1
|
Wang C, Wang X, Hao J, Kong H, Zhao L, Li M, Zou M, Liu G. Serotype Distribution and Antimicrobial Resistance of Salmonella Isolates from Poultry Sources in China. Antibiotics (Basel) 2024; 13:959. [PMID: 39452225 PMCID: PMC11503990 DOI: 10.3390/antibiotics13100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Salmonella is an important zoonotic pathogen, of which poultry products are important reservoirs. This study analyzed the prevalence, antimicrobial resistance, and characterization of Salmonella from broiler and laying hen sources in China. METHODS A total of 138 (12.27%) strains of Salmonella were isolated from 1125 samples from broiler slaughterhouses (20.66%, 44/213), broiler farms (18.21%, 55/302), and laying hen farms (6.39%, 39/610). Multiplex PCR was used to identify the serotypes. Antibiotic susceptibility testing to a set of 21 antibiotics was performed and all strains were screened by PCR for 24 selected antimicrobial resistance genes (ARGs). In addition, 24 strains of Salmonella were screened out by whole-genome sequencing together with 65 released Salmonella genomes to evaluate phylogenetic characteristics, multilocus sequence typing (MLST), and plasmid carriage percentages. RESULTS A total of 11 different serotypes were identified, with the dominance of S. Enteritidis (43/138, 31.16%), S. Newport (30/138, 21.74%), and S. Indiana (19/138, 13.77%). The results showed that S. Enteritidis (34.34%, 34/99) and S. Newport (51.28%, 20/39) were the dominant serotypes of isolates from broilers and laying hens, respectively. The 138 isolates showed the highest resistance to sulfisoxazole (SXZ, 100%), nalidixic acid (NAL, 54.35%), tetracycline (TET, 47.83%), streptomycin (STR, 39.86%), ampicillin (AMP, 39.13%), and chloramphenicol (CHL, 30.43%), while all the strains were sensitive to both tigacycline (TIG) and colistin (COL). A total of 45.65% (63/138) of the isolates were multidrug-resistant (MDR) strains, and most of them (61/63, 96.83%) were from broiler sources. The results of PCR assays revealed that 63.77% of the isolates were carrying the quinolone resistance gene qnrD, followed by gyrB (58.70%) and the trimethoprim resistance gene dfrA12 (52.17%). Moreover, a total of thirty-four ARGs, eighty-nine virulence genes, and eight plasmid replicons were detected in the twenty-four screened Salmonella strains, among which S. Indiana was detected to carry the most ARGs and the fewest plasmid replicons and virulence genes compared to the other serotypes. CONCLUSIONS This study revealed a high percentage of multidrug-resistant Salmonella from poultry sources, stressing the importance of continuous monitoring of Salmonella serotypes and antimicrobial resistance in the poultry chain, and emergency strategies should be implemented to address this problem.
Collapse
Affiliation(s)
- Chu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Xianwen Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Juyuan Hao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - He Kong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Liyuan Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Mingzhen Li
- Shandong Provincial Center for Animal Disease Control (Shandong Provincial Center for Zoonoses Epidemiology Investigation and Surveillance), Jinan 250100, China;
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (C.W.); (X.W.); (J.H.); (H.K.); (L.Z.); (M.Z.)
| |
Collapse
|
2
|
Manikandan R, Rajagunalan S, Malmarugan S, Gupta C. First report on whole genome sequencing and comparative genomics of Salmonella enterica serovar Abortusequi isolated from Donkey in India. Sci Rep 2024; 14:23455. [PMID: 39379477 PMCID: PMC11461527 DOI: 10.1038/s41598-024-73904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi) is a leading cause of abortion in equines that hinders the rapid growth of equine industry. S. Abortusequi infection in equids has re-emerged over last ten years. In the present study, S. Abortusequi was isolated and characterized from donkeys during an abortion storm in the southern peninsular region of India. Further, whole genome sequencing and phylogenomic analysis revealed that the present isolate was clustered among S. Abortusequi clade. The core genome MLST (cgMLST) analysis based on hierarchical clustering and single nucleotide polymorphism (SNP) core-genome dendrogram of the present isolate against 10 S. Abortusequi isolates revealed that the present isolate established a distinct clade compared to all previously reported isolates. A comparison of cgMLST and SNP analyses revealed the same clustering concordance between isolates. In addition, comparative genomics and phylogenetic analysis was carried out with six S. Abortusequi serovars showed a higher number of core genes than accessory genes. Further, comparative analysis of phenotype and genotype antimicrobial resistance revealed a concordance of 32% and discordance of 68% respectively.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
- Department of Veterinary Microbiology, Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India.
| | - Sithanandam Rajagunalan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Shanmugasamy Malmarugan
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| | - Chhavi Gupta
- Tamil Nadu Veterinary and Animal Sciences University, Veterinary College and Research Institute, Tirunelveli, 627358, Tamil Nadu, India
| |
Collapse
|
3
|
Zhao JQ, Fan YY, Lei YD, Liu D, Wang JW, Yang X, Song JK, Zhao GH. Molecular characterization of common zoonotic protozoan parasites and bacteria causing diarrhea in dairy calves in Ningxia Hui Autonomous Region, China. Parasite 2024; 31:60. [PMID: 39353100 PMCID: PMC11444552 DOI: 10.1051/parasite/2024059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Diarrhea caused by zoonotic pathogens is one of the most common diseases in dairy calves, threatening the health of young animals. Humans are also at risk, in particular children. To explore the pathogens causing diarrhea in dairy calves, the present study applied PCR-based sequencing tools to investigate the occurrence and molecular characteristics of three parasites (Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi) and three bacterial pathogens (Escherichia coli, Clostridium perfringens, and Salmonella spp.) in 343 fecal samples of diarrheic dairy calves from five farms in Lingwu County, Ningxia Hui Autonomous Region, China. The total positive rate of these pathogens in diarrheic dairy calves was 91.0% (312/343; 95% CI, 87.9-94.0), with C. perfringens (61.5%, 211/343; 95% CI, 56.3-66.7) being the dominant one. Co-infection with two to five pathogens was found in 67.3% (231/343; 95% CI, 62.4-72.3) of investigated samples. There were significant differences (p < 0.05) in the positive rates of Cryptosporidium spp. and diarrheagenic E. coli among farms, age groups, and seasons. Two Cryptosporidium species (C. parvum and C. bovis) and five gp60 subtypes of C. parvum (IIdA15G1, IIdA20G1, IIdA19G1, IIdA14G1, and a novel IIdA13G1) were identified. Two assemblages (assemblage E and zoonotic assemblage A) of G. duodenalis and six ITS genotypes of E. bieneusi (J, Henan-IV, EbpC, I, EbpA, and ESH-01) were observed. Four virulence genes (eaeA, stx1, stx2, and st) of diarrheagenic E. coli and one toxin type (type A) of C. perfringens were detected. Our study enriches our knowledge on the characteristics and zoonotic potential of diarrhea-related pathogens in dairy calves.
Collapse
Affiliation(s)
- Jia-Qi Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Ying-Ying Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Yun-Duan Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Ding Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Wei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
4
|
Bessegatto JA, Lisbôa JAN, Martins FDC, Freire RL, Facury Filho EJ, Alfieri AA, Costa MC. Development of the Intestinal Microbiota of Dairy Calves and Changes Associated with Cryptosporidium spp. Infection in Brazil. Microorganisms 2024; 12:1744. [PMID: 39338419 PMCID: PMC11434485 DOI: 10.3390/microorganisms12091744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
Cryptosporidium spp. is one of the most important pathogens infecting nursing calves worldwide. This study aimed to investigate the intestinal microbiota of dairy calves during the first month of life and the impact of diarrhea caused by Cryptosporidium on a Brazilian farm. Fecal samples from 30 calves were collected during the first month of life, and fecal scores were recorded. Samples from the second, third, and fourth days of life were analyzed by DNA sequencing of the 16S rRNA gene. In addition, samples of sixteen calves positive for Cryptosporidium spp. were retrospectively chosen according to the development of diarrhea: four and two days before diarrhea, at the onset of diarrhea, after four days of diarrhea, at the end of diarrhea, and after six days of diarrhea resolution. Diarrhea was observed in all calves (100%), starting at day 5 of life, and all calves tested positive for Cryptosporidium in at least one sample. The microbiota richness increased with age but was retarded by diarrhea. Compositional changes associated with Cryptosporidium infection included increases in Fusobacterium, Prevotella, and Peptostreptococcus, as well as decreases in Collinsella and Lachnospiraceae. In conclusion, Cryptosporidium infection has the potential to decrease richness and change the composition of the intestinal microbiota of dairy calves.
Collapse
Affiliation(s)
- José Antônio Bessegatto
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Júlio Augusto Naylor Lisbôa
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Felippe Danyel Cardoso Martins
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Roberta Lemos Freire
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Elias Jorge Facury Filho
- Department of Veterinary Medicine and Surgery, Universidade Federal de Minas Gerais-UFMG, Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Amauri Alcindo Alfieri
- Department of Clinical Sciences and Preventive Veterinary Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid (PR 445) Km 380, Londrina 86057-970, PR, Brazil
| | - Marcio C Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, 3200 Sicotte, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Di Giacomo L, Napoleoni M, Angellotti A, Ferretti E, Gentili V, Grifi M, Livini F, Tardella M, Travanti V, Ruggeri S. Monophasic variant of Salmonella Typhimurium 4,[5],12:i:- outbreak: an investigation by the Competent Authority. Ital J Food Saf 2024; 13:12522. [PMID: 39381830 PMCID: PMC11459916 DOI: 10.4081/ijfs.2024.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/20/2024] [Indexed: 10/10/2024] Open
Abstract
Foodborne diseases represent a significant public health issue, regarding both collective health and the economy, with implications for healthcare costs and agribusiness. This paper shows the description and results of the investigation of a Salmonella enterica subsp. enterica foodborne outbreak that occurred in the Marche Region (Italy) in 2022, which was linked to the consumption of a roasted pork product (porchetta). As part of the outbreak investigations discussed in this article, molecular analysis to evaluate the genomic correlation between clinical, food, and environmental origin strains was carried out. All Salmonella strains of different origins were serotyped as monophasic variant of Salmonella Typhimurium with an antibiotic-resistance pattern and an allelic profile such as to define the "cluster strain" allowing the correlation between clinical and food/environmental strains, definitively confirmed by whole genome sequencing analysis. Following the laboratory evidence, corrective measures at the porchetta processing plant and at the retail stores involved were carried out by the Local Animal Based Food Hygiene Service. The results of this study show that effective intervention is only possible if efficient data exchange, standardized procedures, and staff training are guaranteed. The latter aspect also concerns the food business operator, who must take appropriate measures to minimize the risk.
Collapse
Affiliation(s)
- Loredana Di Giacomo
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Maira Napoleoni
- Regional Reference Center for Enteric Pathogens for the Marche Region, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Tolentino, Italy
| | - Antonio Angellotti
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Ezio Ferretti
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Valentina Gentili
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Marta Grifi
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Francesco Livini
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Monika Tardella
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Vanessa Travanti
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| | - Simonetta Ruggeri
- Animal Based Food Hygiene Service (ABFHS), Department of Prevention, Local Health Unit, Fermo
| |
Collapse
|
6
|
Sati NM, Card RM, Barco L, Muhammad M, Luka PD, Chisnall T, Fagbamila IO, Cento G, Nnadi NE, Kankya C, Rwego IB, Ikwap K, Mugisha L, Erume J, Mwiine FN. Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria. Microorganisms 2024; 12:1529. [PMID: 39203371 PMCID: PMC11356752 DOI: 10.3390/microorganisms12081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
There is scant information on Salmonella in indigenous poultry in Nigeria. We investigated the occurrence and characterized Salmonella serovars in indigenous poultry and their drinking water sources to enhance the monitoring of the infection in poultry and to promote public health. We collected 1208 samples, poultry droppings (n = 1108), and water (n = 100) across 15 markets in North Central Nigeria. Salmonella spp. were isolated following World Organisation for Animal Health guidelines. Salmonella spp., confirmed through invA gene detection by a polymerase chain reaction assay, were 6.8% (75/1108) droppings and 3% (3/100) water. Susceptibility testing against 13 antimicrobials showed 60.3% (47/78) susceptibility to all the antimicrobials tested while 14.1% (11/78) were multidrug resistant. Serotyping and whole-genome sequencing were carried out on 44 of the isolates, and 23 different serovars were identified. Genomes of serovars Luedinghausen, Laredo, Widemarsh, and Lansing are being documented in Africa for the first time. Twenty (20) antimicrobial resistance (AMR) gene markers encoding for resistance to aminoglycosides, tetracyclines, sulphonamides, quinolones, trimethoprim, penicillins and phenicols were found. Phylogenetic cluster analysis showed close relatedness among isolates from different sources. This study shows both low Salmonella prevalence and AMR, but since uncommon serovars are circulating, continuous monitoring is recommended so as to ensure food safety and poultry health.
Collapse
Affiliation(s)
- Nancy M. Sati
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
- National Veterinary Research Institute, Vom 930103, Nigeria; (M.M.); (I.O.F.)
| | - Roderick M. Card
- Animal and Plant Health Agency, Weybridge KT15 3NB, UK; (R.M.C.); (T.C.)
| | - Lisa Barco
- National and WOAH Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 10, 35020 Padova, Italy; (L.B.); (G.C.)
| | - Maryam Muhammad
- National Veterinary Research Institute, Vom 930103, Nigeria; (M.M.); (I.O.F.)
| | - Pam D. Luka
- National Veterinary Research Institute, Vom 930103, Nigeria; (M.M.); (I.O.F.)
| | - Thomas Chisnall
- Animal and Plant Health Agency, Weybridge KT15 3NB, UK; (R.M.C.); (T.C.)
| | - Idowu O. Fagbamila
- National Veterinary Research Institute, Vom 930103, Nigeria; (M.M.); (I.O.F.)
| | - Giulia Cento
- National and WOAH Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 10, 35020 Padova, Italy; (L.B.); (G.C.)
| | - Nnaemeka E. Nnadi
- Department of Microbiology, Plateau State University, Bokkos 932111, Nigeria;
| | - Clovice Kankya
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| | - Innocent B. Rwego
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| | - Kokas Ikwap
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| | - Frank N. Mwiine
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7072, Uganda; (C.K.); (I.B.R.); (K.I.); (L.M.); (J.E.); (F.N.M.)
| |
Collapse
|
7
|
Miringu G, Musyoki A, Muriithi B, Wandera E, Waithiru D, Odoyo E, Shoji H, Menza N, Ichinose Y. Development of two multiplex PCR assays for rapid detection of eleven Gram-negative bacteria in children with septicemia. Trop Med Health 2024; 52:40. [PMID: 38840209 DOI: 10.1186/s41182-024-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
AIM This study aimed to develop a multiplex PCR assay for simultaneous detection of major Gram-negative etiologies of septicemia and evaluate its performance. METHODS Multiplex PCR (mPCR) assays were developed targeting 11 bacterial strains. Species-specific primers were confirmed using known clinical isolates and standard strains. Gradient PCR was performed on each primer against its target bacterial gene to determine its optimal amplification condition. The minimum detectable DNA concentration of the two assays was evaluated by adjusting bacterial DNA concentration to 100 ng/μL and, tenfold serially diluting it up to 10 pg/μL with DNAse-free water. The diagnostic accuracy of mPCR assays was established by subjecting the assays to 60 clinical blood samples. RESULTS Two mPCR assays were developed. Optimal primer annealing temperature of 55 °C was established and utilized in the final amplification conditions. The assays detected all targeted bacteria, with a 100 pg minimum detectable DNA concentration. Pathogens were not detected directly from whole blood, but after 4 h and 8 h of incubation, 41% (5/12) and 100% (12/12) of the bacteria were detected in culture fluids, respectively. The assays also identified Salmonella spp. and Klebsiella pneumoniae co-infections and extra pathogens (1 E. coli and 2 K. pneumoniae) compared with culture. The sensitivity and specificity of the mPCR were 100.0% (71.7-100.0) and 98.0% (90.7-99.0), respectively. The area under the ROC curve was 1.00 (1.00-1.00). CONCLUSIONS The mPCR assays demonstrated substantial potential as a rapid tool for septicemia diagnosis alongside the traditional blood culture method. Notably, it was able to identify additional isolates, detect co-infections, and efficiently detect low bacterial DNA loads with high sensitivity, implying its value in enhancing efficiency of diagnosis of septicemia.
Collapse
Affiliation(s)
- Gabriel Miringu
- Kenya Medical Research Institute, Institute of Tropical Medicine, Nagasaki University, Nairobi, 19993-00202, Kenya.
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya.
| | - Abednego Musyoki
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Betty Muriithi
- Kenya Medical Research Institute, Institute of Tropical Medicine, Nagasaki University, Nairobi, 19993-00202, Kenya
| | - Ernest Wandera
- Kenya Medical Research Institute, Institute of Tropical Medicine, Nagasaki University, Nairobi, 19993-00202, Kenya
- Center for Virus Research, KEMRI, Nairobi, Kenya
| | - Dan Waithiru
- Center for Microbiology Research, KEMRI, Nairobi, Kenya
| | - Erick Odoyo
- United States Army Medical Research Unit, KEMRI, Nairobi, Kenya
| | | | - Nelson Menza
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, Kenya
| | - Yoshio Ichinose
- Kenya Medical Research Institute, Institute of Tropical Medicine, Nagasaki University, Nairobi, 19993-00202, Kenya
| |
Collapse
|
8
|
Yeni DK, Balevi A, Ashraf A, Shah MS, Büyük F. Molecular detection of bacterial zoonotic abortive agents from ruminants in Turkey. Braz J Microbiol 2024; 55:1997-2004. [PMID: 38468116 PMCID: PMC11153383 DOI: 10.1007/s42770-024-01300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Abortions in cattle and sheep are one of the major causes of economic losses worldwide. Brucella spp. are the most common infectious agent associated with these abortions. However, abortions caused by bacteria such as Listeria spp., Leptospira spp., Campylobacter spp. and Mycoplasma spp. are usually overlooked due to their sporadic nature and their status as non-priority abortion agents. In our study, we investigated the bacteria associated with abortion cases in cattle and sheep using PCR. For this purpose, we collected vaginal swab samples (n: 110) of aborted cattle and sheep, as well as stomach content samples (n: 69) of aborted calves and lambs from various cities in Turkey. The samples were analysed by bacteria-specific PCR to detect Campylobacter fetus, Leptospira spp., Listeria spp., Mycoplasma spp., and Yersinia spp. PCR analyses revealed that the investigated bacterial agents were present in 18.85% and 19.3% of the cattle and sheep samples, respectively, with an overall percentage of 18.99%. While the overall positivity rate for C. fetus, Leptospira spp., and Mycoplasma spp. was 2.79%, 10.06%, and 4.47%, respectively, the positivity rate for co-infection with Leptospira spp. and C. fetus was 1.68%. All samples were found to be negative for Yersinia spp. and Listeria spp. The high C. fetus positivity rate detected in sheep and in the stomach contents was statistically significant (p < 0.05). However, the difference in positivity rates between the cities, hosts, co-infections and causative agents was statistically insignificant (p > 0.05). This study provides preliminary data on the significant involvement of C. fetus, Leptospira spp. and Mycoplasma spp. in cattle and sheep abortions in Turkey indicating that they should not be overlooked in diagnosis. In addition, further research is needed to investigate the zoonotic potential of these pathogens for public health in Turkey.
Collapse
Affiliation(s)
- Derya Karataş Yeni
- Department of Microbiology, Faculty of Veterinary Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Aslı Balevi
- Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Asma Ashraf
- Department of Zoology, GC University, Allama Iqbal Road, Faisalabad, Pakistan
| | - MSalahuddin Shah
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
9
|
Jung HR, Lee YJ. Prevalence and characterization of non-typhoidal Salmonella in egg from grading and packing plants in Korea. Food Microbiol 2024; 120:104464. [PMID: 38431312 DOI: 10.1016/j.fm.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Egg washing guidelines vary across countries; however, since 2020, Korea has required that all eggs produced from farms with more than 10,000 laying hens must be washed through egg grading and packing (GP) plant. This study investigated the prevalence and characterization of non-typhoidal Salmonella in eggs after washing at GP plants. In total, 16,800 eggs were collected from 60 egg GP plants located inside commercial layer farms, and 840 pooled eggshell and egg contents were tested for Salmonella, respectively. Of the 60 GP plants tested, 11 (18.3%) and 12 (20.0%) plants were positive for Salmonella spp. In the eggshells and egg contents, respectively. In particular, High Salmonella prevalence in the eggshells and egg contents occurred most often in farms with laying hens older than 80 weeks (33.3% and 40.0%, respectively). However, among 840 pooled eggshells and egg content samples, only 19 (2.3%) of each sample type were positive only for non-typhoidal Salmonella spp. The most common Salmonella serovar in both eggshells and egg contents was S. Infantis, which was found in five (8.3%) of 60 GP plants for both samples types. The other Salmonella serovars detected in eggshells were S. Bareilly (5.0%), S. Agona (3.3%), S. Enteritidis (1.7%), and S. Montevideo (1.7%), whereas those detected in egg contents were S. Enteritidis (5.0%), S. Agona (3.3%), S. Newport (3.3%), S. Senftenberg (3.3%), and S. Derby (1.7%). Of the 19 virulence genes tested, 14 genes were detected in all Salmonella. Interestingly, the spvB gene was detected only in S. Enteritidis, and the sefC gene was detected only in S. Enteritidis and S. Senftenberg. Moreover, all S. Infantis isolates showed multidrug resistance (MDR) against five or more classes, and the other serovars only showed MDR against three to four classes or no MDR. These results suggest that comprehensive surveillance and advanced management approaches for egg GP plants are required to minimize egg contamination with non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Chevez ZR, Dunn LL, da Silva ALBR, Rodrigues C. Prevalence of STEC virulence markers and Salmonella as a function of abiotic factors in agricultural water in the southeastern United States. Front Microbiol 2024; 15:1320168. [PMID: 38832116 PMCID: PMC11144861 DOI: 10.3389/fmicb.2024.1320168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Fresh produce can be contaminated by enteric pathogens throughout crop production, including through contact with contaminated agricultural water. The most common outbreaks and recalls in fresh produce are due to contamination by Salmonella enterica and Shiga toxin-producing E. coli (STEC). Thus, the objectives of this study were to investigate the prevalence of markers for STEC (wzy, hly, fliC, eaeA, rfbE, stx-I, stx-II) and Salmonella (invA) in surface water sources (n = 8) from produce farms in Southwest Georgia and to determine correlations among the prevalence of virulence markers for STEC, water nutrient profile, and environmental factors. Water samples (500 mL) from eight irrigation ponds were collected from February to December 2021 (n = 88). Polymerase chain reaction (PCR) was used to screen for Salmonella and STEC genes, and Salmonella samples were confirmed by culture-based methods. Positive samples for Salmonella were further serotyped. Particularly, Salmonella was detected in 6/88 (6.81%) water samples from all ponds, and the following 4 serotypes were detected: Saintpaul 3/6 (50%), Montevideo 1/6 (16.66%), Mississippi 1/6 (16.66%), and Bareilly 1/6 (16.66%). Salmonella isolates were only found in the summer months (May-Aug.). The most prevalent STEC genes were hly 77/88 (87.50%) and stx-I 75/88 (85.22%), followed by fliC 54/88 (61.63%), stx-II 41/88 (46.59%), rfbE 31/88 (35.22%), and eaeA 28/88 (31.81%). The wzy gene was not detected in any of the samples. Based on a logistic regression analysis, the odds of codetection for STEC virulence markers (stx-I, stx-II, and eaeA) were negatively correlated with calcium and relative humidity (p < 0.05). A conditional forest analysis was performed to assess predictive performance (AUC = 0.921), and the top predictors included humidity, nitrate, calcium, and solar radiation. Overall, information from this research adds to a growing body of knowledge regarding the risk that surface water sources pose to produce grown in subtropical environmental conditions and emphasizes the importance of understanding the use of abiotic factors as a holistic approach to understanding the microbial quality of water.
Collapse
Affiliation(s)
- Zoila R. Chevez
- Department of Horticulture, Auburn University, Auburn, AL, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Sánchez-Cano A, López-Calderón C, Cardona-Cabrera T, Green AJ, Höfle U. Connectivity at the human-wildlife interface: starling movements relate to carriage of E. coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171899. [PMID: 38527537 DOI: 10.1016/j.scitotenv.2024.171899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Synanthropic bird species in human, poultry or livestock environments can increase the spread of pathogens and antibiotic-resistant bacteria between wild and domestic animals. We present the first telemetry-based spatial networks for a small songbird. We quantified landscape connectivity exerted by spotless starling movements, and aimed to determine if connectivity patterns were related to carriage of potential pathogens. We captured 28 starlings on a partridge farm in 2020 and tested them for Avian influenza virus, West Nile virus WNV, Avian orthoavulavirus 1, Coronavirus, Salmonella spp. and Escherichia coli. We did not detect any viruses or Salmonella, but one individual had antibodies against WNV or cross-reacting Flaviviruses. We found E. coli in 61 % (17 of 28) of starlings, 76 % (13 of 17) of which were resistant to gentamicin, 12 % (2 of 17) to cefotaxime/enrofloxacin and 6 % (1 of 17) were phenotypic extended spectrum beta-lactamase (ESBL) carriers. We GPS-tracked 17 starlings and constructed spatial networks showing how their movements (i.e. links) connect different farms with nearby urban and natural habitats (i.e. nodes with different attributes). Using E. coli carriage as a proxy for acquisition/dispersal of bacteria, we found differences across spatial networks constructed for E. coli positive (n = 7) and E. coli negative (n = 9) starlings. We used Exponential Random Graph Models to reveal significant differences between networks. In particular, an urban roost was more connected to other sites by movements of E. coli positive than by movements of E. coli negative starlings. Furthermore, an open pine forest used mainly for roosting was more connected to other sites by movements of E. coli negative than by movements of E. coli positive starlings. Using E. coli as a proxy for a potential pathogen carried by starlings, we reveal the pathways of spread that starlings could provide between farms, urban and natural habitats.
Collapse
Affiliation(s)
- Alberto Sánchez-Cano
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| | - Cosme López-Calderón
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain; Grupo de Investigación en Conservación, Biodiversidad y Cambio Global, Universidad de Extremadura, Badajoz, Spain
| | - Teresa Cardona-Cabrera
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Ursula Höfle
- SaBio Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
12
|
da Costa FKC, Carciofi BAM, de Aragão GMF, Ienczak JL. Modeling the influence of propionic acid concentration and pH on the kinetics of Salmonella Typhimurium. Int J Food Microbiol 2024; 416:110662. [PMID: 38461734 DOI: 10.1016/j.ijfoodmicro.2024.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/08/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Salmonella Typhimurium is a foodborne pathogen often found in the poultry production chain. Antibiotics have been used to reduce S. Typhimurium contamination in poultry aviaries and improve chicken growth. However, antibiotics were banned in several countries. Alternatively, organic acids, such as propionic acid (PA), can control pathogens. This study determined the PA minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and mathematically modeled S. Typhimurium growth/inactivation kinetics under the influence of PA at different pH values (4.5, 5.5, and 6.5) which are within the pH range of the chicken gastrointestinal tract. The PA MIC against S. Typhimurium was pH-dependent, resulting in 5.0, 3.5 and 9.0 mM undissociated PA at pH 4.5, 5.5, and 6.5, respectively. The Baranyi and Roberts and the Weibull model fit growth and inactivation data well, respectively. Secondary models were proposed. The validated model predicted 3-log reduction of S. Typhimurium in 3 h at 68.2 mM of undissociated PA and pH 4.5. The models presented a good capacity to describe the kinetics of S. Typhimurium subjected to PA, representing a useful tool to predict PA antibacterial action depending on the pH.
Collapse
Affiliation(s)
- Fernando K C da Costa
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-901, Brazil
| | - Bruno A M Carciofi
- Departament of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA
| | - Gláucia M F de Aragão
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-901, Brazil
| | - Jaciane L Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-901, Brazil.
| |
Collapse
|
13
|
Claussen M, Schmidt S. Draft genome sequences of two β-glucuronidase positive strains of Salmonella enterica subspecies salamae isolated from reptile feces in KwaZulu-Natal, South Africa. Microbiol Resour Announc 2024; 13:e0130123. [PMID: 38466100 PMCID: PMC11008124 DOI: 10.1128/mra.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Two Salmonella enterica isolates obtained from reptile feces displayed β-glucuronidase activity. Nearly complete genome sequences were obtained after shotgun sequencing and de novo genome assembly. By comparison to reference genomes, both isolates were identified as Salmonella enterica subspecies salamae with the sequence type identified as 1208 and the serotype as 42:r:-.
Collapse
Affiliation(s)
- Maike Claussen
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, KwaZulu-Natal, South Africa
| |
Collapse
|
14
|
Kim MB, Jung HR, Lee YJ. Emergence of Salmonella Infantis carrying the pESI megaplasmid in commercial farms of five major integrated broiler operations in Korea. Poult Sci 2024; 103:103516. [PMID: 38368739 PMCID: PMC10884471 DOI: 10.1016/j.psj.2024.103516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Considering Salmonella transmission occurs through several routes in integrated broiler operations, control of nontyphoidal Salmonella in commercial farms is essential. This study aimed to compare the distribution of persistent Salmonella serovars in environments and dead chickens between 5 major integrated broiler operations in Korea. The prevalence of Salmonella-positive farms in dust prior to placement by operations was 0 to 25%, but the prevalence in dust and feces at the time of depletion was increased to 16.7 to 41.7% and 16.7 to 66.7%, respectively. Moreover, the prevalence of farms with Salmonella in chickens that died within 1 week old and at 4 to 5 weeks old ranged from 8.3 to 58.3% and 16.7 to 41.7%, respectively. The prevalence of Salmonella enterica serovar Infantis-positive farms in dust prior to placement and in chickens that died within 1 week old was 5.2 and 3.4%, respectively, but the prevalence in dust and feces at the time of depletion and in chickens that died at 4 to 5 weeks old was significantly increased to 27.6, 41.4, and 20.7%, respectively (P < 0.05). Interestingly, the plasmid of emerging S. Infantis (pESI) was only identified in S. Infantis, and the prevalence of multidrug-resistance was significantly higher in pESI-positive S. Infantis (99.2%) than in pESI-negative S. Infantis (6.7%) (P < 0.05). The distribution of pulsotypes between pESI-positive and pESI-negative S. Infantis were varied, but a majority of S. Infantis were clustered only 2 pulsotypes. Moreover, pESI-positive S. Infantis harbored more virulence factors than pESI-negative S. Infantis. This study is the first report on characteristics of S. Infantis carrying the pESI plasmid in commercial broiler farms in Korea.
Collapse
Affiliation(s)
- Min Beom Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Kalchayanand N, Arthur TM, Wang R, Brown T, Wheeler TL. Evaluation of Peracetic Acid Treatment on Beef Trimmings and Subprimals Against Salmonella and E. Coli O157:H7 Within Regulatory Retained Water Limitations. J Food Prot 2024; 87:100217. [PMID: 38184149 DOI: 10.1016/j.jfp.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.
Collapse
Affiliation(s)
- Norasak Kalchayanand
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA.
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA
| | - Rong Wang
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA
| | - Ted Brown
- Cargill Meat Solutions, 151 North Main Street, Wichita, KS 67202, USA
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA
| |
Collapse
|
16
|
Kasputis T, He Y, Ci Q, Chen J. On-Site Fluorescent Detection of Sepsis-Inducing Bacteria using a Graphene-Oxide CRISPR-Cas12a (GO-CRISPR) System. Anal Chem 2024; 96:2676-2683. [PMID: 38290431 PMCID: PMC10867801 DOI: 10.1021/acs.analchem.3c05459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.
Collapse
Affiliation(s)
- Tom Kasputis
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department
of Biological Systems Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Murphy CM, Weller DL, Strawn LK. Scale and detection method impacted Salmonella prevalence and diversity in ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167812. [PMID: 37852489 DOI: 10.1016/j.scitotenv.2023.167812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Site-specific approaches for managing food safety hazards in agricultural water require an understanding of foodborne pathogen ecology. This study identified factors associated with Salmonella contamination in Virginia ponds. Grab samples (250 mL, N = 600) were collected from 30 sites across nine ponds. Culture- and culture-independent (CIDT)-based methods were used to detect Salmonella in each sample. Salmonella isolated by culture-based methods were serotyped by Kauffman-White classification. Environmental data were collected for each sample. McNemar's χ2 was used to determine if Salmonella detection differed by testing method. Separate mixed effect models were used to identify environmental factors associated with culture and CIDT-based Salmonella detection. Separate models were built for each pond, and for all ponds combined. Salmonella detection differed significantly (p < 0.001) between CIDT (31 %; 183/600)- and culture (13 %; 77/600)-based methods. Culture-based methods yielded 11 different serovars. All cultured Salmonella samples were confirmed by CIDT; 42.1 % of CIDT Salmonella-positive samples could be cultured. Associations between environmental factors and Salmonella detection also varied substantially by pond and detection method. In the all-pond model, associations were observed for five factors (total coliforms, Escherichia coli, air temperature, UV, rain) for both culture- and CIDT-based Salmonella detection. Rain prior to sampling (24 h) increased odds of Salmonella detection for culture (OR = 5.09) and CIDT (OR = 3.62) in the all-pond model. When all the pond data were used, models masked associations at the individual pond level, as there were noticeable differences between ponds and the odds of isolating Salmonella by environmental factors. Ponds were within a 187-ha area in this study, emphasizing water management needs to be individualized (i.e., assess hazards/risks by pond). Results also highlight detection methods and scale strongly affect observed water quality and should be considered when developing monitoring programs to develop guidance for growers.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
18
|
Punchihewage-Don AJ, Schwarz J, Diria A, Bowers J, Parveen S. Prevalence and antibiotic resistance of Salmonella in organic and non-organic chickens on the Eastern Shore of Maryland, USA. Front Microbiol 2024; 14:1272892. [PMID: 38239721 PMCID: PMC10794514 DOI: 10.3389/fmicb.2023.1272892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Salmonella infections have been intensely increasing and becoming a universal public health crisis. This study investigated the prevalence of Salmonella in organic and non-organic chickens and the antimicrobial resistance profiles and virulence genes (invA, pagC, and spvC) in recovered Salmonella isolates. Methods Whole chicken carcasses [organic (n = 240) and non-organic (n = 240)] were obtained monthly for 1 year (n = 480) from a retail store on the Eastern Shore of Maryland. Salmonella isolation and identification were conducted by following the whole carcass enrichment method recommended by USDA-FSIS. Confirmed Salmonella isolates (organic n = 76; non-organic n = 137) were serotyped and tested for antibiotic susceptibility and virulence genes using standard methods. Results Forty-nine percent (237/480) of the carcasses were positive for Salmonella. Organic and non-organic positivity rates were 37.1 and 61.8%, respectively. A significantly higher Salmonella contamination was observed in non-organic chickens (p < 0.05). The most common serovars were Salmonella Kentucky (47%), S. Infantis (35%), S. Enteritidis (6%), S. Typhimurium (5%), and S. Blockley (4%). Isolates were frequently resistant to at least one antibiotic (91.24%) or multidrug resistant (45.54%). Resistance was observed to tetracycline (82.8%), minocycline (42.3%), nitrofurantoin (40.3%), cefazolin (38.3%), ampicillin (32.1%), and ceftriaxone (26%). All isolates were susceptible to fluoroquinolone, carbapenem, and glycylcycline. The majority of isolates (99.1%) possessed at least one of three virulence genes of concern and 4.2% tested positive for all three. Ninety-five, 89, and 6.6% of isolates contained invA, pagC, and spvC genes, respectively. The spvC gene was not detected in serovars recovered from organic chickens though 92% and 82% of isolates were positive for invA and pagC. The frequency of Salmonella recovered from non-organic chickens possessing invA, pagC, and spvC genes were 97.1, 89.8, and 10.2%, respectively. Detection of invA and pagC genes showed no significant difference (p > 0.05) between organic and non-organic chickens but a significantly higher spvC gene (p < 0.05) was detected in non-organic chickens due to the majority of S. Enteritidis (92.3%) exclusively recovered from non-organic chicken carried spvC gene. Discussion This study reveals a high prevalence of Salmonella in both organic and non-organic chickens, which exhibit resistance to vital antibiotics and carry virulence genes, thereby creating a potential risk of salmonellosis.
Collapse
Affiliation(s)
| | - Jurgen Schwarz
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Abdirahman Diria
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - John Bowers
- U.S. Food and Drug Administration, College Park, MD, United States
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
19
|
Rodrigues IC, Cristal AP, Ribeiro-Almeida M, Silveira L, Prata JC, Simões R, Vaz-Pires P, Pista Â, Martins da Costa P. Gulls in Porto Coastline as Reservoirs for Salmonella spp.: Findings from 2008 and 2023. Microorganisms 2023; 12:59. [PMID: 38257887 PMCID: PMC10819206 DOI: 10.3390/microorganisms12010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Gulls act as intermediaries in the exchange of microorganisms between the environment and human settlements, including Salmonella spp. This study assessed the antimicrobial resistance and molecular profiles of Salmonella spp. isolates obtained from fecal samples of gulls in the city of Porto, Portugal, in 2008 and 2023 and from water samples in 2023. Antimicrobial susceptibility profiling revealed an improvement in the prevalence (71% to 17%) and antimicrobial resistance between the two collection dates. Two isolate collections from both 2008 and 2023 underwent serotyping and whole-genome sequencing, revealing genotypic changes, including an increased frequency in the monophasic variant of S. Typhimurium. qacE was identified in 2008 and 2023 in both water and fecal samples, with most isolates exhibiting an MDR profile. The most frequently observed plasmid types were IncF in 2008 (23%), while IncQ1 predominated in 2023 (43%). Findings suggest that Salmonella spp. circulate between humans, animals, and the environment. However, the genetic heterogeneity among the isolates from the gulls' feces and the surface water may indicate a complex ecological and evolutionary dynamic shaped by changing conditions. The observed improvements are likely due to measures to reduce biological contamination and antimicrobial resistance. Nevertheless, additional strategies must be implemented to reduce the public health risk modeled by the dissemination of pathogens by gulls.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Paula Cristal
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Marisa Ribeiro-Almeida
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Leonor Silveira
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Joana C. Prata
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Roméo Simões
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
| | - Paulo Vaz-Pires
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ângela Pista
- INSA—National Institute of Health, Department of Infectious Diseases, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (L.S.); (Â.P.)
| | - Paulo Martins da Costa
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (I.C.R.); (A.P.C.); (M.R.-A.); (J.C.P.); (R.S.); (P.V.-P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto, de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
20
|
Tataje-Lavanda L, Villanueva-Pérez D, Montalván-Avalos A, Vallejos-Sánchez K, Zimic-Peralta M, Fernández-Sánchez M, Fernández-Díaz M. Identification of virulence factors and antibiotic resistance in Salmonella enterica subsp. enterica serovar Javiana (FARPER-220) isolated from broiler chickens. Microbiol Resour Announc 2023; 12:e0032723. [PMID: 37943036 PMCID: PMC10720545 DOI: 10.1128/mra.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Genome sequencing of highly virulent Salmonella enterica subsp. enterica serovar Javiana strain FARPER-220 (ST-1674) isolated from broiler chickens in Peru revealed multiple virulence factors, antibiotic resistance genes, and invasion-related subcategories. The results provide insights into the potential importance of this strain in causing infections in various animals.
Collapse
Affiliation(s)
- Luis Tataje-Lavanda
- Laboratorios de Investigación y Desarrollo, FARVET, Chincha Alta, Ica, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | | | | | | | - Mirko Zimic-Peralta
- Laboratorios de Investigación y Desarrollo, FARVET, Chincha Alta, Ica, Peru
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | |
Collapse
|
21
|
Bhandari M, Poelstra JW, Kauffman M, Varghese B, Helmy YA, Scaria J, Rajashekara G. Genomic Diversity, Antimicrobial Resistance, Plasmidome, and Virulence Profiles of Salmonella Isolated from Small Specialty Crop Farms Revealed by Whole-Genome Sequencing. Antibiotics (Basel) 2023; 12:1637. [PMID: 37998839 PMCID: PMC10668983 DOI: 10.3390/antibiotics12111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella is the leading cause of death associated with foodborne illnesses in the USA. Difficulty in treating human salmonellosis is attributed to the development of antimicrobial resistance and the pathogenicity of Salmonella strains. Therefore, it is important to study the genetic landscape of Salmonella, such as the diversity, plasmids, and presence antimicrobial resistance genes (AMRs) and virulence genes. To this end, we isolated Salmonella from environmental samples from small specialty crop farms (SSCFs) in Northeast Ohio from 2016 to 2021; 80 Salmonella isolates from 29 Salmonella-positive samples were subjected to whole-genome sequencing (WGS). In silico serotyping revealed the presence of 15 serotypes. AMR genes were detected in 15% of the samples, with 75% exhibiting phenotypic and genotypic multidrug resistance (MDR). Plasmid analysis demonstrated the presence of nine different types of plasmids, and 75% of AMR genes were located on plasmids. Interestingly, five Salmonella Newport isolates and one Salmonella Dublin isolate carried the ACSSuT gene cassette on a plasmid, which confers resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline. Overall, our results show that SSCFs are a potential reservoir of Salmonella with MDR genes. Thus, regular monitoring is needed to prevent the transmission of MDR Salmonella from SSCFs to humans.
Collapse
Affiliation(s)
- Menuka Bhandari
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Michael Kauffman
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| | - Binta Varghese
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; (B.V.); (J.S.)
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.B.); (M.K.)
| |
Collapse
|
22
|
Smith JC, Varriano S, Roach K, Snipes Z, Dawson JL, Shealy J, Dunn LL, Snyder WE, Shariat NW. Prevalence and molecular characterization of Salmonella isolated from wild birds in fresh produce environments. Front Microbiol 2023; 14:1272916. [PMID: 38029194 PMCID: PMC10662084 DOI: 10.3389/fmicb.2023.1272916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Wild birds pose a difficult food safety risk to manage because they can avoid traditional wildlife mitigation strategies, such as fences. Birds often use agricultural fields and structures as foraging and nesting areas, which can lead to defecation on crops and subsequent transfer of foodborne pathogens. To assess the food safety risk associated with these events, wild bird feces were collected from produce fields across the southeastern United States during the 2021 and 2022 growing seasons. In total 773 fecal samples were collected from 45 farms across Florida, Georgia, South Carolina, and Tennessee, and 2.1% (n = 16) of samples were Salmonella-positive. Importantly, 75% of Salmonella were isolated from moist feces, showing reduced Salmonella viability when feces dry out. 16S microbiome analysis showed that presence of culturable Salmonella in moist feces correlated to a higher proportion of the Enterobacteriaceae family. From the Salmonella-positive samples, 62.5% (10/16) contained multi-serovar Salmonella populations. Overall, 13 serovars were detected, including six most commonly attributed to human illness (Enteriditis, Newport, Typhimurium, Infantis, Saintpaul, and Muenchen). PCR screening identified an additional 59 Salmonella-positive fecal samples, which were distributed across moist (n = 44) and dried feces (n = 15). On-farm point counts and molecular identification from fecal samples identified 57 bird species, including for 10 Salmonella-positive fecal samples. Overall, there was a low prevalence of Salmonella in fecal samples, especially in dried feces, and we found no evidence of Salmonella transmission to proximal foliage or produce. Fecal samples collected in farms close together shared highly related isolates by whole genome sequencing and also had highly similar Salmonella populations with comparable relative frequencies of the same serovars, suggesting the birds acquired Salmonella from a common source.
Collapse
Affiliation(s)
- Jared C. Smith
- Departments of Population Health and Microbiology, University of Georgia, Athens, GA, United States
| | - Sofia Varriano
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Kerrie Roach
- Department of Plant Industry, Clemson University Extension, Charleston, SC, United States
| | - Zach Snipes
- Department of Plant Industry, Clemson University Extension, Charleston, SC, United States
| | - Joshua L. Dawson
- Fort Valley State University Extension, Fort Valley, GA, United States
| | - Justin Shealy
- College of Agricultural and Environmental Sciences, University of Georgia Extension, Athens, GA, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| | - William E. Snyder
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Nikki W. Shariat
- Departments of Population Health and Microbiology, University of Georgia, Athens, GA, United States
- Center for Food Safety, University of Georgia, Griffin, GA, United States
| |
Collapse
|
23
|
Napoleoni M, Villa L, Barco L, Lucarelli C, Tiengo A, Baggio G, Dionisi AM, Angellotti A, Ferretti E, Ruggeri S, Staffolani M, Rocchegiani E, Silenzi V, Morandi B, Blasi G. Monophasic Variant of Salmonella Typhimurium 4,[5],12:i:- (ACSSuGmTmpSxt Type) Outbreak in Central Italy Linked to the Consumption of a Roasted Pork Product (Porchetta). Microorganisms 2023; 11:2567. [PMID: 37894225 PMCID: PMC10609469 DOI: 10.3390/microorganisms11102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The monophasic variant of S. Typhimurium 4,[5],12:i:- (MVST) is the third most commonly reported Salmonella serovar involved in human infections (8.8%) in the EU and ranks after S. Enteritidis (54.6%) and S. Typhimurium (11.4%). In Italy, in contrast, the MVST has achieved peculiar epidemiological and ecological success which has allowed it to be, since 2011, the serovar most frequently isolated from humans. In the summer of 2022, a foodborne outbreak of the MVST involving 63 people occurred in the Marche Region (Central Italy). A common food exposure source among some human cases was a roasted, ready-to-eat (RTE) pork product, porchetta, which is a typical product of Central Italy. This paper describes the results of investigations conducted to clarify this outbreak. The porchetta was produced by a local manufacturing plant and distributed to at least two local retail stores, one of which was the retail outlet for the manufacturing plant. The MVST was isolated from surface samples collected at the porchetta manufacturing plant and at both local retail stores via bacterial analysis, and the porchetta sampled at one store contained the MVST. These data confirm this type of RTE pork product can be a source of Salmonella infection in humans.
Collapse
Affiliation(s)
- Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (M.S.); (E.R.); (V.S.); (G.B.)
| | - Laura Villa
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy; (L.V.); (C.L.); (A.M.D.)
| | - Lisa Barco
- Centro di Referenza Nazionale e Laboratorio di Referenza WOAH per le Salmonellosi, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale dell’Università, 10, 35020 Legnaro, Padova, Italy; (L.B.); (A.T.); (G.B.)
| | - Claudia Lucarelli
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy; (L.V.); (C.L.); (A.M.D.)
| | - Alessia Tiengo
- Centro di Referenza Nazionale e Laboratorio di Referenza WOAH per le Salmonellosi, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale dell’Università, 10, 35020 Legnaro, Padova, Italy; (L.B.); (A.T.); (G.B.)
| | - Giulia Baggio
- Centro di Referenza Nazionale e Laboratorio di Referenza WOAH per le Salmonellosi, Istituto Zooprofilattico Sperimentale Delle Venezie, Viale dell’Università, 10, 35020 Legnaro, Padova, Italy; (L.B.); (A.T.); (G.B.)
| | - Anna Maria Dionisi
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma, Italy; (L.V.); (C.L.); (A.M.D.)
| | - Antonio Angellotti
- UOC Igiene degli Alimenti di Origine Animale, Azienda Sanitaria Territoriale Fermo—Marche, Via Zeppilli, 22A, 63900 Fermo, Italy; (A.A.); (E.F.); (S.R.)
| | - Ezio Ferretti
- UOC Igiene degli Alimenti di Origine Animale, Azienda Sanitaria Territoriale Fermo—Marche, Via Zeppilli, 22A, 63900 Fermo, Italy; (A.A.); (E.F.); (S.R.)
| | - Simonetta Ruggeri
- UOC Igiene degli Alimenti di Origine Animale, Azienda Sanitaria Territoriale Fermo—Marche, Via Zeppilli, 22A, 63900 Fermo, Italy; (A.A.); (E.F.); (S.R.)
| | - Monica Staffolani
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (M.S.); (E.R.); (V.S.); (G.B.)
| | - Elena Rocchegiani
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (M.S.); (E.R.); (V.S.); (G.B.)
| | - Valentina Silenzi
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (M.S.); (E.R.); (V.S.); (G.B.)
| | - Benedetto Morandi
- Laboratorio di Diagnostica Animale, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy;
| | - Giuliana Blasi
- Centro di Riferimento Regionale Patogeni Enterici Marche, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Maestri del Lavoro, 7, 62029 Tolentino, Macerata, Italy; (M.S.); (E.R.); (V.S.); (G.B.)
| |
Collapse
|
24
|
Deng K, Wang SS, Kiener S, Smith E, Chen KS, Pamboukian R, Laasri A, Pelaez C, Ulaszek J, Kmet M, De Jesus A, Hammack T, Reddy R, Wang H. Multi-laboratory validation study of a real-time PCR method for detection of Salmonella in baby spinach. Food Microbiol 2023; 114:104299. [PMID: 37290875 DOI: 10.1016/j.fm.2023.104299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
The FDA Bacteriological Analytical Manual (BAM) Salmonella culture method takes at least 3 days for a presumptive positive result. The FDA developed a quantitative PCR (qPCR) method to detect Salmonella from 24-h preenriched cultures, using ABI 7500 PCR system. The qPCR method has been evaluated as a rapid screening method for a broad range of foods by single laboratory validation (SLV) studies. The present multi-laboratory validation (MLV) study was aimed to measure the reproducibility of this qPCR method and compare its performance with the culture method. Sixteen laboratories participated in two rounds of MLV study to analyze twenty-four blind-coded baby spinach test portions each. The first round yielded ∼84% and ∼82% positive rates across laboratories for the qPCR and culture methods, respectively, which were both outside the fractional range (25%-75%) required for fractionally inoculated test portions by the FDA's Microbiological Method Validation Guidelines. The second round yielded ∼68% and ∼67% positive rates. The relative level of detection (RLOD) for the second-round study was 0.969, suggesting that qPCR and culture methods had similar sensitivity (p > 0.05). The study demonstrated that the qPCR yields reproducible results and is sufficiently sensitive and specific for the detection of Salmonella in food.
Collapse
Affiliation(s)
- Kaiping Deng
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Shizhen Steven Wang
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Dr, College Park, MD 20740, USA
| | - Shannon Kiener
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Emily Smith
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Kai-Shun Chen
- FDA-Office of Regulatory Affairs (ORA), 109 Holton Street, Winchester, MA, 01890, USA
| | - Ruiqing Pamboukian
- FDA-Office of Regulatory Affairs (ORA), 12420 Parklawn Dr, Rockville, MD, 20857, USA
| | - Anna Laasri
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Dr, College Park, MD 20740, USA
| | - Catalina Pelaez
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Jodie Ulaszek
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Matthew Kmet
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Antonio De Jesus
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Dr, College Park, MD 20740, USA
| | - Thomas Hammack
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Dr, College Park, MD 20740, USA
| | - Ravinder Reddy
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 6502 S. Archer Rd, Bedford Park, IL, 60501, USA
| | - Hua Wang
- FDA-Center for Food Safety and Applied Nutrition (CFSAN), 5001 Campus Dr, College Park, MD 20740, USA.
| |
Collapse
|
25
|
Boraei-Nezhad G, Saadati D, Jahantigh M, Saadat-Jou S. Prevalence of Salmonella infection in village chickens and determination of the tetracycline resistance genes in the Salmonella isolates in the Sistan region, Iran. Braz J Microbiol 2023; 54:2375-2382. [PMID: 37418110 PMCID: PMC10484867 DOI: 10.1007/s42770-023-01033-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Recently, an increasing number of multi drug resistant Salmonella species have been emerged due to overuse of antibiotics in veterinary and human medicine which has adverse consequences on public health. The present study was conducted with the aim of investigating the prevalence of Salmonella infection in village chickens in Sistan region and determining the prevalence of the antibiotic resistance genes in Salmonella isolated from these birds. In this study, 100 chickens were randomly selected from five counties of Sistan region. A cloacal swab sample was taken from each bird and also information about age, gender, breed, proximity with other birds, proximity with waterfowl, proximity with livestock, and receiving different antibiotics especially tetracycline were obtained using a questionnaire. Conventional culture methods used for Salmonella detection and isolation. Then, amplification of invA gene by PCR was used to confirm Salmonella colonies. Finally, 27 samples were confirmed to be infected with Salmonella by both culture and PCR methods. Disk diffusion method was used to determine the sensitivity to 4 antibiotics including; tetracycline, gentamicin, cefepime, and difloxacin. The results of the present study showed that proximity to waterfowl (OR = 0.273) significantly mitigates the risk of Salmonella infection. For the isolates, the highest resistance was recorded against cefepime and the highest susceptibility was to difloxacin. The presence proportion of tetA and tetB in tetracycline resistant isolates was higher than that in susceptible ones but this difference was not statistically significant.
Collapse
Affiliation(s)
| | - Dariush Saadati
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Zabol, Bonjar Road, Zabol, 9861335856, Iran.
| | - Mohammad Jahantigh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | - Samira Saadat-Jou
- DVM Graduated, Faculty of Veterinary Medicine, University of Tehran Veterinarian, Zabol, Iran
| |
Collapse
|
26
|
Smith BL, King MD. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms 2023; 11:2068. [PMID: 37630628 PMCID: PMC10459659 DOI: 10.3390/microorganisms11082068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Two poultry Confined Animal Feeding Units (CAFUs), "House A" and "House B", were selected from the TAMU poultry facility for the study, and samples were collected over a five-day period. Bioaerosol sampling was conducted using a Wetted Wall Cyclone (WWC) bioaerosol collector at the two CAFU houses, in which House A housed approximately 720 broiler chickens and roosters, while House B remained unoccupied and served as a reference. Both houses consisted of 24 pens arranged on either side of a central walkway. Bacterial content analysis was conducted using microbial plating, real-time Polymerase Chain Reaction (PCR), and Fatty Acid Methyl Ester (FAME) analysis, while ambient temperature and relative humidity were also monitored. The concentrations of microorganisms in House A showed a highly dynamic range, ranging from 4000 to 60,000 colony forming units (CFU) per cubic meter of air. Second, the WWC samples contained approximately ten-fold more bacterial DNA than the filter samples, suggesting higher levels of viable cells captured by the WWC. Third, significant concentrations of pathogens, including Salmonella, Staphylococcus, and Campylobacter, were detected in the poultry facility. Lastly, the WWC system demonstrated effective functionality and continuous operation, even in the challenging sampling environment of the CAFU. The goal of this study was to characterize the resident population of microorganisms (pathogenic and non-pathogenic) present in the CAFUs and to evaluate the WWC's performance in such an environment characterized by elevated temperature, high dust content, and feathers. This knowledge could then be used to improve understanding microorganism dynamics in CAFUs including the spread of bacterial infections between animals and from animals to humans that work in these facilities, as well as of the WWC performance in this type of environment (elevated temperature, high content of dust and feathers). A more comprehensive understanding can aid in improving the management of bacterial infections in these settings.
Collapse
Affiliation(s)
| | - Maria D. King
- Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
27
|
Indrajith S, Natarajan S, Thangasamy S, Natesan S. Drug Resistance, Characterization and Phylogenetic Discrepancy of Salmonella enterica Isolates from Distinct Sources. Curr Microbiol 2023; 80:314. [PMID: 37544954 DOI: 10.1007/s00284-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
Salmonella enterica is one of the foodborne pathogens that can infect humans, spreading from one person to another by contaminated food and water. To identify the pathogenic S. enterica from the contaminated food product, culture-based and molecular identifications, drug resistance profiling, virulence and genetic traits of the strains have been used. Herein, different animal products was subjected to screen for S. enterica prevalence, pathogenic characterization and compared with clinical Salmonella isolates (human). A total of 173 isolates from animal products and 51 isolates from clinical samples were collected. S. Typhi, S. Agona and S. Ohio were predominant serovars in blood, stool and different animal products. Both, clinical [37% (n = 19/51)] and animal product-associated isolates [21% (n = 37/173)] expressed their highest resistance to nalidixic acid. Thirty-one percentage of (n = 16/51) clinical isolates and 12% (n = 21/173) animal food-associated isolates were resistant to multiple classes of antibiotics. Class 1 integrons encoded by S. Typhi, S. Infantis and S. Emek were screened for sequence analysis, the result revealed that the cassettes encoded-aminoglycoside acetyltransferase and dihydrofolate reductase enzymes. Salmonella pathogenicity island-1 encoded-hilA gene was detected most frequently in all the isolates. PFGE profile revealed the genetic traits of the isolates which were closely linked with antibiotic-resistant properties and virulent characteristics. Only S. Enteritidis, collected from different samples had clonal similarities. In summary, drug-resistant pathogenic Salmonella prevalence was observed in the animal product that could be an important alarm to consumers with the risk of enteric fever and it causes the potential risk to public health.
Collapse
Affiliation(s)
- Sureka Indrajith
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sisubalan Natarajan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy, Tamil Nadu, 620017, India
| | - Selvankumar Thangasamy
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637501, India
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
28
|
Karim MR, Zakaria Z, Hassan L, Faiz NM, Ahmad NI. The occurrence and molecular detection of mcr-1 and mcr-5 genes in Enterobacteriaceae isolated from poultry and poultry meats in Malaysia. Front Microbiol 2023; 14:1208314. [PMID: 37601372 PMCID: PMC10435970 DOI: 10.3389/fmicb.2023.1208314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The advent of antimicrobials-resistant (AMR), including colistin-resistant bacteria, poses a significant challenge to animal and human health, food safety, socio-economic growth, and the global environment. This study aimed to ascertain the colistin resistance prevalence and molecular mechanisms of colistin resistance in Enterobacteriaceae. The colistin resistance was determined using broth microdilution assay, PCR; and Sanger sequencing of mcr genes responsible for colistin resistance in Enterobacteriaceae (n = 627), including Escherichia coli (436), Salmonella spp. (n = 140), and Klebsiella pneumoniae (n = 51), obtained from chicken and chicken meats. Out of 627 Enterobacteriaceae, 8.6% of isolates exhibited colistin resistance phenotypically. Among these colistin resistant isolates, 9.3% (n = 37) were isolated from chicken meat, 7.2% (n = 11) from the cloacal swab of chicken and 7.9% (n = 6) from the litter samples. Overall, 12.96% of colistin-resistant isolates were positive with mcr genes, in which mcr-1 and mcr-5 genes were determined in 11.11% and 1.85% of colistin-resistant isolates, respectively. The E. coli isolates obtained from chicken meats, cloacal swabs and litter samples were found positive for mcr-1, and Salmonella spp. originated from the chicken meat sample was observed with mcr-5, whereas no mcr genes were observed in K. pneumoniae strains isolated from any of the collected samples. The other colistin resistance genes, including mcr-2, mcr-3, mcr-4, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were not detected in the studied samples. The mcr-1 and mcr-5 genes were sequenced and found to be 100% identical to the mcr-1 and mcr-5 gene sequences available in the NCBI database. This is the first report of colistin resistance mcr-5 gene in Malaysia which could portend the emergence of mcr-5 harboring bacterial strains for infection. Further studies are needed to characterize the mr-5 harbouring bacteria for the determination of plasmid associated with mcr-5 gene.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Dhaka, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Xu X, Li J, Huang P, Cui X, Li X, Sun J, Huang Y, Ji Q, Wei Q, Bao G, Liu Y. Isolation, Identification and Drug Resistance Rates of Bacteria from Pigs in Zhejiang and Surrounding Areas during 2019-2021. Vet Sci 2023; 10:502. [PMID: 37624289 PMCID: PMC10458188 DOI: 10.3390/vetsci10080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to determine the prevalence of bacterial diseases in pig farms in various regions of Zhejiang Province and surrounding areas. A total of 526 samples were collected from 85 pig farms in Zhejiang Province and surrounding areas. In this study, samples were analyzed using bacterial isolation and purification, Gram staining, PCR amplification, and antimicrobial susceptibility testing. A total of 36 Pasteurella multocida (Pm) isolates were detected, with an isolation rate of 6.84%; 37 Bordetella bronchiseptica (Bb) isolates were detected, with an isolation rate of 7.03%; 60 Glasserella parasuis (G. parasuis) isolates were detected, with an isolation rate of 11.41%; 170 Escherichia coli (E. coli) isolates were detected, with an isolation rate of 32.32%; 67 Streptococcus suis (SS) isolates were detected, with an isolation rate of 12.74%; 44 Actinobacillus pleuropneumoniae (APP) isolates were detected, with an isolation rate of 8.37%; and 7 Salmonella enteritis (SE) isolates were detected, with an isolation rate of 1.33%. Antimicrobial drug susceptibility testing against 21 types of antibiotics was carried out on the isolated strains, and the results showed that 228 strains had varying degrees of resistance to 21 antibiotics, including Pm, Bb, E. coli, and APP, with the highest resistance to lincomycin, at 100%. Pm and APP were the most sensitive to cephalothin, with resistance rates of 0. In terms of strains, Pm had the highest overall sensitivity to 21 antibiotics, and E. coli had the highest resistance. In short, bacterial diseases in Zhejiang and the surrounding areas were harmful, and the drug resistance situation was severe. This study provides scientific guidance for the clinical treatment of bacterial diseases.
Collapse
Affiliation(s)
- Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Xuefeng Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Jiaying Sun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.X.); (J.L.); (P.H.); (X.C.); (X.L.); (J.S.); (Y.H.); (Q.J.); (Q.W.)
| |
Collapse
|
30
|
Khade HD, Saxena S, Hajare SN, Gautam S. Gamma radiation processing for extending shelf-life and ensuring quality of minimally processed ready-to-eat onions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2265-2274. [PMID: 37273564 PMCID: PMC10232703 DOI: 10.1007/s13197-023-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 06/06/2023]
Abstract
Onions are always in high demand owing to various culinary as well as health protective properties and these days there is increased consumer preference for ready-to-eat or ready-to-cook onions. In this context, the current study was aimed to extend the keeping quality of minimally processed onions for an extended period while ensuring microbial safety as well as sprouting inhibition through an integrated approach. The optimized combinatorial approach included gamma radiation treatment (Dmin60 Gy), minimal processing (de-skinning and scooping) and packaging in trays wrapped with polypropylene (PP; 10 µm thick) film followed by storage at low temperature (4-6 °C, relative humidity RH 65-70%). The parameters like shelf life, physico-chemical (colorimetry, moisture), organoleptic and nutritional properties were comprehensively assessed and found to be well retained up to 30 days with moisture loss of ≤ 5% and overall acceptability rating of 7 on 9-point hedonic scale. Microbiological analyses confirmed absence of Salmonella spp in these stored onions thus ensuring microbial safety. Nutritional profiling including carbohydrate, protein, fat, energy, and ash content revealed no significant change due to the processing as well as during storage. Thus, the radiation processing of freshly harvested bulbs followed by minimal processing, packing in formulated package and storage under low temperature conditions were found acceptable up to 30 days in the ready-to-eat form. Current findings provide credible evidences ascertaining extended shelf-life as well ensuring microbial safety of processed onions for commercial utilization by the food industries.
Collapse
Affiliation(s)
- H. D. Khade
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Sudhanshu Saxena
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Sachin N. Hajare
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| |
Collapse
|
31
|
Lee SJ, Park SY, Lee KH, Lee MW, Yu CY, Maeng J, Kim HD, Kim SW. Development of a Simple Direct and Hot-Start PCR Using Escherichia coli-Expressing Taq DNA Polymerase. Int J Mol Sci 2023; 24:11405. [PMID: 37511160 PMCID: PMC10379934 DOI: 10.3390/ijms241411405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Taq DNA polymerases have played an important role in molecular biology for several years and are frequently used for polymerase chain reaction (PCR); hence, there is an increasing interest in developing a convenient method for preparing Taq DNA polymerase for routine use in laboratories. We developed a method using Escherichia coli (E. coli) that expresses thermostable Taq DNA polymerase directly in the PCR without purification. The Taq gene was transformed into E. coli and expressed. After overnight incubation and washing, E. coli-expressing Taq DNA polymerase (EcoliTaq) was used as the DNA polymerase without purification. EcoliTaq showed activity comparable to that of commercial DNA polymerase and remained stable for 3 months. With a high-pH buffer containing 2% Tween 20 and 0.4 M trehalose, EcoliTaq facilitated direct PCR amplification from anticoagulated whole blood samples. EcoliTaq exhibited good performance in allele-specific PCR using both purified DNA and whole blood samples. Furthermore, it proved to be useful as a DNA polymerase in hot-start PCR by effectively minimizing non-specific amplification. We developed a simple and cost-effective direct and hot-start PCR method in which EcoliTaq was used directly as a PCR enzyme, thus eliminating the laborious and time-consuming steps of polymerase purification.
Collapse
Affiliation(s)
- Sun Ju Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Sang-Yong Park
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Kwang-Ho Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- Department of Laboratory Medicine, ASAN Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Min-Woo Lee
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Chae-Yeon Yu
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- Graduate School of Particulate Matter Specialization, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Jaeyoung Maeng
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- Graduate School of Particulate Matter Specialization, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Hyeong-Dong Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| | - Suhng Wook Kim
- Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
- Graduate School of Particulate Matter Specialization, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Elbashir SM, Adnan AM, Bowers J, DePaola A, Jahncke M, Punchihewage-Don AJ, Da Silva LV, Hashem F, Parveen S. Antimicrobial Resistance, Virulence Properties and Genetic Diversity of Salmonella Typhimurium Recovered from Domestic and Imported Seafood. Pathogens 2023; 12:897. [PMID: 37513743 PMCID: PMC10384935 DOI: 10.3390/pathogens12070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The quantity of seafood imported and produced by domestic aquaculture farming has increased. Recently, it has been reported that multidrug-resistant (MDR) Salmonella Typhimurium may be associated with seafood. However, information is limited to the antimicrobial resistance, virulence properties, and genetic diversity of S. Typhimurium recovered from imported and domestic seafood. This study investigated the antimicrobial resistance, virulence properties, and genetic diversity of S. Typhimurium isolated from domestic and imported catfish, shrimp, and tilapia. A total of 127 isolates were tested for the presence of multidrug-resistance (MDR), virulence genes (invA, pagC, spvC, spvR), and genetic diversity using the Sensititre micro-broth dilution method, PCR, and pulsed-field gel electrophoresis (PFGE), respectively. All isolates were uniformly susceptible to six (amoxicillin/clavulanic acid, ceftiofur, ceftriaxone, imipenem, nitrofurantoin, and trimethoprim/sulfamethoxazole) of the 17 tested antimicrobials and genetically diverse. Fifty-three percent of the Salmonella isolates were resistant to at least one antimicrobial and 49% were multidrug resistant. Ninety-five percent of the isolates possessed the invA gene, 67% pagC, and 43% for both spvC, and spvR. The results suggest that S. Typhimurium recovered from seafood is frequently MDR, virulent, and have the ability to cause salmonellosis.
Collapse
Affiliation(s)
- Salah M Elbashir
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Adib M Adnan
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
- College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - John Bowers
- U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Angelo DePaola
- Angelo DePaola Consulting, 12719 Dauphin Island Pkwy, Coden, AL 36523, USA
| | - Michael Jahncke
- Virginia Seafood Agricultural Research and Extension Center, Virginia Tech., Hampton, VA 23669, USA
| | - Anuradha J Punchihewage-Don
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Ligia V Da Silva
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Fawzy Hashem
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Salina Parveen
- School of Agricultural and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| |
Collapse
|
33
|
Karim MR, Zakaria Z, Hassan L, Mohd Faiz N, Ahmad NI. Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. Antibiotics (Basel) 2023; 12:1060. [PMID: 37370378 DOI: 10.3390/antibiotics12061060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes (blaTEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for blaTEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh
| | - Zunita Zakaria
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nik Mohd Faiz
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Nur Indah Ahmad
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
34
|
Dias-Alves A, Espunyes J, Ayats T, Sente C, Sebulime P, Muro J, Tushabe J, Asiimwe C, Fernandez Aguilar X, Aruho R, Marco I, Planellas M, Cardells J, Cabezón O, Cerdà-Cuéllar M. Foodborne Pathogens at the Livestock-Wildlife-Human Interface in Rural Western Uganda. ECOHEALTH 2023; 20:144-149. [PMID: 37261595 DOI: 10.1007/s10393-023-01639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2023] [Indexed: 06/02/2023]
Abstract
Foodborne pathogens are an important cause of morbidity and mortality worldwide. To assess the presence of Salmonella, Campylobacter and Arcobacter spp. in livestock, wildlife, and humans from different regions across western Uganda, 479 faecal samples were tested by PCR. Salmonella and Campylobacter spp. were more frequently detected in livestock (5.1% and 23.5%, respectively) compared to wildlife (1.9% and 16.8%, respectively). Wildlife from remote areas showed lower Salmonella and Campylobacter spp. occurrence than in areas where interactions with livestock are common, suggesting that spill-over may exist from livestock or humans. Further studies are needed to better understand the transmission dynamics of these pathogens at the wildlife-livestock-human interface in western Uganda.
Collapse
Affiliation(s)
- Andrea Dias-Alves
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Research and Conservation Department, Zoo de Barcelona, Parc de la Ciutadella s/n, 08003, Barcelona, Spain
| | - Teresa Ayats
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Celsus Sente
- Department of Wildlife and Aquatic Animal Resources (WAAR), School of Veterinary Medicine and Animal Resources (SVAR), College of Veterinary Medicine, Animal Resources and Bio-Security (COVAB), Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peregrine Sebulime
- Department of Wildlife and Aquatic Animal Resources (WAAR), School of Veterinary Medicine and Animal Resources (SVAR), College of Veterinary Medicine, Animal Resources and Bio-Security (COVAB), Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Jesus Muro
- Daktari, Urb. La Solana 35, AD700, Escaldes, Andorra
| | | | | | - Xavier Fernandez Aguilar
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Robert Aruho
- Uganda Wildlife Authority (UWA), P.O. Box 3530, Kampala, Uganda
| | - Ignasi Marco
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Planellas
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Jesús Cardells
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115, Alfara del Patriarca, Valencia, Spain
| | - Oscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| |
Collapse
|
35
|
Louvau H, Harris LJ. Levels and distribution of Salmonella in naturally contaminated cashews. J Food Prot 2023:100109. [PMID: 37257696 DOI: 10.1016/j.jfp.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Raw materials associated with foodborne illness outbreaks are rarely available for evaluation. The levels and distribution of Salmonella were determined in naturally contaminated raw cashews linked to a salmonellosis outbreak associated with a fermented cashew cheese analog. Two unopened 22.7-kg boxes from a single lot of cashew kernel pieces were each divided into seven approximately equal units, 14 in total. Three 10-g subsamples per unit (n = 21) were evaluated for aerobic plate count (APC), coliform counts, and Escherichia coli counts, and 10 50-g subsamples per unit (n = 70) were enriched for the presence of Salmonella. Presumptive Salmonella-positive colonies were confirmed using CHROMagar Salmonella and real-time PCR (InvA) and then serotyped using antigenic methods and genome sequencing prediction tools. APC and coliform counts ranged from 1.81-5.47 (mean 2.44 ± 0.63) log CFU/g and 0.60-5.20 (mean 1.74 ± 0.80) log CFU/g, respectively. Salmonella was recovered from four units in Box 1 and all seven units in Box 2. One of 10 subsamples was positive in all but four of the positive units; one (Box 1) and three (Box 2) units had two positive subsamples. The level of Salmonella in the two boxes combined was 0.0023 most probable number/g (95% confidence interval [0.0014, 0.0038]). Salmonella Urbana was isolated from three of five positive subsamples in Box 1 and eight of 10 positive subsamples in Box 2. Salmonella Fresno and Vinohrady were unique to single subsamples from Box 1, and Salmonella Nima was isolated from two subsamples from Box 2. Of the four serovars recovered, Salmonella Urbana and Salmonella Vinohrady were in common with outbreak-associated clinical or product isolates. Understanding the distribution and concentration of Salmonella in naturally contaminated cashews provides important information for hazard analysis and risk assessments for soaked and fermented cashew products.
Collapse
Affiliation(s)
- Hanna Louvau
- Department of Food Science and Technology and University of California, Davis, One Shields Avenue, Davis, California 95616-8598, USA.
| | - Linda J Harris
- Department of Food Science and Technology and University of California, Davis, One Shields Avenue, Davis, California 95616-8598, USA.
| |
Collapse
|
36
|
Guan Z, Sun Y, Ma CB, Lee JJ, Zhang S, Zhang X, Guo Z, Du Y. Dual targets-induced specific hemin/G-quadruplex assemblies for label-free electrochemical detection capable of distinguishing Salmonella and its common serotype in food samples. Biosens Bioelectron 2023; 236:115438. [PMID: 37263053 DOI: 10.1016/j.bios.2023.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Efficient detection of pathogenic bacteria is paramount for ensuring food safety and safeguarding public health. Herein, we developed a label-free and signal-on dual-target recognition electrochemical DNA sensing platform based on the conformational formation of split G-quadruplex. This platform focused on achieving sensitive and low-cost detection of Salmonella and its most human-infecting S. typhimurium serotype. In simple terms, the dual-target recognition probe (DTR-6P) was ingeniously designed for the loop sequence on the loop-mediated isothermal amplification (LAMP) amplicons. It could recognize two different genes and release their corresponding G-rich sequences. The exfoliated G-rich sequences could be captured by the capture probes on the electrode, and then the bimolecular G-quadruplex or the tetramolecular G-quadruplex would be formed to capture hemin, thereby enabling dual-signal reporting. The minimum detection amount of target genes can be as low as 2 copies/μL. Encouragingly, the real food samples contaminated by Salmonella and the S. typhimurium serotype can be readily identified. The sensing platform with ingenious design paves a new way for label-free, multi-target simultaneous detection, whose advantage of rapidity, sensitivity, cost-effectiveness, and specificity also lay a solid foundation for practical applications.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Food Science and Engineering, Yanbian University, YanJi, Jilin, 133002, China
| | - Yi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China
| | - Sicai Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; Department of Food Science and Engineering, Yanbian University, YanJi, Jilin, 133002, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
37
|
Fatima S, Ishaq Z, Irfan M, AlAsmari AF, Achakzai JK, Zaheer T, Ali A, Akbar A. Whole-genome sequencing of multidrug resistance Salmonella Typhi clinical strains isolated from Balochistan, Pakistan. Front Public Health 2023; 11:1151805. [PMID: 37261234 PMCID: PMC10227597 DOI: 10.3389/fpubh.2023.1151805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Salmonella enterica serovar Typhi (S. Typhi) is a major cause of morbidity and mortality in developing countries, contributing significantly to the global disease burden. Methods In this study, S. Typhi strains were isolated from 100 patients exhibiting symptoms of typhoid fever at a tertiary care hospital in Pakistan. Antimicrobial testing of all isolates was performed to determine the sensitivity and resistance pattern. Three MDR strains, namely QS194, QS430, and QS468, were subjected to whole genome sequencing for genomic characterization. Results and Discussion MLST analysis showed that QS194, belonged to ST19, which is commonly associated with Salmonella enterica serovar typhimurium. In contrast, QS430 and QS468, belonged to ST1, a sequence type frequently associated with S. Typhi. PlasmidFinder identified the presence of IncFIB(S) and IncFII(S) plasmids in QS194, while IncQ1 was found in QS468. No plasmid was detected in QS430. CARD-based analysis showed that the strains were largely resistant to a variety of antibiotics and disinfecting agents/antiseptics, including fluoroquinolones, cephalosporins, monobactams, cephamycins, penams, phenicols, tetracyclines, rifamycins, aminoglycosides, etc. The S. Typhi strains possessed various virulence factors, such as Vi antigen, Agf/Csg, Bcf, Fim, Pef, etc. The sequencing data indicated that the strains had antibiotic resistance determinants and shared common virulence factors. Pangenome analysis of the selected S. Typhi strains identified 13,237 genes, with 3,611 being core genes, 2,093 shell genes, and 7,533 cloud genes. Genome-based typing and horizontal gene transfer analysis revealed that the strains had different evolutionary origins and may have adapted to distinct environments or host organisms. These findings provide important insights into the genetic characteristics of S. Typhi strains and their potential association with various ecological niches and host organisms.
Collapse
Affiliation(s)
- Sareen Fatima
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| | - Zaara Ishaq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, (NUST), Islamabad, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jahangir Khan Achakzai
- Disipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat Kech, Balochistan, Pakistan
| | - Tahreem Zaheer
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, (NUST), Islamabad, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Balochistan, Pakistan
| |
Collapse
|
38
|
KALCHAYANAND NORASAK, KOOHMARAIE MOHAMMAD, TOMMY L. WHEELER AND. Fate of Shiga Toxin-Producing Escherichia coli (STEC) and Salmonella during Kosher Processing of Fresh Beef. J Food Prot 2023; 86:100088. [PMID: 37019183 DOI: 10.1016/j.jfp.2023.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Traditional kosher meat processing involves the following steps after slaughtering: soaking with water to remove blood, salting to help draw out more blood, and rinsing to remove salt. However, the impact of the salt used on foodborne pathogens and beef quality is not well understood. The objectives of the current study were to determine effectiveness of salt in reducing pathogens in a pure culture model, on surfaces of inoculated fresh beef during kosher processing, and the effect of salt on beef quality. The pure culture studies indicated that the reduction of E. coli O157:H7, non-O157 STEC, and Salmonella increased with increasing salt concentrations. With salt concentrations from 3 to 13%, salt reduced E. coli O157:H7, non-O157 STEC, and Salmonella ranging from 0.49 to 1.61 log CFU/ml. For kosher processing, the water soaking step did not reduce pathogenic and other bacteria on the surface of fresh beef. Salting and rinsing steps reduced non-O157 STEC, E. coli O157:H7, and Salmonella ranging from 0.83 to 1.42 log CFU/cm2, and reduced Enterobacteriaceae, coliforms, and aerobic bacteria by 1.04, 0.95, and 0.70 log CFU/cm2, respectively. The salting process for kosher beef resulted in reducing pathogens on the surface of fresh beef, color changes, increased salt residues, and increased lipid oxidation on the final products.
Collapse
|
39
|
Singh A, Singh M, Malik MA, Padha S. Is There a Shift in Salmonella Diversity Among Poultry in Northern India? Avian Dis 2023; 67:108-113. [PMID: 37140119 DOI: 10.1637/aviandiseases-d-22-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 03/18/2023]
Abstract
The present study was conducted to determine the serotype diversity of Salmonella among poultry in northern India. A total of 101 poultry droppings from 30 farms in the Jammu and Kashmir union territory were analyzed. Nineteen isolates of Salmonella were obtained, and these belonged to four serotypes: Salmonella enterica enterica serotype Kentucky (n = 3), Salmonella enterica enterica serotype Infantis (n = 5), Salmonella enterica enterica serotype Agona (n = 4), and Salmonella enterica enterica serotype Typhimurium (n= 7). The study has isolated some Salmonella serotypes that are infrequently reported in India. Some of the isolated serotypes are reported to be endemic for human nontyphoidal salmonellosis cases in the region. Whether this indicates a shift in the serotype pattern in poultry in the region needs to be investigated further. Nevertheless, the study clearly indicates the risk of foodborne salmonellosis associated with consumption of contaminated poultry and poultry products in the region.
Collapse
Affiliation(s)
- Arvinderpal Singh
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu 181102, India
| | - Maninder Singh
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu 181102, India
| | - Mohd Ashraf Malik
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu 181102, India
| | - Sonali Padha
- Division of Veterinary Public Health and Epidemiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu 181102, India
| |
Collapse
|
40
|
Jibril AH, Okeke IN, Dalsgaard A, Olsen JE. Prevalence and whole genome phylogenetic analysis reveal genetic relatedness between antibiotic resistance Salmonella in hatchlings and older chickens from farms in Nigeria. Poult Sci 2023; 102:102427. [PMID: 36584420 PMCID: PMC9827064 DOI: 10.1016/j.psj.2022.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The presence of Salmonella in hatchlings is the single most important risk factor for the introduction of Salmonella into poultry farms, and resistant strains are particularly worrisome, as they could affect treatment outcomes in humans infected through consumption of contaminated poultry products. This study estimated Salmonella prevalence, determined resistance profiles of strains recovered from hatchlings in Nigeria, and determined genetic relatedness between hatchling strains and strains from poultry farms. In this study, 300 fecal samples were collected. Salmonella was isolated by culture and confirmed by PCR, and isolates were tested for susceptibility to antimicrobials by the disk diffusion method. Strains were pair-end sequenced, and genomes were used to obtain serotypes and antibiotic resistance genes. Whole-genome based phylogenetic analysis was used to determine genetic relatedness between these isolates and strains from previously characterized older chicken within the same geographical area. A prevalence of 10.7% was obtained belonging to 13 Salmonella serovars. Resistance to kanamycin (30/32), ciprofloxacin (22/32), nalidixic acid (22/32), and sulfonamides (22/32) were the most commonly observed phenotypic resistances. Twenty-two (68.8%) isolates showed multidrug resistance. In silico predictions identified 36 antimicrobial resistance genes. Four (12.5%) and 22 (68.8%) strains showed point mutations in gyrA and parC. Commonly observed acquired resistance genes included sul1, sul2, sul3, and tet(A) as well as a variety of aminoglycoside-modifying genes. Eleven (34.4%) isolates were predicted to have genes that confer resistance to fosfomycin (fosA7, fosB). A strain of S. Stanleyville was predicted to have optrA, which confers resistance to furazolidone. Strains of S. Kentucky, S. Muenster, and S. Menston obtained from hatchlings showed close genetic relatedness by having less than 30 SNPs difference to strains recovered from chickens at farms previously receiving hatchlings from the same sources.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
41
|
Salam F, Lekshmi M, Prabhakar P, Kumar SH, Nayak BB. Physiological characteristics and virulence gene composition of selected serovars of seafood-borne Salmonella enterica. Vet World 2023; 16:431-438. [PMID: 37041837 PMCID: PMC10082740 DOI: 10.14202/vetworld.2023.431-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2023] [Indexed: 03/17/2023] Open
Abstract
Background and Aim: All serotypes of Salmonella enterica are considered potentially pathogenic. However, the non-typhoidal Salmonella (NTS) serotypes vary considerably in terms of pathogenicity and the severity of infections. Although diverse serotypes of NTS have been reported from tropical seafood, their sources, physiological characteristics, and virulence potentials are not well understood. This study aimed to compare the physiological characteristics of selected serovars of Salmonella from seafood and investigate possible variations in the distribution of known genes within the pathogenicity islands.
Materials and Methods: A series of biochemical tests, including carbohydrate fermentation and amino acid decarboxylation tests were performed to physiologically compare the isolates. The genetic characterization with respect to putative virulence genes was done by screening for genes associated with Salmonella pathogenicity island (SPI) I– V, as well as the toxin- and prophage-associated genes by polymerase chain reaction.
Results: Irrespective of serotypes, all the isolates uniformly harbored the five SPIs screened in this study. However, some virulence genes, such as the avrA, sodC, and gogB were not detected in all Salmonella isolates. The biochemical profiles of Salmonella serotypes were highly conserved except for variations in inositol fermentation and citrate utilization. All the isolates of this study were weak biofilm formers on polystyrene surfaces.
Conclusion: The pathogenicity profiles of environmental NTS isolates observed in this study suggest that they possess the virulence machinery necessary to cause human infections and therefore, urgent measures to contain Salmonella contamination of seafood are required to ensure the safety of consumers.
Keywords: biofilm, invasion, non-typhoidal Salmonella, Salmonella pathogenicity islands, seafood, virulence.
Collapse
Affiliation(s)
- Fathima Salam
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manjusha Lekshmi
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Parmanand Prabhakar
- Fish Processing Technology, College of Fisheries, Bihar Animal Sciences University, Patna, Bihar, India
| | - Sanath H. Kumar
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Binaya Bhusan Nayak
- Quality Control Laboratory, ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
42
|
Kalchayanand N, Wang R, Brown T, Wheeler TL. Efficacy of Short Thermal Treatment Time Against Escherichia coli O157:H7 and Salmonella on the Surface of Fresh Beef. J Food Prot 2023; 86:100040. [PMID: 36916548 DOI: 10.1016/j.jfp.2023.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023]
Abstract
Thermal treatment interventions consistently provide effective pathogen reductions. However, the cost of maintaining high temperature of 95°C in order to raise the surface temperature of carcasses to 82°C is very expensive. Therefore, beef processors need to identify thermal application times and temperatures that optimize the treatment effects with less maintenance cost. The objectives of this study were to determine the efficacy of hot water or steam at 71°C for 6 s and cascade e-ion plasma treatment for 2 s in reducing pathogens on the surface of fresh beef compared to the thermal treatment at 82°C for 15 s. Hot water at 71°C for 6 s reduced Escherichia coli O157:H7 and Salmonella by 2.38 and 2.48 log CFU/cm2, while steam treatment at 71°C for 6 s reduced E. coli O157:H7 and Salmonella by 2.94 and 3.06 log CFU/cm2, respectively. Cascade e-ion plasma treatment for 2 s reduced E. coli O157:H7 on surface of fresh beef by 1.89 log CFU/cm2. The findings indicate that short treatment time with appropriate temperature could serve as an effective carcass intervention to improve the safety of fresh beef.
Collapse
Affiliation(s)
- Norasak Kalchayanand
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA.
| | - Rong Wang
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA
| | - Ted Brown
- Cargill Meat Solutions, 151 North Main Street, Wichita, KS 67202, USA
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agriculture Research Service, Roman L. Hruska, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933-0166, USA
| |
Collapse
|
43
|
Belo NO, de Angeli Dutra D, Rodello D, Crispim NPCC, Silva ASG, Coelho HLG, Cunha JLR, Martins NRS, Braga EM. Detection of Salmonella spp. in wild and domestic birds in an anthropized ecotone between the Cerrado and the Amazon Forest in Brazil. Braz J Microbiol 2023; 54:565-569. [PMID: 36534358 PMCID: PMC9944177 DOI: 10.1007/s42770-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Emergence of zoonotic infectious diseases represent one of the main threats to people worldwide. To properly understand and prevent zoonoses is fundamental to study their epidemiology and the possibility of spillover events, especially for commercially intensive domestic animals and humans. Here, we studied 210 wild birds from the "Ipucas" region, which consists of fragments of the Amazon Forest interspersed with fragments of the "Cerrado" that is subject to seasonal flooding and 75 domestic birds from neighboring poultry farming. Then, we molecularly diagnosed Salmonella and Chlamydia from wild birds and poultry. Among the wild birds, four were diagnosed with Chlamydia psittaci and 23 with Salmonella spp., while we detected 15 poultry infected by Salmonella spp. and no poultry with C. psittaci. We highlighted the common infections of wild and domestic birds in an anthropologically modified environment and potential spillover of Salmonella pathogens among wild and livestock birds. Those infections can harm the health of native and domestic species.
Collapse
Affiliation(s)
- N. O. Belo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - D. de Angeli Dutra
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - D. Rodello
- Grupo de Pesquisa Em Ecologia E Conservação de Aves - ECOAVES, Universidade Federal do Tocantins, Palmas, TO Brazil
| | - N. P. C. C. Crispim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - A. S. G. Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - H. L. G. Coelho
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - J. L. R. Cunha
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - N. R. S. Martins
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - E. M. Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|
44
|
Gu G, Murphy CM, Hamilton AM, Zheng J, Nou X, Rideout SL, Strawn LK. Effect of pesticide application on
Salmonella
survival on inoculated tomato leaves. J Food Saf 2023. [DOI: 10.1111/jfs.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ganyu Gu
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Claire M. Murphy
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Alexis M. Hamilton
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition US Food and Drug Administration College Park Maryland USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory United States Department of Agriculture‐Agricultural Research Service Beltsville Maryland USA
| | - Steven L. Rideout
- School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA
| | - Laura K. Strawn
- Department of Food Science and Technology Virginia Tech Blacksburg Virginia USA
| |
Collapse
|
45
|
Zhuang L, Gong J, Shen Q, Yang J, Zhang D, Zhang P, Xie H, Hao P, Zhang Y, Zhu M. Graphene oxide-assisted optimized narrow-thermal-cycling amplification for accurate detection of Salmonella spp. ANAL SCI 2023; 39:191-202. [PMID: 36357755 DOI: 10.1007/s44211-022-00213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Salmonella is a rod-shaped, Gram-negative zoonotic pathogen that poses a serious global socioeconomic and public health threat. Rapid and accurate detection of Salmonella spp. is critical for effective control of its infection. In this study, an accurate, sensitive and specific graphene oxide-assisted accelerated strand exchange amplification (GO-ASEA) method for rapid detection of Salmonella spp. was developed and validated. The detection limit of the GO-ASEA method was 8.6 × 101 fg μL-1 of Salmonella genomic DNA or 1 × 101 CFU g-1 of Salmonella in spiked chicken faeces free of pre-enrichment. And the GO-ASEA method could specifically detect Salmonella spp. without cross-reactivity with other enteric pathogens. In addition, the novel method achieved Salmonella detection within 30 min and was validated using 209 clinical samples, showing its good clinical applicability. Therefore, the GO-ASEA method is a new optional tool for the rapid detection of pathogenic microorganisms, which is ideal for food safety monitoring and high-throughput detection.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, 210096, Nanjing, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, 225125, Yangzhou, People's Republic of China
| | - Haiqiang Xie
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Pan Hao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, 210096, Nanjing, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, 212400, Jurong, People's Republic of China.
| |
Collapse
|
46
|
Molecular Detection of Salmonella spp. and E. coli non-O157:H7 in Two Halal Beef Slaughterhouses in the United States. Foods 2023; 12:foods12020347. [PMID: 36673442 PMCID: PMC9858474 DOI: 10.3390/foods12020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to estimate the prevalence of pathogenic bacteria on halal beef carcasses and environmental surfaces in two halal beef slaughterhouses in the United States. To evaluate halal beef slaughter operations, 144 beef carcass samples (pre- and post-evisceration), and 24 environmental site samples (slaughter hall floor, brisket saw, and offal’s table) were collected in two halal beef slaughterhouses during June to September 2017. All carcass and environmental samples were analyzed for the presence of Salmonella spp., Escherichia coli O157:H7, and shiga toxin-producing E. coli (non-O157 STEC). Results revealed that Salmonella spp. was isolated and confirmed for the presence of invA gene in 5/36 samples (13.8%) and 5/36 samples (13.8%) at pre-evisceration in plants A and B, respectively. Salmonella spp. was isolated in 2/9 samples (5.6%) of plants A and was not detected in any sample at post-evisceration process. E. coli O157:H7 was not detected in any sample collected from plant A and B. E. coli non-O157 was isolated and confirmed for the presence of virulence genes in 4/36 samples (11.1%) and 2/36 samples (5.5%) at post-evisceration in plants A and B, respectively. Salmonella spp. was detected based on the presence of the Salmonella invA gene in the slaughter hall floor (4/4) and the offal’s table (2/4) samples using multiplex polymerase chain reaction (mPCR). In plant B, Salmonella spp. was also confirmed in the slaughter hall floor (2/4) and brisket saw (2/4) samples. On the other hand, one isolate of E. coli O157:H7 and one non-O157 STEC were obtained from the slaughter hall floor of plant A. The E. coli O157:H7 isolate was positive for stx1, stx2, eaeA, and EHEC-hly genes. Two isolates of non-O157 STEC (2/4) were detected in the environmental site samples, one from the slaughter hall floor, and one from an offal’s table sample of plant B. These data can be used to inform food safety interventions targeting halal meat operations in the southeastern United States.
Collapse
|
47
|
Molecular Detection of Virulence Factors in Salmonella serovars Isolated from Poultry and Human Samples. Vet Med Int 2023; 2023:1875253. [PMID: 36910894 PMCID: PMC9998162 DOI: 10.1155/2023/1875253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Salmonellosis is a common infectious disease in humans caused by Salmonella spp., which in recent years has shown an increase in its incidence, with products of avian origin being a common source of transmission. To present a successful infective cycle, there are molecular mechanisms such as virulence factors that provide characteristics that facilitate survival, colonization, and damage to the host. According to this, the study aims to characterize the virulence factors of Salmonella spp. strains isolated from broilers (n = 39) and humans (n = 10). The presence of 24 virulence genes was evaluated using end-point PCR. All the strains of Salmonella spp. isolated from broiler chickens revealed presence of 7/24 (29, 16%) virulence genes (lpfA, csgA, sitC, sipB, sopB, sopE, and sivH). Regarding the strains isolated from cases of gastroenteritis in humans, all strains contained (14/24, 58, 33%) virulence genes (lpfA, csgA, pagC, msgA, spiA, sitC, iroN, sipB, orgA, hilA, sopB, sifA, avrA, and sivH). In summary, the presence of virulence genes in different strains of Salmonella isolated from broilers and humans could be described as bacteria with potential pathogenicity due to the type and number of virulence genes detected. These findings are beneficial for the pathogenic monitoring of Salmonella in Colombia.
Collapse
|
48
|
Hou S, Wang S, Zhao X, Li W, Gao J, Wang Y, Zhang R, Gong L, Jiang S, Zhu Y. Establishment of indirect ELISA method for Salmonella antibody detection from ducks based on PagN protein. BMC Vet Res 2022; 18:424. [PMID: 36471338 PMCID: PMC9721058 DOI: 10.1186/s12917-022-03519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella as an important food-borne zoonotic bacterial pathogen, infection in ducks is a recessive infection, however, it can also cause high mortality and threat to food safety. Preventing and controlling the infection and transmission of Salmonella in ducks critically require rapid and sensitive detection method. Full-length Salmonella-specific protein PagN was induced and expressed in E.coil BL21 and was purified as an antigen to establish an indirect enzyme-linked immunosorbent assays (iELSA) detection kit. RESULTS The recombinant PagN protein has a molecular weight of 43 kDa containing a His-tag, was recognized by an anti-Salmonella positive serum by Western blot assay. The optimal concentration of PagN as a coating antigen in the iELISA was 1 μg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:4000 (0.025 μg/mL). The cutoff OD450 value was established at 0.268. The iELISA kit showed high selectivity since no cross-reaction with E. coli, Staphylococcus aureus and Streptococcus was observed. iELISA method and Dot-blot test were performed on 100 clinical sera samples collected from duck farms, and the actual coincidence rate was 89% (89/100). 613 duck serum samples from 3 different farms were tested using established method and commercial ELISA kit. The concordance between the two methods was 94.1%. CONCLUSION Anti-PagN based iELISA can serve as a useful tool for diagnosis of Salmonella infection.
Collapse
Affiliation(s)
- Shaopeng Hou
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Shuyang Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Xinyuan Zhao
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Wei Li
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Jing Gao
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Yanjun Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Ruihua Zhang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Lingling Gong
- Shandong Provincial Quality Inspection Center of Animal Feed and Veterinary Medicine, Jinan, 250010 China
| | - Shijin Jiang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| | - Yanli Zhu
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018 China
| |
Collapse
|
49
|
Surya T, Jeyasekaran G, Shakila RJ, Sivaraman B, Shalini R, Sundhar S, Arisekar U. Prevalence of biofilm forming Salmonella in different seafood contact surfaces of fishing boats, fish landing centres, fish markets and seafood processing plants. MARINE POLLUTION BULLETIN 2022; 185:114285. [PMID: 36327929 DOI: 10.1016/j.marpolbul.2022.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of biofilm forming Salmonella on different seafood contact surfaces was investigated. Out of 384 swab samples, 16.14 % and 1 % were confirmed biochemically and molecularly as Salmonella respectively. One out of four isolates was from the boat deck, and three were from the seafood processing plant. Salmonella was more prevalent in January, June, and September months. Different assays investigated the biofilm forming ability of isolates. Two out of four isolates have shown strong biofilms, and the others were moderate biofilm formers by microtitre plate assay. In the CRA assay, three isolates showed 'rdar' morphotype, and one showed 'bdar' morphotype. All isolates were positive for gcpA gene (~1700 bp), a critical gene found in Salmonella biofilms. The microbial load of Salmonella biofilms on different contact surfaces were determined, stainless steel and HDPE were found prone to biofilms. With this, a suitable mechanism shall be formulated to control the biofilms of Salmonella.
Collapse
Affiliation(s)
- Thamizhselvan Surya
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam 611 002, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Balasubramanian Sivaraman
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Shanmugam Sundhar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
50
|
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture. Antibiotics (Basel) 2022; 11:1688. [PMID: 36551345 PMCID: PMC9774326 DOI: 10.3390/antibiotics11121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of waterborne antimicrobial-resistant (AMR) bacteria in areas of high-density oyster cultivation is an ongoing environmental and public health threat given the popularity of shellfish consumption, water-related human recreation throughout coastal Thailand, and the geographical expansion of Thailand's shellfish industry. This study characterized the association of phenotypic and genotypic AMR, including extended-spectrum β-lactamase (ESBL) production, and virulence genes isolated from waterborne Escherichia coli (E. coli) (n = 84), Salmonella enterica (S. enterica) subsp. enterica (n = 12), Vibrio parahaemolyticus (V. parahaemolyticus) (n = 249), and Vibrio cholerae (V. cholerae) (n = 39) from Thailand's coastal aquaculture regions. All Salmonella (100.0%) and half of V. cholerae (51.3%) isolates harbored their unique virulence gene, invA and ompW, respectively. The majority of isolates of V. parahaemolyticus and E. coli, ~25% of S. enterica subsp. enterica, and ~12% of V. cholerae, exhibited phenotypic AMR to multiple antimicrobials, with 8.9% of all coastal water isolates exhibiting multidrug resistance (MDR). Taken together, we recommend that coastal water quality surveillance programs include monitoring for bacterial AMR for food safety and recreational water exposure to water for Thailand's coastal water resources.
Collapse
Affiliation(s)
- Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saran Anuntawirun
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nawaphorn Roongrojmongkhon
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Woranich Hinthong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|