1
|
Żakowski W, Zawistowski P. Neurochemistry of the mammillary body. Brain Struct Funct 2023; 228:1379-1398. [PMID: 37378855 PMCID: PMC10335970 DOI: 10.1007/s00429-023-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotransmitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), (2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex relations with other structures of the extended hippocampal system.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Piotr Zawistowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
2
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Soltani N, Roohbakhsh A, Allahtavakoli M, Salari E, Sheibani V, Fatemi I, Shamsizadeh A. Heterogeneous effects of cholecystokinin on neuronal response properties in deep layers of rat barrel cortex. Somatosens Mot Res 2018; 35:131-138. [DOI: 10.1080/08990220.2018.1490259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Narjes Soltani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Roohbakhsh
- Pharmacutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Allahtavakoli
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Salari
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
5
|
Márquez-Legorreta E, Horta-Júnior JDAC, Berrebi AS, Saldaña E. Organization of the Zone of Transition between the Pretectum and the Thalamus, with Emphasis on the Pretectothalamic Lamina. Front Neuroanat 2016; 10:82. [PMID: 27563286 PMCID: PMC4980397 DOI: 10.3389/fnana.2016.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022] Open
Abstract
The zone of transition between the pretectum, derived from prosomere 1, and the thalamus, derived from prosomere 2, is structurally complex and its understanding has been hampered by cytoarchitectural and terminological confusion. Herein, using a battery of complementary morphological approaches, including cytoarchitecture, myeloarchitecture and the expression of molecular markers, we pinpoint the features or combination of features that best characterize each nucleus of the pretectothalamic transitional zone of the rat. Our results reveal useful morphological criteria to identify and delineate, with unprecedented precision, several [mostly auditory] nuclei of the posterior group of the thalamus, namely the pretectothalamic lamina (PTL; formerly known as the posterior limitans nucleus), the medial division of the medial geniculate body (MGBm), the suprageniculate nucleus (SG), and the ethmoid, posterior triangular and posterior nuclei of the thalamus. The PTL is a sparsely-celled and fiber rich flattened nucleus apposed to the lateral surface of the anterior pretectal nucleus (APT) that marks the border between the pretectum and the thalamus; this structure stains selectively with the Wisteria floribunda agglutinin (WFA), and is essentially immunonegative for the calcium binding protein parvalbumin (PV). The MGBm, located medial to the ventral division of the MGB (MGBv), can be unequivocally identified by the large size of many of its neurons, its dark immunostaining for PV, and its rather selective staining for WFA. The SG, which extends for a considerable caudorostral distance and deviates progressively from the MGB, is characterized by its peculiar cytoarchitecture, the paucity of myelinated fibers, and the conspicuous absence of staining for calretinin (CR); indeed, in many CR-stained sections, the SG stands out as a blank spot. Because most of these nuclei are small and show unique anatomical relationships, the information provided in this article will facilitate the interpretation of the results of experimental manipulations aimed at the auditory thalamus and improve the design of future investigations. Moreover, the previously neglected proximity between the MGBm and the caudal region of the scarcely known PTL raises the possibility that certain features or roles traditionally attributed to the MGBm may actually belong to the PTL.
Collapse
Affiliation(s)
- Emmanuel Márquez-Legorreta
- Neuroscience Institute of Castilla y León (INCyL), University of SalamancaSalamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of SalamancaSalamanca, Spain
| | | | - Albert S Berrebi
- Department of Otolaryngology-Head and Neck Surgery and the Sensory Neuroscience Research Center, West Virginia University Morgantown, WV, USA
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), University of SalamancaSalamanca, Spain; Department of Cell Biology and Pathology, Medical School, University of SalamancaSalamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain
| |
Collapse
|
6
|
Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 2015; 56:315-29. [DOI: 10.1016/j.neubiorev.2015.08.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
7
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
8
|
Zakowski W, Bogus-Nowakowska K, Wasilewska B, Hermanowicz B, Robak A. Calcium-binding proteins in the laterodorsal thalamic nucleus during development of the guinea pig. J Chem Neuroanat 2014; 61-62:88-93. [PMID: 25154025 DOI: 10.1016/j.jchemneu.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
The laterodorsal thalamic nucleus (LD) is often treated as a part of the anterior thalamic nuclei (ATN) because of its location and similar connectivity. Our previous studies have shown that distribution of three calcium-binding proteins, i.e. calbindin D28k (CB), calretinin (CR) and parvalbumin (PV), changes within the ATN during development of the guinea pig. The aim of this study is to examine the immunoreactivity pattern of these proteins in the LD in the guinea pig ontogeny. Brains from animals ranging from 40th embryonic day to 80th postnatal day were used in the study. Two methods were applied: a single-labelling immunoenzymatic method and double-labelling immunofluorescence. No changes of the distribution pattern of the substances were observed throughout the examined developmental stages. CB and CR were the most abundantly expressed proteins in perikarya of the LD. Numerous CB- and CR-immunoreactive cell bodies were found throughout the whole extent of the nucleus. In most of these cell bodies both proteins colocalized vastly. The highest immunoreactivity of the perikarya containing CB and CR was observed in the mediodorsal part of the LD and in its rostral portion. In regard to PV, single cell bodies were observed mostly in the dorsal part of the nucleus. PV did not colocalize with the other proteins. In summary, all the studied calcium-binding proteins were already present in the LD at prenatal developmental stages and the pattern of distribution remained virtually constant until adulthood. Thus, the LD differs considerably from the ATN in an aspect of neurochemical cell differentiation.
Collapse
Affiliation(s)
- Witold Zakowski
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Barbara Wasilewska
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Beata Hermanowicz
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Anna Robak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| |
Collapse
|
9
|
Żakowski W, Równiak M, Robak A. Colocalization pattern of calbindin and cocaine- and amphetamine-regulated transcript in the mammillary body-anterior thalamic nuclei axis of the guinea pig. Neuroscience 2013; 260:98-105. [PMID: 24342567 DOI: 10.1016/j.neuroscience.2013.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 11/26/2022]
Abstract
The study describes for the first time the colocalization pattern of calbindin (CB) and cocaine- and amphetamine-regulated transcript (CART) in the mammillary body (MB) and anterior thalamic nuclei (ATN) - structures connected in a topographically organized manner by the mammillothalamic tract (mtt). Immunohistochemical study was performed on fetal (E40, E50, E60), newborn (P0) and postnatal (P20, P80) brains of the guinea pig, but the coexistence pattern of the substances was invariable throughout the examined developmental stages. CB and CART colocalized in the perikarya of the lateral part of the medial mammillary nucleus (MMl), whereas in its medial part (MMm) only CB was detected. In the mtt, which originates from the MB, both the substances were present and colocalized in single fibers. Next, fibers from the mtt spread toward the ATN in a particular way: fibers containing CB ran to both the anteromedial thalamic nucleus (AM) and anteroventral thalamic nucleus (AV), while fibers containing CART ran mostly to the latter one. In the ventral part of AV, CB and CART colocalized vastly in the neuropil. The lateral mammillary nucleus and anterodorsal thalamic nucleus were virtually devoid of CB- and CART-positive structures. Based on the known connections between the MB and ATN, we conclude that the studied substances may cooperate in the MMl-AV part of the axis and CB plays a significant role in the MMm-AM part.
Collapse
Affiliation(s)
- W Żakowski
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - M Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - A Robak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| |
Collapse
|
10
|
Zakowski W, Bogus-Nowakowska K, Robak A. Embryonic and postnatal development of calcium-binding proteins immunoreactivity in the anterior thalamus of the guinea pig. J Chem Neuroanat 2013; 53:25-32. [PMID: 24060609 DOI: 10.1016/j.jchemneu.2013.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/20/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Our recent studies have shown that the distribution of calretinin (CR) in the anterior thalamic nuclei (ATN) changes significantly during the development of the guinea pig. The present study was designed to reveal the distribution pattern of calcium-binding proteins, i.e. calbindin (CB) and parvalbumin (PV), as well as the colocalization pattern of all three proteins, including CR, in the ATN of guinea pigs ranging from the 40th embryonic day (E40) to the 80th postnatal day (P80). According to these patterns, CB appears exclusively in the perikarya of the anteromedial nucleus (AM) not before P20 and always colocalizes with CR. Moreover, CB and CR colocalize in fibers of thin bundles traversing the anteroventral nucleus (AV) since E50. The ATN also display CB-positive neuropil in all studied stages, especially a strong one in the ventral part of the AV. PV was not observed in the perikarya of the ATN in all the stages, but was abundantly present in the neuropil of the anterodorsal nucleus (AD). No colocalizations exist between PV and the rest of the studied proteins. In conclusion, our study reveals that the distribution of the studied proteins differs greatly. Nevertheless, the postnatal coexistence of CB and CR in the AM perikarya may indicate the cooperation of both of the proteins in some functions of the nucleus. Parvalbumin is limited mostly to the neuropil of the AD, suggesting different functions in comparison to CB and CR.
Collapse
Affiliation(s)
- Witold Zakowski
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | | | | |
Collapse
|
11
|
Giráldez-Pérez RM, Avila MN, Feijóo-Cuaresma M, Heredia R, De Diego-Otero Y, Real MÁ, Guirado S. Males but not females show differences in calbindin immunoreactivity in the dorsal thalamus of the mouse model of fragile X syndrome. J Comp Neurol 2013; 521:894-911. [PMID: 22886886 DOI: 10.1002/cne.23209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 08/03/2012] [Indexed: 12/18/2022]
Abstract
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of the Fmr1 gene product, fragile X mental retardation protein. Here we analyze the immunohistochemical expression of calcium-binding proteins in the dorsal thalamus of Fmr1 knockout mice of both sexes and compare it with that of wildtype littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the dorsal thalamus was similar in wildtype and knockout mice but there was a notable reduction in calbindin-immunoreactive cells in midline/intralaminar/posterior dorsal thalamic nuclei of male Fmr1 knockout mice. We counted the number of calbindin-immunoreactive cells in 18 distinct nuclei of the dorsal thalamus. Knockout male mice showed a significant reduction in calbindin-immunoreactive cells (range: 36-67% lower), whereas female knockout mice did not show significant differences (in any dorsal thalamic nucleus) when compared with their wildtype littermates. No variation in the calretinin expression pattern was observed throughout the dorsal thalamus. The number of calretinin-immunoreactive cells was similar for all experimental groups as well. Parvalbumin immunoreactivity was restricted to fibers and neuropil in the analyzed dorsal thalamic nuclei, and presented no differences between genotypes. Midline/intralaminar/posterior dorsal thalamic nuclei are involved in forebrain circuits related to memory, nociception, social fear, and auditory sensory integration; therefore, we suggest that downregulation of calbindin protein expression in the dorsal thalamus of male knockout mice should be taken into account when analyzing behavioral studies in the mouse model of FXS.
Collapse
Affiliation(s)
- Rosa M Giráldez-Pérez
- University of Málaga, Department of Cell Biology, Genetics, and Physiology, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Mazzetti S, Ortino B, Inverardi F, Frassoni C, Amadeo A. PSA-NCAM in the developing and mature thalamus. Brain Res Bull 2006; 71:578-86. [PMID: 17292800 DOI: 10.1016/j.brainresbull.2006.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 11/28/2022]
Abstract
The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is involved in several morphogenetic processes of the central nervous system. In the present study the expression of PSA-NCAM has been investigated in the rat thalamus during embryonic and postnatal development using light and electron microscopic immunocytochemical techniques. At all the examined ages, PSA-NCAM staining in the thalamus was mainly observed along neuronal plasmatic membranes and absent in astrocytes identified by labelling with cytoskeletal (vimentin and glial fibrillary acidic protein) and membrane (GABA transporter-3) markers. At embryonic day 14 the immunoreactivity was restricted to the dorsal thalamic mantle and to the region of reticular thalamic migration and subsequently it extended throughout the whole thalamic primordium. PSA-NCAM labelling remained intense and homogeneously distributed along perinatal period, but from P4 it began to decrease selectively, persisting throughout adulthood only in the reticular nucleus, ventral lateral geniculate nucleus and midline and intralaminar nuclei. The expression of this adhesion molecule differed in areas characterized by the presence of neurons containing distinct calcium binding proteins, as PSA-NCAM labelling was intense around calretinin-positive neurons, whereas it decreased in some calbindin-immunoreactive regions. These findings show evidence of a selective neuronal expression of PSA-NCAM in developing thalamus, supporting its suggested role in cell migration and synaptogenesis as it occurs in the cerebral cortex. In adulthood PSA-NCAM could instead be a marker of thalamic nuclei that retain a potential for synaptic plasticity.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | | | | | | | | |
Collapse
|
13
|
Belekhova MG, Kenigfest NB, Gapanovich SO, Rio JP, Peperant J. Neurochemical organization of reptilian thalamus. Comparative analysis of amniote optical centers. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006060019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Druga R, Mares P, Otáhal J, Kubová H. Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Res 2005; 63:43-65. [PMID: 15716027 DOI: 10.1016/j.eplepsyres.2004.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 11/12/2004] [Accepted: 11/16/2004] [Indexed: 11/28/2022]
Abstract
SE was induced in Wistar rats at post-natal (P) days 12, 15, 18, 21, and 25 to determine distribution and severity of thalamic damage in relation to time after SE. Six different intervals from 4 h up to 1 week were studied using Fluoro-Jade B (FJB) staining. Severity of damage was semi-quantified for every age-and-interval group. Distribution of neuronal damage within various thalamic nuclei was mapped by a computer-aided digitizing system. A consistent neuronal damage occurred in functionally heterogenous thalamic nuclei. Damage was found in all age groups although its extension and time course as well as the number of involved thalamic nuclei varied. Number of injured thalamic nuclei rapidly increased with age on SE-onset. In P12 group, degenerating neurons were consistently seen in the mediodorsal and lateral dorsal thalamic nuclei. Since P15, neurodegeneration was observed additionally in midline, ventral and caudal thalamic nuclei (visual and auditory thalamic nuclei), in the lateral posterior and in the reticular nucleus. In P21 and P25 animals, the majority of thalamic nuclei exhibited marked neuronal damage. Nuclei with a small number (anterior and intralaminar) or no FJB-positive neurons (the ventral nucleus of the lateral geniculate body) were exceptional. The pattern of thalamic damage is age-specific; its extent and severity increases with age.
Collapse
Affiliation(s)
- Rastislav Druga
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Vídenská 1083, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Uroz V, Prensa L, Giménez-Amaya JM. Chemical anatomy of the human paraventricular thalamic nucleus. Synapse 2004; 51:173-85. [PMID: 14666515 DOI: 10.1002/syn.10298] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The paraventricular thalamic nucleus (Pa) lies in the most medial aspect of the thalamus and is considered one of the midline thalamic nuclei. In the present study, we carried out histochemical and immunohistochemical procedures in the Pa of normal individuals to visualize the pattern of distribution of acetylcholinesterase (AChE), calbindin D-28k (CB), parvalbumin (PV), calretinin (CR), limbic system-associated membrane protein (LAMP), substance P (SP), and enkephalin (ENK). Other cytoarchitectural and myeloarchitectural techniques, such as Nissl and Gallyas, were also employed to delineate the boundaries of the Pa. The main findings of this study are: 1) AChE staining in the Pa was heterogeneously distributed along its anteroposterior and mediolateral axes; 2) the Pa harbored numerous CB- and CR-immunoreactive (ir) cells and neuropil, but this nucleus was largely devoid of PV; 3) the Pa was highly enriched in LAMP and this protein appeared uniformly distributed through its whole extent; and, 4) the SP and ENK immunoreactivities in the Pa revealed numerous highly varicose fibers scattered throughout this nucleus, but no stained cells. This morphological study demonstrates that the Pa is a heterogeneous chemical structure in humans. The functional significance of these results is discussed in the light of similar data gathered in several mammalian species.
Collapse
Affiliation(s)
- Victoria Uroz
- Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | |
Collapse
|
16
|
Montagnese CM, Mezey SE, Csillag A. Efferent connections of the dorsomedial thalamic nuclei of the domestic chick (Gallus domesticus). J Comp Neurol 2003; 459:301-26. [PMID: 12655512 DOI: 10.1002/cne.10612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in the thalamic anterior dorsomedial nucleus (DMA) of domestic chicks. The projections of the DMA covered the rostrobasal forebrain, ventral paleostriatum, nucleus accumbens, septal nuclei, Wulst, hyperstriatum ventrale, neostriatal areas, archistriatal subdivisions, dorsolateral corticoid area, numerous hypothalamic nuclei, and dorsal thalamic nuclei. The rostral DMA projects preferentially on the hypothalamus, whereas the caudal part is connected mainly to the dorsal thalamus. The DMA is also connected to the periaqueductal gray, deep tectum opticum, intercollicular nucleus, ventral tegmental area, substantia nigra, locus coeruleus, dorsal lateral mesencephalic nucleus, lateral reticular formation, nucleus papillioformis, and vestibular and cranial nerve nuclei. This pattern of connectivity is likely to reflect an important role of the avian DMA in the regulation of attention and arousal, memory formation, fear responses, affective components of pain, and hormonally mediated behaviors.
Collapse
|
17
|
Gauriau C, Bernard JF. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: The forebrain. J Comp Neurol 2003; 468:24-56. [PMID: 14648689 DOI: 10.1002/cne.10873] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Projections to the forebrain from lamina I of spinal and trigeminal dorsal horn were labeled anterogradely with Phaseolus vulgaris-leucoagglutinin (PHA-L) and/or tetramethylrhodamine-dextran (RHO-D) injected microiontophoretically. Injections restricted to superficial laminae (I/II) of dorsal horn were used primarily. For comparison, injections were also made in deep cervical laminae. Spinal and trigeminal lamina I neurons project extensively to restricted portions of the ventral posterolateral and posteromedial (VPL/VPM), and the posterior group (Po) thalamic nuclei. Lamina I also projects to the triangular posterior (PoT) and the ventral posterior parvicellular (VPPC) thalamic nuclei but only very slightly to the extrathalamic forebrain. Furthermore, the lateral spinal (LS) nucleus, and to a lesser extent lamina I, project to the mediodorsal thalamic nucleus. In contrast to lamina I, deep spinal laminae project primarily to the central lateral thalamic nucleus (CL) and only weakly to the remaining thalamus, except for a medium projection to the PoT. Furthermore, the deep laminae project substantially to the globus pallidus and the substantia innominata and more weakly to the amygdala and the hypothalamus. Double-labeling experiments reveal that spinal and trigeminal lamina I project densely to distinct and restricted portions of VPL/VPM, Po, and VPPC thalamic nuclei, whereas projections to the PoT appeared to be convergent. In conclusion, these experiments indicate very different patterns of projection for lamina I versus deep laminae (III-X). Lamina I projects strongly onto relay thalamic nuclei and thus would have a primary role in sensory discriminative aspects of pain. The deep laminae project densely to the CL and more diffusely to other forebrain targets, suggesting roles in motor and alertness components of pain.
Collapse
Affiliation(s)
- Caroline Gauriau
- Institut National de la Santé et de la Recherche Médicale, INSERM U-288, F-75013 Paris, France
| | | |
Collapse
|
18
|
Bokor H, Csáki A, Kocsis K, Kiss J. Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat. Eur J Neurosci 2002; 16:1227-39. [PMID: 12405983 DOI: 10.1046/j.1460-9568.2002.02189.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Little is known about the neurochemical features of the nucleus reuniens thalami (RE). In the present study, immunocytochemical experiments were performed to characterize the expression pattern of certain neurochemical markers, e.g. the calcium-binding proteins calbindin and calretinin and several neuropeptides. Colocalization studies revealed that half of the calbindin-positive cells express calretinin, and numerous calretinin-immunoreactive neurons contain calbindin. In contrast, immunolabelling for neuropeptides did not reveal cell bodies in the RE. The RE establishes widespread connections with several limbic structures. To correlate these projection patterns with the neurochemical characteristics of RE neurons, the retrograde tracer [3H]D-aspartate, which is selectively taken up by high affinity uptake sites that use glutamate as neurotransmitter, and the nonselective retrograde tracer wheatgerm agglutinin-conjugated colloidal gold was injected into the stratum lacunosum moleculare of the hippocampal CA1 subfield and into the medial septum. The results provide direct anatomical demonstration of aspartatergic/glutamatergic projection from the RE to the hippocampus and to the medial septum. Nearly all of the projecting neurons proved to be calbindin-immunopositive and many of them expressed calretinin. Both retrograde labelling techniques revealed that neurons projecting to the hippocampus were located in clusters in the dorsolateral part of the RE, whereas neurons projecting to the medial septum were mainly distributed in the ventromedial portion of the nucleus, indicating that different cell populations project to these limbic areas. These results suggest that neurons in the RE are heterogeneous and contribute to the excitatory innervation of the septo-hippocampal system.
Collapse
Affiliation(s)
- Hajnalka Bokor
- Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Department of Human Morphology and Developmental Biology, Semmelweis University, Tüzoltó u. 58, Budapest, Hungary, H-1094
| | | | | | | |
Collapse
|
19
|
Abstract
Cholecystokinin (CCK)-mediated actions on intrathalamic rhythmic activities were examined in an in vitro rat thalamic slice preparation. Single electrical stimuli in the thalamic reticular nucleus (nRt) evoked rhythmic activity (1-15 sec duration) in nRt and the adjacent ventrobasal nucleus (VB). Low CCK concentrations (20-50 nM) suppressed rhythmic oscillations in 43% of experiments but prolonged such activities in the remaining slices. Higher CCK concentrations (100-400 nM) had a predominantly antioscillatory effect. Suppression of oscillations was associated with a relatively large membrane depolarization of nRt neurons that changed their firing mode from phasic (burst) to tonic (single-spike) output. This decreased burst discharge of nRt neurons during CCK application reduced inhibitory drive onto VB neurons from multiple peaked inhibitory postsynaptic currents (IPSCs) to single peaked inhibitory events. We hypothesize that suppression of inhibitory drive onto VB neurons decreases their probability of burst output, which, together with a reduction of nRt burst output, dampens the oscillatory activity. Low CCK concentrations, which produced little or no depolarization of nRt neurons, did not alter the firing mode of the nRt neurons. However, the probability of burst output from nRt neurons in response to subthreshold stimuli was increased in low CCK concentrations, presumably leading to an increase in the number of nRt neurons participating in the rhythmic activity. Our findings suggest that the neuropeptide CCK, by altering the firing characteristics of nRt neurons, has powerful modulatory effects on intrathalamic rhythms; the ultimate action was dependent on CCK concentration and resting state of these cells.
Collapse
|
20
|
Magnusson A, Dahlfors G, Blomqvist A. Differential distribution of calcium-binding proteins in the dorsal column nuclei of rats: a combined immunohistochemical and retrograde tract tracing study. Neuroscience 1996; 73:497-508. [PMID: 8783265 DOI: 10.1016/0306-4522(96)00044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate whether different calcium-binding proteins are present in morphologically and functionally separate cell groups in the dorsal column nuclei of rats. Thalamic-projecting neurons were identified by iontophoretic injection of an intraaxonal tracer substance, choleragenoid, into the ventroposterolateral thalamic nucleus, which was localized by extracellular recordings of the responses to natural peripheral stimulation. The presence of the calcium-binding proteins calbindin and paravalbumin in the projection neurons was detected by a double-labelling immunofluorescent method. The vast majority of the thalamic-projecting neurons contained paravalbumin, but not all parvalbumin-immunoreactive cells were retrogradely labelled. Calbindin-immunoreactive neurons were also found in the dorsal column nuclei, but only a small minority of these neurons projected to the thalamus. These findings are generally consistent with the notion that the different calcium-binding proteins represent functionally separate neuronal populations. Taken together with previous observations that parvalbumin is present in large dorsal root ganglion cells, which project to the dorsal column nuclei, and in the thalamocortical relay cells that receive dorsal column nuclear input, the present findings suggest that parvalbumin is associated with neurons that transmit modality-specific low-threshold mechanoreceptive information from the periphery to the somatosensory cortex. However, the presence of parvalbumin-immunoreactive cells that appeared not to project to the thalamus, as well as the occurrence of thalamic-projecting calbindin-immunoreactive neurons, indicate that parvalbumin and calbindin are present within several, functionally different, groups of neurons in the dorsal column nuclei.
Collapse
Affiliation(s)
- A Magnusson
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | |
Collapse
|
21
|
Veenman CL, Karle EJ, Anderson KD, Reiner A. Thalamostriatal projection neurons in birds utilize LANT6 and neurotensin: a light and electron microscopic double-labeling study. J Chem Neuroanat 1995; 9:1-16. [PMID: 8527034 DOI: 10.1016/0891-0618(95)00057-e] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on its location, connectivity and neurotransmitter content, the dorsal thalamic zone in birds appears to be homologous to the intralaminar, midline, and mediodorsal nuclear complex in the thalamus of mammals. We investigated the neuroactive substances used by thalamostriatal projection neurons of the dorsal thalamic zone in the pigeon. Single-labeling experiments showed that many neurons in the dorsal thalamic zone are immunoreactive for neurotensin and the neurotensin-related hexapeptide, (Lys8,Asn9)NT(8-13) (LANT6). Double-labeling experiments, using the retrograde fluorescent tracer, FluoroGold, combined with fluorescence immunocytochemistry for either LANT6 or neurotensin, showed that neurotensin- and LANT6-containing neurons in the dorsal thalamic zone project to the striatum of the basal ganglia. Immunofluorescence double-labeling experiments showed that neurotensin and LANT6 are often (possibly always) co-expressed in neurons in the dorsal thalamic zone. Electron microscopic immunohistochemical double-labeling showed that LANT6 terminals in the striatum make asymmetric contacts with heads of spines labeled for substance P and heads of spines not labeled for substance P, suggesting that these terminals synapse with both substance P-containing and non-substance P-containing medium spiny striatal projection neurons. These findings indicate that LANT6 and neurotensin may be utilized as neurotransmitters in thalamostriatal projections in birds and raise the possibility that this may also be the case in other amniotes.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163, USA
| | | | | | | |
Collapse
|
22
|
Datiche F, Luppi PH, Cattarelli M. Projection from nucleus reuniens thalami to piriform cortex: a tracing study in the rat. Brain Res Bull 1995; 38:87-92. [PMID: 7552379 DOI: 10.1016/0361-9230(95)00075-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To study the cells of origin and area of termination of the projection from the nucleus reuniens thalami (NRe) to the piriform cortex (PC) we used anterograde and retrograde tracing with the B subunit of the cholera toxin. Tracer injections in the NRe resulted in anterogradely labeled fibers in the dorsolateral part of the PC layers and I and III. Following injections in the PC, retrogradely labeled cells were observed primarily in the dorsal subdivision of the NRe. Moreover, a topographical organization was observed in this subdivision: its anterior part projects to the posterior part of the PC, whereas its middle part projects to the anterior part of the PC. The present findings suggest that the NRe may exert different modulatory influences on the dorsolateral part of both anterior and posterior PC areas. The possible role of the NRe in the olfactory information processing is discussed.
Collapse
Affiliation(s)
- F Datiche
- Physiologie Neurosensorielle, Université Claude Bernard Lyon I/CNRS URA 180, Villeurbanne, France
| | | | | |
Collapse
|
23
|
Arai R, Jacobowitz DM, Deura S. Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Res Bull 1994; 33:595-614. [PMID: 8187003 DOI: 10.1016/0361-9230(94)90086-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The localization of three calcium-binding proteins, calretinin, calbindin-D28k, and parvalbumin, in the rat thalamus was immunohistochemically examined. a) Some thalamic regions revealed cells almost exclusively containing one of the calcium-binding proteins. For example, almost only calretinin-stained cells were found in the central medial and paraventricular nuclei. Calbindin-D28k-stained cells were mostly found in the centrolateral, interanteromedial, anteromedial, and posterior nuclei. Only parvalbumin-positive cells were found in the central part of the reticular nucleus. b) Other regions expressed overlap between the distributions of two cell components composed of different calcium-binding proteins. For example, both calretinin-stained cells and calbindin-D28k-labeled cells were found in the lateroposterior, intermediodorsal, rhomboid, and reuniens nuclei. c) Other regions showed no cells stained for any of the calcium-binding proteins. For example, generally no calcium-binding protein was detected in neurons of the anterodorsal, anteroventral, ventrolateral, ventral posterolateral, ventral posteromedial, or gelatinosus nuclei, or of the central part of the mediodorsal nucleus. These three proteins serve as useful marker for localizing subpopulations of neurons within the thalamus.
Collapse
Affiliation(s)
- R Arai
- Department of Anatomy, Fujita Health University School of Medicine, Aichi, Japan
| | | | | |
Collapse
|