireview focuses on recent developments in the (18)F-labeling of aromatic substrates.
Collapse
Affiliation(s)
- Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | | |
Collapse
|
12
|
Teare H, Robins E, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra S, Gouverneur V. Radiosynthesis and Evaluation of [18F]Selectfluor bis(triflate). Angew Chem Int Ed Engl 2010; 49:6821-4. [DOI: 10.1002/anie.201002310] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Teare H, Robins E, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra S, Gouverneur V. Radiosynthesis and Evaluation of [18F]Selectfluor bis(triflate). Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Miller P, Long N, Vilar R, Gee A. Synthese von11C-,18F-,15O- und13N-Radiotracern für die Positronenemissionstomographie. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800222] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Miller P, Long N, Vilar R, Gee A. Synthesis of11C,18F,15O, and13N Radiolabels for Positron Emission Tomography. Angew Chem Int Ed Engl 2008; 47:8998-9033. [DOI: 10.1002/anie.200800222] [Citation(s) in RCA: 726] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Affiliation(s)
- Simon M Ametamey
- Center for Radiopharmaceutical Science of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH, CH-8093 Zurich, Switzerland.
| | | | | |
Collapse
|
17
|
Teare H, Robins EG, Arstad E, Luthra SK, Gouverneur V. Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem Commun (Camb) 2007:2330-2. [PMID: 17844736 DOI: 10.1039/b701177f] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel [18F]NF reagent and two novel radiochemical transformations have been developed: [18F]NFSi has been prepared from sodium dibenzenesulfonimide and reacted in the presence of silyl enol ethers and allylsilanes to deliver labelled fluorinated ketones and allylic fluorides respectively; the radiosynthesis of the fluorinated A ring of vitamin D3 has also been completed with success.
Collapse
Affiliation(s)
- Harriet Teare
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, UK OX1 3TA
| | | | | | | | | |
Collapse
|
18
|
Furin GG, Fainzil'berg AA. N-Fluoro amines and their analogues as fluorinating reagents in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n08abeh000293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong CH. Selectfluor: Mechanismen und Anwendungen. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200400648] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong CH. Selectfluor: Mechanistic Insight and Applications. Angew Chem Int Ed Engl 2004; 44:192-212. [PMID: 15578736 DOI: 10.1002/anie.200400648] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The replacement of hydrogen atoms with fluorine substituents in organic substrates is of great interest in synthetic chemistry because of the strong electronegativity of fluorine and relatively small steric footprint of fluorine atoms. Many sources of nucleophilic fluorine are available for the derivatization of organic molecules under acidic, basic, and neutral conditions. However, electrophilic fluorination has historically required molecular fluorine, whose notorious toxicity and explosive tendencies limit its application in research. The necessity for an electrophilic fluorination reagent that is safe, stable, highly reactive, and amenable to industrial production as an alternative to very hazardous molecular fluorine was the inspiration for the discovery of selectfluor. This reagent is not only one of the most reactive electrophilic fluorinating reagents available, but it is also safe, nontoxic, and easy to handle. In this Review we document the many applications of selectfluor and discuss possible mechanistic pathways for its reaction.
Collapse
Affiliation(s)
- Paul T Nyffeler
- Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, BCC 357, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
21
|
Camps P, Gómez E, Muñoz-Torrero D. Synthesis of 13-acylamino-huprines: different behavior of diastereomeric 13-methanesulfonamido-huprines on PPA-mediated hydrolysis. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Lasne MC, Perrio C, Rouden J, Barré L, Roeda D, Dolle F, Crouzel C. Chemistry of β +-Emitting Compounds Based on Fluorine-18. Top Curr Chem (Cham) 2002. [DOI: 10.1007/3-540-46009-8_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Xu ZQ, DesMarteau DD, Gotoh Y. N-Fluorobis [(perfluoroalkyl)sulfonyl]imides. Efficient reagents for the fluorination of 1,3-dicarbonyl derivatives. J Fluor Chem 1992. [DOI: 10.1016/s0022-1139(00)82794-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Chakraborty PK, Kilbourn MR. [18F]fluorination/decarbonylation: new route to aryl [18F]fluorides. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART A, APPLIED RADIATION AND ISOTOPES 1991; 42:1209-13. [PMID: 1668803 DOI: 10.1016/0883-2889(91)90199-b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new route to aryl [18F]fluorides without electron withdrawing ring substituents has been developed. [18F]Fluorobenzaldehydes, prepared from no-carrier-added (NCA) [18F]fluoride using nucleophilic aromatic substitution of fluoro or nitro groups, were decarbonylated using palladium on charcoal (Pd-C). By this approach 2-methoxy-4-nitrobenzaldehyde was converted to NCA 3-[18F]fluorophenol (25-30%, EOB) and 4-fluoro-2-methoxy-5-methylbenzaldehyde to carrier-added (CA) 3-[18F]fluoro-4-methylphenol (30-40%, EOB). Overall synthesis time was about 2 h. Since the 4-fluoro-2-methoxy-5-methylbenzaldehyde was in turn prepared by methylation and regiospecific formylation of 3-fluoro-4-methylphenol, the overall process represents use of a removable activating group for nucleophilic aromatic substitution with [18F]fluoride for preparation of CA and NCA aryl [18F]fluorides.
Collapse
Affiliation(s)
- P K Chakraborty
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
25
|
|