1
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
3
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Hellyer SD, Selwood AI, van Ginkel R, Munday R, Sheard P, Miles CO, Rhodes L, Kerr DS. In vitro labelling of muscle type nicotinic receptors using a fluorophore-conjugated pinnatoxin F derivative. Toxicon 2014; 87:17-25. [DOI: 10.1016/j.toxicon.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
|
5
|
Rudell JB, Ferns MJ. Regulation of muscle acetylcholine receptor turnover by β subunit tyrosine phosphorylation. Dev Neurobiol 2013; 73:399-410. [PMID: 23325468 DOI: 10.1002/dneu.22070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/17/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR β subunit, as agrin and pervandate had no effect on receptor half-life in AChR-β(3F/3F) muscle cells, which have targeted mutations of the β subunit cytoplasmic tyrosines. Moreover, in wild type AChR-β(3Y) muscle cells, we found a linear relationship between average receptor half-life and the percentage of AChR with phosphorylated β subunit, with half-lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half-life in AChR-β(3Y) myotubes in the absence of clustering, and agrin failed to increase receptor half-life in AChR-β(3F/3F) myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of βY390 as mutation of this residue abolished β subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR-β(3Y) but not AChR-β(3F/3F) myotubes. Together, these findings identify an unexpected role for agrin-induced phosphorylation of β(Y390) in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half-life of AChR at adult NMJs.
Collapse
Affiliation(s)
- John B Rudell
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
6
|
Barik A, Xiong WC, Mei L. MuSK: A Kinase Critical for the Formation and Maintenance of the Neuromuscular Junction. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-61779-824-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
7
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.
Collapse
|
8
|
Striatal-enriched protein tyrosine phosphatase regulates dopaminergic neuronal development via extracellular signal-regulated kinase signaling. Exp Neurol 2008; 214:69-77. [DOI: 10.1016/j.expneurol.2008.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 07/04/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022]
|
9
|
Friese MB, Blagden CS, Burden SJ. Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation. Development 2007; 134:4167-76. [PMID: 17959719 DOI: 10.1242/dev.010702] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrin activates MuSK, a receptor tyrosine kinase expressed in skeletal muscle, leading to tyrosine phosphorylation of the acetylcholine receptor (AChR) beta-subunit and clustering of AChRs. The importance of AChR beta-subunit tyrosine phosphorylation in clustering AChRs and regulating synaptic differentiation is poorly understood. We generated mice with targeted mutations in the three intracellular tyrosines of the AChR beta-subunit (AChR-beta(3F/3F)). Mice lacking AChR beta-subunit tyrosine phosphorylation thrive postnatally and have no overt behavioral defects, indicating that AChR beta-subunit tyrosine phosphorylation is not essential for the formation of neuromuscular synapses. Nonetheless, the size of synapses and the density of synaptic AChRs are reduced in AChR- beta(3F/3F) mutant mice. Moreover, synapses are structurally simplified and the organization of postjunctional folds is aberrant in mice lacking tyrosine phosphorylation of the AChR beta-subunit. Furthermore, mutant AChRs cluster poorly in response to agrin and are readily extracted from the cell surface of cultured myotubes by non-ionic detergent. These data indicate that tyrosine phosphorylation of the AChR beta-subunit has an important role in organizing AChRs and regulating synaptic differentiation.
Collapse
Affiliation(s)
- Matthew B Friese
- Molecular Neurobiology Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
10
|
Changeux JP, Devillers-Thiéry A, Galzi JL, Revah F. The acetylcholine receptor: a model of an allosteric membrane protein mediating intercellular communication. CIBA FOUNDATION SYMPOSIUM 2007; 164:66-89; discussion 87-97. [PMID: 1395936 DOI: 10.1002/9780470514207.ch6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past 20 years the nicotinic acetylcholine receptor has become the prototype of a superfamily of ligand-gated ion channels. As a single macromolecular entity of M(r) about 300,000, the receptor protein mediates, altogether, the activation and the desensitization of the associated ion channel and the regulation of these processes by extracellular and intracellular signals. The notion is discussed that the acetylcholine receptor is a membrane-bound allosteric protein which possesses several categories of specific sites for neurotransmitters and for regulatory ligands, and undergoes conformational transitions which link these diverse sites together. At this elementary molecular level, interactions between signalling pathways may be mediated by membrane-bound allosteric receptors and/or by other categories of cytoplasmic allosteric proteins.
Collapse
Affiliation(s)
- J P Changeux
- Institut Pasteur, Neurobiologie Moléculaire, Bâtiment des Biotechnologies, Paris, France
| | | | | | | |
Collapse
|
11
|
Madhavan R, Peng HB. Molecular regulation of postsynaptic differentiation at the neuromuscular junction. IUBMB Life 2005; 57:719-30. [PMID: 16511964 DOI: 10.1080/15216540500338739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
12
|
Kummer TT, Misgeld T, Lichtman JW, Sanes JR. Nerve-independent formation of a topologically complex postsynaptic apparatus. ACTA ACUST UNITED AC 2004; 164:1077-87. [PMID: 15037598 PMCID: PMC2172060 DOI: 10.1083/jcb.200401115] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As the mammalian neuromuscular junction matures, its acetylcholine receptor (AChR)–rich postsynaptic apparatus is transformed from an oval plaque into a pretzel-shaped array of branches that precisely mirrors the branching pattern of the motor nerve terminal. Although the nerve has been believed to direct postsynaptic maturation, we report here that myotubes cultured aneurally on matrix-coated substrates form elaborately branched AChR-rich domains remarkably similar to those seen in vivo. These domains share several characteristics with the mature postsynaptic apparatus, including colocalization of multiple postsynaptic markers, clustering of subjacent myonuclei, and dependence on the muscle-specific kinase and rapsyn for their formation. Time-lapse imaging showed that branched structures arise from plaques by formation and fusion of AChR-poor perforations through a series of steps mirroring that seen in vivo. Multiple fluorophore imaging showed that growth occurs by circumferential, asymmetric addition of AChRs. Analysis in vivo revealed similar patterns of AChR addition during normal development. These results reveal the sequence of steps by which a topologically complex domain forms on a cell and suggest an unexpected nerve-independent role for the postsynaptic cell in generating this topological complexity.
Collapse
Affiliation(s)
- Terrance T Kummer
- Dept. of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
13
|
Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003; 147:1-46. [PMID: 12783266 DOI: 10.1007/s10254-003-0005-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and can be divided into two groups: muscle receptors, which are found at the skeletal neuromuscular junction where they mediate neuromuscular transmission, and neuronal receptors, which are found throughout the peripheral and central nervous system where they are involved in fast synaptic transmission. nAChRs are pentameric structures that are made up of combinations of individual subunits. Twelve neuronal nAChR subunits have been described, alpha2-alpha10 and beta2-beta4; these are differentially expressed throughout the nervous system and combine to form nAChRs with a wide range of physiological and pharmacological profiles. The nAChR has been proposed as a model of an allosteric protein in which effects arising from the binding of a ligand to a site on the protein can lead to changes in another part of the molecule. A great deal is known about the structure of the pentameric receptor. The extracellular domain contains binding sites for numerous ligands, which alter receptor behavior through allosteric mechanisms. Functional studies have revealed that nAChRs contribute to the control of resting membrane potential, modulation of synaptic transmission and mediation of fast excitatory transmission. To date, ten genes have been identified in the human genome coding for the nAChRs. nAChRs have been demonstrated to be involved in cognitive processes such as learning and memory and control of movement in normal subjects. Recent data from knockout animals has extended the understanding of nAChR function. Dysfunction of nAChR has been linked to a number of human diseases such as schizophrenia, Alzheimer's and Parkinson's diseases. nAChRs also play a significant role in nicotine addiction, which is a major public health concern. A genetically transmissible epilepsy, ADNFLE, has been associated with specific mutations in the gene coding for the alpha4 or beta2 subunits, which leads to altered receptor properties.
Collapse
Affiliation(s)
- R C Hogg
- Department of Physiology, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
14
|
Sava A, Barisone I, Di Mauro D, Fumagalli G, Sala C. Modulation of nicotinic acetylcholine receptor turnover by tyrosine phosphorylation in rat myotubes. Neurosci Lett 2001; 313:37-40. [PMID: 11684334 DOI: 10.1016/s0304-3940(01)02244-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The muscle nicotinic acetylcholine receptor (AChR) turns over at different rates depending on stage of synaptogenesis and innervation. Tyrosine phosphorylation modulates desensitization, interaction with cytoskeleton and lateral mobility in the membrane of AChR. To determine whether tyrosine phosphorylation also modulates the turnover of AChR, myotubes in vitro were exposed to the tyrosine phosphatase inhibitor pervanadate. Our data indicate that a transient increase of phosphotyrosine levels stabilized a fraction of AChRs. The effects were limited to the non-epsilon subunit-containing AChRs already present in the membrane. Tyrosine phosphorylation of the receptor occurred on the beta subunit, was transient and stable molecules were not selectively tyrosine phosphorylated. The data indicate that modulation of phosphotyrosine levels in muscle cells provides signals to control AChR metabolic stability.
Collapse
Affiliation(s)
- A Sava
- Department of Medicine & Public Health, Section of Pharmacology, School of Medicine, University of Verona, Policlinico Borgo Roma, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
15
|
Mittaud P, Marangi PA, Erb-Vögtli S, Fuhrer C. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering. J Biol Chem 2001; 276:14505-13. [PMID: 11278328 DOI: 10.1074/jbc.m007024200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.
Collapse
Affiliation(s)
- P Mittaud
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
16
|
Borges LS, Ferns M. Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J Cell Biol 2001; 153:1-12. [PMID: 11285269 PMCID: PMC2185523 DOI: 10.1083/jcb.153.1.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Accepted: 01/31/2001] [Indexed: 12/19/2022] Open
Abstract
At the developing neuromuscular junction, a motoneuron-derived factor called agrin signals through the muscle-specific kinase receptor to induce postsynaptic aggregation of the acetylcholine receptor (AChR). The agrin signaling pathway involves tyrosine phosphorylation of the AChR beta subunit, and we have tested its role in receptor localization by expressing tagged, tyrosine-minus forms of the beta subunit in mouse Sol8 myotubes. We find that agrin-induced phosphorylation of the beta subunit occurs only on cell surface AChR, and that AChR-containing tyrosine-minus beta subunit is targeted normally to the plasma membrane. Surface AChR that is tyrosine phosphorylated is less detergent extractable than nonphosphorylated AChR, indicating that it is preferentially linked to the cytoskeleton. Consistent with this, we find that agrin treatment reduces the detergent extractability of AChR that contains tagged wild-type beta subunit but not tyrosine-minus beta subunit. In addition, agrin-induced clustering of AChR containing tyrosine-minus beta subunit is reduced in comparison to wild-type receptor. Thus, we find that agrin-induced phosphorylation of AChR beta subunit regulates cytoskeletal anchoring and contributes to the clustering of the AChR, and this is likely to play an important role in the postsynaptic localization of the receptor at the developing synapse.
Collapse
Affiliation(s)
- L S Borges
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec H3A 2T5, Canada
| | | |
Collapse
|
17
|
Nerve terminals form but fail to mature when postsynaptic differentiation is blocked: in vivo analysis using mammalian nerve-muscle chimeras. J Neurosci 2000. [PMID: 10934257 DOI: 10.1523/jneurosci.20-16-06077.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To better understand the role of the postsynaptic cell in the differentiation of presynaptic terminals, we transplanted muscles that lacked postsynaptic differentiation from mutant mice into normal adult immunocompatible hosts and attached the host nerve to the grafts. Host motor axons innervated wild-type grafted muscle fibers and established normal appearing chimeric neuromuscular junctions. By repeated in vivo imaging, we found that these synapses were stably maintained. Results were different when nerves entered transplanted muscles derived from mice lacking muscle-specific receptor tyrosine kinase (MuSK) or rapsyn, muscle-specific components required for postsynaptic differentiation. Initial steps in presynaptic differentiation (e.g., formation of rudimentary arbors and vesicle clustering at terminals) occurred when wild-type neurites contacted MuSK- or rapsyn deficient muscle fibers, either in vivo or in vitro. However, wild-type terminals contacting MuSK or rapsyn mutant muscle fibers were unable to mature, even when the chimeras were maintained for up to 7 months. Moreover, in contrast to the stability of wild-type synapses, wild-type nerve terminals in mutant muscles underwent continuous remodeling. These results suggest that postsynaptic cells supply two types of signals to motor axons: ones that initiate presynaptic differentiation and others that stabilize the immature contacts so that they can mature. Normal postsynaptic differentiation appears to be dispensable for initial stages of presynaptic differentiation but required for presynaptic maturation.
Collapse
|
18
|
The Dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase STEP via a PKA-dependent pathway. J Neurosci 2000. [PMID: 10908600 DOI: 10.1523/jneurosci.20-15-05630.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The striatal-enriched protein tyrosine phosphatase (STEP) family is expressed within dopaminoceptive neurons of the CNS and is particularly enriched within the basal ganglia and related structures. Alternative splicing produces several isoforms that are found in a number of subcellular compartments, including postsynaptic densities of medium spiny neurons. The variants include STEP(61), a membrane-associated protein, and STEP(46), a cytosolic protein. The C terminals of these two isoforms are identical, whereas the N-terminal domain of STEP(61) contains a novel 172 amino acid sequence that includes several structural motifs not present in STEP(46). Amino acid sequencing revealed a number of potential phosphorylation sites in both STEP isoforms. Therefore, we investigated the role of phosphorylation in regulating STEP activity. Both STEP(61) and STEP(46) are phosphorylated on seryl residues by a cAMP-dependent protein kinase (PKA)-mediated pathway in striatal homogenates. The specific residues phosphorylated in STEP(61) were identified by site-directed mutagenesis and tryptic phosphopeptide mapping as Ser160 and Ser221, whereas the major site of phosphorylation in STEP(46) was shown to be Ser49. Ser160 is located within the unique N terminal of STEP(61). Ser221 and Ser49 are equivalent residues present in STEP(61) and STEP(46), respectively, and are located at the center of the kinase-interacting motif that has been implicated in protein-protein interactions. Phosphorylation at this site decreases the activity of STEP in vitro by reducing its affinity for its substrate. In vivo studies using striatal slices demonstrated that the neurotransmitter dopamine leads to the phosphorylation of STEP via activation of D1 receptors and PKA.
Collapse
|
19
|
Nghiêm HO, Bettendorff L, Changeux JP. Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor. FASEB J 2000; 14:543-54. [PMID: 10698970 DOI: 10.1096/fasebj.14.3.543] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
43K rapsyn is a peripheral protein specifically associated with the nicotinic acetylcholine receptor (nAChR) present in the postsynaptic membrane of the neuromuscular junction and of the electrocyte, and is essential for its clustering. Here, we demonstrate a novel specific phosphorylation of 43K rapsyn by endogenous protein kinase(s) present in Torpedo electrocyte nAChR-rich membranes and identify thiamine triphosphate (TTP) as the phosphate donor. In the presence of Mg(2+) and [gamma-(32)P]-TTP, 43K rapsyn is specifically phosphorylated with a (32)P-half-maximal incorporation at approximately 5-25 microM TTP. The presence of TTP in the cytosol and of 43K rapsyn at the cytoplasmic face of the postsynaptic membrane, together with TTP-dependent phosphorylation of 43K rapsyn without added exokinases, suggests that TTP-dependent-43K-rapsyn phosphorylation may occur in vivo. In addition, phosphoamino acid and chemical stability analysis suggests that the residues phosphorylated are predominantly histidines. Inhibition of phosphorylation by Zn(2+) suggests a possible control of 43K rapsyn phosphorylation state by its zinc finger domain. Endogenous kinase(s) present in rodent brain membranes can also use [gamma-(32)P]-TTP as a phosphodonor. The use of a phosphodonor (TTP) belonging to the thiamine family but not to the classical (ATP, GTP) purine triphosphate family represents a novel phosphorylation pathway possibly important for synaptic proteins.
Collapse
Affiliation(s)
- H O Nghiêm
- CNRS UA D-1284, Neurobiologie Moléculaire, Institut Pasteur, 75724 Paris Cedex, France.
| | | | | |
Collapse
|
20
|
Hasegawa S, Morioka M, Goto S, Korematsu K, Okamura A, Yano S, Kai, Y, Hamada JI, Ushio Y. Expression of neuron specific phosphatase, striatal enriched phosphatase (STEP) in reactive astrocytes after transient forebrain ischemia. Glia 2000. [DOI: 10.1002/(sici)1098-1136(20000215)29:4<316::aid-glia3>3.0.co;2-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
The myristoylated protein rapsyn is cotargeted with the nicotinic acetylcholine receptor to the postsynaptic membrane via the exocytic pathway. J Neurosci 2000. [PMID: 10632581 DOI: 10.1523/jneurosci.20-02-00521.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapsyn, a 43 kDa protein required to cluster nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction, is tightly associated with the postsynaptic membrane via an N-terminal myristoylated site. Recent studies have shown that some acylated proteins associate with the exocytic pathway to become targeted to their correct destination. In this work, we used Torpedo electrocyte to investigate the intracellular routing of rapsyn compared to those of AChR and Na,K-ATPase, the respective components of the innervated and noninnervated membranes. We previously demonstrated that these latter two proteins are sorted and targeted to plasma membrane via distinct populations of post-Golgi vesicles (). Biochemical and immunoelectron microscopy analyses of various populations of post-Golgi vesicles immunopurified with magnetic beads led us to identify post-Golgi transport vesicles containing both rapsyn and AChR. These data suggest that rapsyn, as for AChR, specifically follows the exocytic pathway. Furthermore, immunogold-labeling experiments provided in situ evidence that AChR and rapsyn are cotransported in the same post-Golgi vesicles. Taken together, our observations suggest that rapsyn and AChR are cotargeted to the postsynaptic membrane.
Collapse
|
22
|
Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2. J Neurosci 1999. [PMID: 10531446 DOI: 10.1523/jneurosci.19-21-09426.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapse-specific expression of the nicotinic acetylcholine receptor (AChR) is believed to be mediated by neuregulin, an epidermal growth factor-like trophic factor released by somatic motoneurons at the neuromuscular junction (NMJ). Neuregulin stimulates ErbB2, ErbB3, and ErbB4, members of the ErbB family of receptor tyrosine kinases. SHP2 is a cytoplasmic protein tyrosine phosphatase containing two Src homology 2 domains near its N terminus, and has been shown to be a positive mediator of mitogenic responses to various growth factors. We found that SHP2 interacted with ErbB2 and ErbB3 after neuregulin stimulation of muscle cells. Expression of SHP2 in C2C12 mouse muscle cells attenuated the neuregulin-induced expression of an AChR epsilon-promoter reporter gene, whereas a catalytically inactive SHP2 mutant or a mutant lacking the N-terminal Src homology 2 (SH2) domain enhanced reporter expression, suggesting that SHP2 negatively regulates the neuregulin signaling pathway. In fibroblast cells that express a mutant SHP2 with a targeted deletion of the N-terminal SH2 domain, neuregulin-mediated activation of the Ras/Raf/extracellular signal-regulated kinase cascade was enhanced. Furthermore, we found that SHP2 immunoreactivity colocalized with the staining of alpha-bungarotoxin, a marker of the NMJ. These results demonstrate a negative role of SHP2 in the neuregulin signal that leads to AChR gene expression at the NMJ.
Collapse
|
23
|
Mohamed AS, Swope SL. Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src class protein-tyrosine kinases. Activation by rapsyn. J Biol Chem 1999; 274:20529-39. [PMID: 10400682 DOI: 10.1074/jbc.274.29.20529] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src class protein-tyrosine kinases bind to and phosphorylate the nicotinic acetylcholine receptor of skeletal muscle. This study provided evidence for the functional importance of Src kinases in regulating the nicotinic acetylcholine receptor at the neuromuscular junction. Three Src class kinases, Fyn, Fyk, and Src, each formed a complex with the endplate-specific cytoskeletal protein rapsyn. In addition, cellular phosphorylation by each kinase was stimulated by rapsyn in heterologous transfected cells. Several lines of evidence supported rapsyn as a substrate for Src kinases. Most importantly, rapsyn regulation of Fyn, Fyk, and Src resulted in phosphorylation of the nicotinic acetylcholine receptor beta and delta subunits and anchoring of the receptor to the cytoskeleton. Both nicotinic acetylcholine receptor phosphorylation and cytoskeletal anchoring were blocked by the Src kinase-selective inhibitor herbimycin A. Rapsyn alone also induced a modest increase in nicotinic acetylcholine receptor phosphorylation and cytoskeletal translocation. However, inhibition by herbimycin A and a catalytically inactive dominant negative Src demonstrated that the effects of rapsyn were mediated by endogenous Src kinases. These data support the importance of Src class kinases for stabilization of the nicotinic acetylcholine receptor at the endplate during synaptic differentiation at the neuromuscular junction.
Collapse
Affiliation(s)
- A S Mohamed
- Department of Neurology, Division of Neuroscience, Georgetown Institute for Cognitive and Computational Sciences, Georgetown University Medical Center, Washington, D.C. 20007-2197, USA
| | | |
Collapse
|
24
|
Swope SL, Moss SJ, Raymond LA, Huganir RL. Regulation of ligand-gated ion channels by protein phosphorylation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:49-78. [PMID: 10218114 DOI: 10.1016/s1040-7952(99)80005-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The studies discussed in this review demonstrate that phosphorylation is an important mechanism for the regulation of ligand-gated ion channels. Structurally, ligand-gated ion channels are heteromeric proteins comprised of homologous subunits. For both the AChR and the GABA(A) receptor, each subunit has a large extracellular N-terminal domain, four transmembrane domains, a large intracellular loop between transmembrane domains M3 and M4, and an extracellular C-terminal domain (Fig. 1B). All the phosphorylation sites on these receptors have been mapped to the major intracellular loop between M3 and M4 (Table 1). In contrast, glutamate receptors appear to have a very large extracellular N-terminal domain, one membrane hairpin loop, three transmembrane domains, a large extracellular loop between transmembrane domains M3 and M4, and an intracellular C-terminal domain (Fig. 1C). Most phosphorylation sites on glutamate receptors have been shown to be on the intracellular C-terminal domain, although some have been suggested to be on the putative extracellular loop between M3 and M4 (Table 1). A variety of extracellular factors and intracellular signal transduction cascades are involved in regulating phosphorylation of these ligand-gated ion channels (Fig. 2). Once again, the AChR at the neuromuscular junction is the most fully understood system. Phosphorylation of the AChR by PKA is stimulated synaptically by the neuropeptide CGRP and in an autocrine fashion by adenosine released from the muscle in response to acetylcholine. In addition, acetylcholine, via calcium influx through the AChR, appears to activate calcium-dependent kinases including PKC to stimulate serine phosphorylation of the receptor. Presently, agrin is the only extracellular factor known to stimulate phosphorylation of the AChR on tyrosine residues. For glutamate receptors, non-NMDA receptor phosphorylation by PKA is stimulated by dopamine, while NMDA receptor phosphorylation by PKA and PKC can be induced via the activation of beta-adrenergic receptors, and metabotropic glutamate or opioid receptors, respectively. In addition, Ca2+ influx through the NMDA receptor has been shown to activate PKC. CaMKII, and calcineurin, resulting in phosphorylation of AMPA receptors (by CaMKII) and inactivation of NMDA receptors (at least in part through calcineurin). In contrast to the AChR and glutamate receptors, no information is presently available regarding the identities of the extracellular factors and intracellular signal transduction cascades that regulate phosphorylation of the GABA(A) receptor. Surely, future studies will be aimed at further clarifying the molecular mechanisms by which the central receptors are regulated. The presently understood functional effects of ligand-gated ion channel phosphorylation are diverse. At the neuromuscular junction, a regulation of the AChR desensitization rate by both serine and tyrosine phosphorylation has been demonstrated. In addition, tyrosine phosphorylation of the AChR or other synaptic components appears to play a role in AChR clustering during synaptogenesis. For the GABA(A) receptor, the data are complex. Both activation and inhibition of GABA(A) receptor currents as a result of PKA and PKC phosphorylation have been reported, while phosphorylation by PTK enhances function. The predominant effect of glutamate receptor phosphorylation by a variety of kinases is a potentiation of the peak current response. However, PKC also modulates clustering of NMDA receptors. This complexity in the regulation of ligand-gated ion channels by phosphorylation provides diverse mechanisms for mediating synaptic plasticity. In fact, accumulating evidence supports the involvement of protein phosphorylation and dephosphorylation of AMPA receptors in LTP and LTD respectively. There has been a dramatic increase in our understanding of the nature by which phosphorylation regulates ligand-gated ion channels. However, many questions remain unanswered. (AB
Collapse
Affiliation(s)
- S L Swope
- Department of Neurology, Georgetown Institute for Cognitive and Computational Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
25
|
Balasubramanian S, Huganir RL. Characterization of phosphotyrosine containing proteins at the cholinergic synapse. FEBS Lett 1999; 446:95-102. [PMID: 10100622 DOI: 10.1016/s0014-5793(99)00171-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tyrosine phosphorylation has been associated with several aspects of the regulation of cholinergic synaptic function, including nicotinic acetylcholine receptor (AChR) desensitization as well as the synthesis and clustering of synaptic components. While some progress has been made in elucidating the molecular events initiating such signals, the downstream targets of these tyrosine kinase pathways have yet to be characterized. In this paper we have used molecular cloning techniques to identify proteins which are tyrosine phosphorylated at the cholinergic synapse. Phosphotyrosine containing proteins (PYCPs) were isolated from the electric organ of Torpedo californica by anti-phosphotyrosine immunoaffinity chromatography. Peptide sequencing and expression cloning then identified the isolated proteins. The proteins identified included heat shock protein 90, type III intermediate filament from Torpedo electric organ, alpha-fodrin, beta-tubulin, actin and rapsyn. These tyrosine phosphorylated proteins may play a role in the regulation of synaptic function by tyrosine kinases.
Collapse
Affiliation(s)
- S Balasubramanian
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
26
|
Camus G, Ludosky MA, Bignami F, Marchand S, Cartaud J, Cartaud A. Developmental regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor in Torpedo electrocyte. Mol Cell Neurosci 1999; 13:69-78. [PMID: 10049532 DOI: 10.1006/mcne.1998.0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tyrosine phosphorylation is thought to play a critical role in the clustering of acetylcholine receptors (AChR) at the developing neuromuscular junction. Yet, in vitro approaches have led to conflicting conclusions regarding the function of tyrosine phosphorylation of AChR beta subunit in AChR clustering. In this work, we followed in situ the time course of tyrosine phosphorylation of AChR in developing Torpedo electrocyte. We observed that tyrosine phosphorylation of the AChR beta and delta subunits occurs at a late stage of embryonic development after the accumulation of AChRs and rapsyn in the membrane and the onset of innervation. Interestingly, in the mature postsynaptic membrane, we observed two populations of AChR differing both in their phosphotyrosine content and distribution. Our data are consistent with the notion that tyrosine phosphorylation of the AChR is related to downstream events in the pathway regulating AChR accumulation rather than to initial clustering events.
Collapse
Affiliation(s)
- G Camus
- Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques Monod, UMR 7592, CNRS et Universités Paris VI et Paris VII, 2, Place Jussieu, Paris Cédex 05, 75251, France
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Ion channel defects produce a clinically diverse set of disorders that range from cystic fibrosis and some forms of migraine to renal tubular defects and episodic ataxias. This review discusses diseases related to impaired function of the skeletal muscle acetylcholine receptor and calcium channels of the motor nerve terminal. Myasthenia gravis is an autoimmune disease caused by antibodies directed toward the skeletal muscle acetylcholine receptor that compromise neuromuscular transmission. Congenital myasthenias are genetic disorders, a subset of which are caused by mutations of the acetylcholine receptor. Lambert-Eaton myasthenic syndrome is an immune disorder characterized by impaired synaptic vesicle release likely related to a defect of calcium influx. The disorders will illustrate new insights into synaptic transmission and ion channel structure that are relevant for all ion channel disorders.
Collapse
Affiliation(s)
- K Boonyapisit
- Department of Neurology, Case Western Reserve University School of Medicine, Department of Veterans Affairs Medical Center in Cleveland, University Hospitals of Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
28
|
Mou T, Kraas JR, Fung ET, Swope SL. Identification of a dynein molecular motor component in Torpedo electroplax; binding and phosphorylation of Tctex-1 by Fyn. FEBS Lett 1998; 435:275-81. [PMID: 9762924 DOI: 10.1016/s0014-5793(98)01069-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microtubule protein Tctex-1 was cloned from Torpedo electroplax, a biochemical model of the neuromuscular junction, using the unique domain of Fyn in the yeast two hybrid system. Binding of Tctex-1 and Fyn also occurred in vitro. Torpedo Tctex-1 was contained within the molecular motor protein dynein. A Src class kinase was also complexed with dynein. Tctex-1 was enriched in electric organ vs. skeletal muscle, was present in the postsynaptic membrane, and coprecipitated with the acetylcholine receptor. The sequence of Tctex-1 contained a tyrosine phosphorylation motif and Tctex-1 could be phosphorylated by Fyn in vitro and in vivo. These data demonstrated that Tctex-1-containing dynein is a cytoskeletal element at the acetylcholine receptor-enriched postsynaptic membrane and suggested that Tctex-1 may be a substrate for Fyn.
Collapse
Affiliation(s)
- T Mou
- Department of Neurology, Georgetown Institute for Cognitive and Computational Sciences, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
29
|
Balasubramanian S, Fung ET, Huganir RL. Characterization of the tyrosine phosphorylation and distribution of dystrobrevin isoforms. FEBS Lett 1998; 432:133-40. [PMID: 9720911 DOI: 10.1016/s0014-5793(98)00804-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dystrobrevin, a member of the dystrophin family of proteins, was initially identified as a major tyrosine phosphorylated synaptic protein in the electric organ of Torpedo californica. In this paper, we show that the major sites of tyrosine phosphorylation of Torpedo dystrobrevin are within its C-terminus, on Tyr-693 and Tyr-710. Cloning of the mammalian homologue of dystrobrevin has recently shown that this phosphotyrosine containing tail, or PYCT, is subject to alternative splicing. To compare the expression and distribution of PYCT- and PYCT+ splice variants, we generated antibodies against different regions of dystrobrevin. Here we show that the PYCT- isoform of 62 kDa is expressed at high levels in all tissues examined. In contrast, PYCT+ isoforms are expressed primarily in brain and muscle, where they are concentrated at synapses. Moreover, PYCT+ isoforms associate more tightly with the membrane and with syntrophin, another synaptically enriched protein. These results suggest that PYCT+ isoforms of dystrobrevin are specialized components of the dystroglycan complex which render the complex sensitive to regulation by tyrosine kinases.
Collapse
Affiliation(s)
- S Balasubramanian
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Department of Neuroscience, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
30
|
Bowen DC, Park JS, Bodine S, Stark JL, Valenzuela DM, Stitt TN, Yancopoulos GD, Lindsay RM, Glass DJ, DiStefano PS. Localization and regulation of MuSK at the neuromuscular junction. Dev Biol 1998; 199:309-19. [PMID: 9698449 DOI: 10.1006/dbio.1998.8936] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor tyrosine kinase, MuSK, is required for the formation of the neuromuscular junction (NMJ) where MuSK becomes phosphorylated when exposed to neuronally synthesized isoforms of agrin. To understand better the mechanisms by which MuSK mediates the formation of the NMJ, we have examined how MuSK expression is regulated during development in the embryo, by neuromuscular injury in the adult and by agrin in vitro. Here we show that MuSK is associated with the earliest observable AChR clusters at the developing motor endplate and that MuSK and AChRs codistribute throughout the development of the NMJ. These two proteins are also coordinately regulated on the surfaces of cultured myotubes where MuSK and AChRs colocalize both in spontaneous and agrin-induced clusters. While MuSK is normally restricted to the motor endplate in adult muscle, denervation results in its extrajunctional expression, although a discernible concentration of MuSK remains localized to the motor endplate even 14 days after denervation. Extrajunctional MuSK is first apparent 3 days after denervation and is sharply reduced upon reinnervation. Muscle paralysis also markedly alters the expression of MuSK in adult muscle and results in increased expression of MuSK as well as increased transcription of MuSK mRNA by extrasynaptic myonuclei. Together, these findings demonstrate that MuSK expression is highly regulated by innervation, muscle activity, and agrin, while the distribution of MuSK is precisely coordinated with that of the AChR.
Collapse
Affiliation(s)
- D C Bowen
- Regeneron Pharmaceuticals, Tarrytown, New York 10591, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Axon withdrawal during synapse elimination at the neuromuscular junction is accompanied by disassembly of the postsynaptic specialization and withdrawal of Schwann cell processes. J Neurosci 1998. [PMID: 9634561 DOI: 10.1523/jneurosci.18-13-04953.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve terminal withdrawal is accompanied by a loss of acetylcholine receptors (AChRs) at corresponding postsynaptic sites during the process of synapse elimination at developing () and reinnervated adult () neuromuscular junctions. Aside from AChR and nerve terminal loss, however, the molecular and cellular alterations that occur at sites of elimination are unknown. To gain a better understanding of the cascade of events that leads to the disassembly of synaptic sites during the synapse elimination process, we surveyed the distribution of molecular elements of the postsynaptic specialization, the basal lamina, and supporting Schwann cells during the process of synapse elimination that occurs after reinnervation. In addition, quantitative techniques were used to determine the temporal order of disappearance of molecules that were lost relative to the loss of postsynaptic AChRs. We found that the dismantling of the postsynaptic specialization was inhomogeneous, with evidence of rapid dissolution of some aspects of the postsynaptic apparatus and slower loss of others. We also observed a loss of Schwann cell processes from sites of synapse elimination, with a time course similar to that seen for nerve terminal retraction. In contrast, all of the extracellular markers that we examined were lost slowly from sites of synapse loss. We therefore conclude that the synapse elimination process is synapse-wide, removing not only nerve terminals but also Schwann cells and many aspects of the postsynaptic apparatus. The disassembly occurs in a stereotyped sequence with some synaptic elements appearing much more stable than others.
Collapse
|
32
|
Colledge M, Froehner SC. Interaction between the nicotinic acetylcholine receptor and Grb2. Implications for signaling at the neuromuscular junction. Ann N Y Acad Sci 1998; 841:17-27. [PMID: 9668219 DOI: 10.1111/j.1749-6632.1998.tb10907.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Colledge
- Department of Physiology, University of North Carolina at Chapel Hill 27599-7545, USA
| | | |
Collapse
|
33
|
Kimura I. Calcium-dependent desensitizing function of the postsynaptic neuronal-type nicotinic acetylcholine receptors at the neuromuscular junction. Pharmacol Ther 1998; 77:183-202. [PMID: 9576627 DOI: 10.1016/s0163-7258(97)00113-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several subunits that commonly have been regarded as neuronal-type nicotinic acetylcholine receptor (nAChR) subtypes, have been found in the postjunctional endplate membrane of adult skeletal muscle fibres. The postsynaptic function of these neuronal-type nAChR subtypes at the neuromuscular junction has been investigated by using aequorin luminescence and fluorescence confocal imaging. A biphasic elevation of intracellular Ca2+ is elicited by prolonged nicotinic action at the mouse muscle endplates. The fast and slow Ca2+ components are operated by a postsynaptic muscle- and colocalized neuronal-type nAChR, respectively. Neuromuscular functions may be regulated by a dual nAChR system to maintain the normal postsynaptic excitability. Certain neuronal-type nAChR may be endowed with the same functional role in the central nervous system also.
Collapse
Affiliation(s)
- I Kimura
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Sugitani, Japan
| |
Collapse
|
34
|
Abstract
The phosphorylation of proteins on tyrosine residues, initially believed to be primarily involved in cell growth and differentiation, is now recognized as having a critical role in regulating the function of mature cells. The brain exhibits one of the highest levels of tyrosine kinase activity in the adult animal and the synaptic region is particularly rich in tyrosine kinases and tyrosine phosphorylated proteins. Recent studies have described the effects of tyrosine phosphorylation on the activities of a number of proteins which are potentially involved in the regulation of synaptic function. Furthermore, it is becoming apparent that tyrosine phosphorylation is involved in the modification of synaptic activity, such as occurs during depolarization, the induction of long-term potentiation or long-term depression, and ischemia. Changes in the activities of tyrosine kinases and/or protein tyrosine phosphatases which are associated with synaptic structures may result in altered tyrosine phosphorylation of proteins located at the synapse leading to both short-term and long-lasting changes in synaptic and neuronal function.
Collapse
Affiliation(s)
- J W Gurd
- Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada.
| |
Collapse
|
35
|
Fadool DA, Holmes TC, Berman K, Dagan D, Levitan IB. Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel. J Neurophysiol 1997; 78:1563-73. [PMID: 9310443 DOI: 10.1152/jn.1997.78.3.1563] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The modulation of the Kv1.3 potassium channel by tyrosine phosphorylation was studied. Kv1.3 was expressed in human embryonic kidney (HEK 293) cells, and its activity was measured by cell-attached patch recording. The amplitude of the characteristic C-type inactivating Kv1.3 current is reduced by >95%, in all cells tested, when the channel is co-expressed with the constitutively active nonreceptor tyrosine kinase, v-Src. This v-Src-induced suppression of current is accompanied by a robust tyrosine phosphorylation of the channel protein. No suppression of current or tyrosine phosphorylation of Kv1.3 protein is observed when the channel is co-expressed with R385A v-Src, a mutant with severely impaired tyrosine kinase activity. v-Src-induced suppression of Kv1.3 current is relieved by pretreatment of the HEK 293 cells with two structurally different tyrosine kinase inhibitors, herbimycin A and genistein. Furthermore, Kv1.3 channel protein is processed properly and targeted to the plasma membrane in v-Src cotransfected cells, as demonstrated by confocal microscopy using an antibody directed against an extracellular epitope on the channel. Thus v-Src-induced suppression of Kv1.3 current is not mediated through decreased channel protein expression or interference with its targeting to the plasma membrane. v-Src co-expression also slows the C-type inactivation and speeds the deactivation of the residual Kv1.3 current. Mutational analysis demonstrates that each of these modulatory changes, in current amplitude and kinetics, requires the phosphorylation of Kv1.3 at multiple tyrosine residues. Furthermore, a different combination of tyrosine residues is involved in each of the modulatory changes. These results emphasize the complexity of signal integration at the level of a single ion channel.
Collapse
Affiliation(s)
- D A Fadool
- Department of Biochemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Tyrosine phosphorylation of the nicotinic acetylcholine receptor (AChR) is associated with an altered rate of receptor desensitization and also may play a role in agrin-induced receptor clustering. We have demonstrated a previously unsuspected interaction between Torpedo AChR and the adaptor protein Grb2. The binding is mediated by the Src homology 2 (SH2) domain of Grb2 and the tyrosine-phosphorylated delta subunit of the AChR. Dephosphorylation of the delta subunit abolishes Grb2 binding. A cytoplasmic domain of the delta subunit contains a binding motif (pYXNX) for the SH2 domain of Grb2. Indeed, a phosphopeptide corresponding to this region of the delta subunit binds to Grb2 SH2 fusion proteins with relatively high affinity, whereas a peptide lacking phosphorylation on tyrosine exhibits no binding. Grb2 is colocalized with the AChR on the innervated face of Torpedo electrocytes. Furthermore, Grb2 specifically copurifies with AChR solubilized from postsynaptic membranes. These data suggest a novel role for tyrosine phosphorylation of the AChR in the initiation of a Grb2-mediated signaling cascade at the postsynaptic membrane.
Collapse
|
37
|
Abstract
The STEP family of protein tyrosine phosphatases is highly enriched within the CNS. Members of this family are alternatively spliced to produce both transmembrane and cytosolic variants. This manuscript describes the distinctive intracellular distribution and enzymatic activity of the membrane-associated isoform STEP61. Transfection experiments in fibroblasts, as well as subcellular fractionations, sucrose density gradients, immunocytochemical labeling, and electron microscopy in brain tissue, show that STEP61 is an intrinsic membrane protein of striatal neurons and is associated with the endoplasmic reticulum. In addition, structural analysis of the novel N-terminal region of STEP61 reveals several motifs not present in the cytosolic variant STEP46. These include two putative transmembrane domains, two sequences rich in Pro, Glu, Asp, Ser, and Thr (PEST sequences), and two polyproline-rich domains. Like STEP46, STEP61 is enriched in the brain, but the recombinant protein has less enzymatic activity than STEP46. Because STEP46 is contained in its entirety within STEP61 and differs only in the extended N terminus of STEP61, this amino acid sequence is responsible for the association of STEP61 with membrane compartments and may also regulate its enzymatic activity.
Collapse
|
38
|
Abstract
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission.
Collapse
Affiliation(s)
- S Rajendra
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
39
|
Fuhrer C, Hall ZW. Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. J Biol Chem 1996; 271:32474-81. [PMID: 8943314 DOI: 10.1074/jbc.271.50.32474] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tyrosine phosphorylation of the beta subunit of the acetylcholine receptor (AChR) has been postulated to play a role in AChR clustering during development of the neuromuscular junction. We have investigated the mechanism of this phosphorylation in mammalian C2 myotubes and report that the tyrosine kinase Src binds and phosphorylates glutathione S-transferase fusion proteins containing the N-terminal half of the cytoplasmic loop of the beta subunit. No binding occurs to the related kinases Fyn or Yes or to the corresponding regions from the gamma and delta subunits. Furthermore, AChRs affinity-isolated from C2 myotubes using alpha-bungarotoxin-Sepharose were specifically associated with Src and Fyn and had tyrosine-phosphorylated beta subunits. We suggest that AChRs are initially phosphorylated by Src and subsequently bind Fyn in a phosphotyrosine-dependent manner. These interactions are likely to play an important role in construction of the specialized postsynaptic membrane during synaptogenesis.
Collapse
Affiliation(s)
- C Fuhrer
- Department of Physiology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
40
|
Abstract
Protein kinase C (PKC) is a family of enzymes involved in synapse formation and signal transduction at the neuromuscular junction. Two PKC isoforms, classical PKC alpha and novel PKC theta, have been shown to be enriched in skeletal muscle or localized to the endplate. We examined the role of nerve in regulating the expression of these PKC isoforms in rat skeletal muscle by denervating diaphragm muscle and measuring PKC protein expression at various postoperative times. nPKC theta protein levels decreased 65% after denervation, whereas cPKC alpha levels increased 80% compared with control hemidiaphragms. These results suggest that innervation regulates PKC theta and alpha isoform expression in skeletal muscle. To explore further how nerve regulates PKC expression, we characterized PKC isoform expression in rat myotubes deprived of neural input. Myoblast expression of nPKC theta was low, and the increase in nPKC theta expression that occurred during differentiation into myotubes resulted in levels of nPKC theta significantly below adult skeletal muscle. cPKC alpha expression in myoblastic increased during differentiation to levels that exceeded expression in adult skeletal muscle. Coculturing myotubes within neuroblastoma X glioma hybrid clonal cell line (NG108-15) increased nPKC theta expression, but not cPKC alpha, suggesting that nPKC theta in skeletal muscle and myotubes is regulated by nerve contact or by a factor(s) provided by nerve. Treating myotubes with tetrodotoxin did not affect either basal- or NG108-15 cell-stimulated nPKC theta expression. Together these results suggest that expression of nPKC theta in skeletal muscle is regulated by a transynaptic interaction with nerve that specifically influences nPKC theta expression.
Collapse
|
41
|
Abstract
Protein tyrosine kinase (PTK) inhibitors were used to examine the roles of tyrosine phosphorylation in synaptic function. We show here that two different PTK inhibitors, herbimycin A and lavendustin A, both selectively downregulate a subpopulation of nicotinic acetylcholine receptors (AChRs) on chick ciliary ganglion neurons in culture. The downregulation requires a number of hours to occur and involves only those receptors containing the alpha 3, alpha 5, and beta 4 gene products. Not affected are AchRs that additionally contain the beta 2 gene product or AchRs that are made up of the alpha 7 gene product. The downregulation preferentially targets receptors destined for the cell surface and has little effect on the large pool of intracellular receptors. The receptor loss is not additive with that seen in the presence of either cycloheximide or tunicamycin, two compounds that the block appearance of new receptors. The downregulation induced by herbimycin A in surface receptors is accompanied by a specific decrement in the amount of alpha 3 protein in the cells. The results indicate that PTKs, either by phosphorylating AChR gene products directly or by acting through intermediary proteins, regulate the size and composition of the AChR pool maintained on the cell surface. Receptor regulation by PTKs may provide a mechanism for long-term control of synaptic signaling between neurons.
Collapse
Affiliation(s)
- R C Haselbeck
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | |
Collapse
|
42
|
Gillespie SK, Balasubramanian S, Fung ET, Huganir RL. Rapsyn clusters and activates the synapse-specific receptor tyrosine kinase MuSK. Neuron 1996; 16:953-62. [PMID: 8630253 DOI: 10.1016/s0896-6273(00)80118-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nerve-induced clustering of the nicotinic acetylcholine receptor (AChR) requires rapsyn, a synaptic peripheral membrane protein, as well as protein-tyrosine kinase activity. Here, we show that rapsyn induces the clustering of the synapse-specific receptor-tyrosine kinase MuSK in transfected QT-6 fibroblasts. Furthermore, rapsyn stimulates the autophosphorylation of MuSK, leading to a subsequent MuSK-dependent increase in cellular tyrosine phosphorylation. Moreover, rapsyn-activated MuSK specifically phosphorylated the AChR beta subunit, the same subunit that is tyrosine phosphorylated during innervation or agrin treatment of muscle. These results suggest rapsyn may mediate the synaptic localization of MuSK in muscle and that MuSK may play an important role in the agrin-induced clustering of the AChR.
Collapse
Affiliation(s)
- S K Gillespie
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
43
|
Tanowitz M, Sun H, Mei L. Surgical denervation increases protein tyrosine phosphatase activity in skeletal muscle. Brain Res 1996; 712:299-306. [PMID: 8814906 DOI: 10.1016/0006-8993(95)01475-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein tyrosine phosphorylation, which plays an important role in synapse formation at the neuromuscular junction, appears to be regulated by presynaptic neurons. Innervation increases whereas denervation decreases the phosphotyrosine content at the neuromuscular junction. The innervation-dependent tyrosine phosphorylation may result from elevated activity of protein tyrosine kinases; alternatively innervation may down-regulate the protein tyrosine phosphatase activity in the skeletal muscle. To investigate the possible neuronal control of protein tyrosine phosphatase activity at the neuromuscular junction, we have characterized protein tyrosine phosphatase activity in rat skeletal muscle and studied the effects of surgical denervation on the phosphatase activity. Protein tyrosine phosphatase activity in the skeletal muscle, assayed using src [32P]-phosphorylated myelin basic protein as a substrate, was both time- and protein concentration-dependent and was inhibited by micromolar concentrations of vanadate and zinc ion, both of which are known to inhibit tyrosine phosphatases specifically. It was not affected, however, by chemicals known to inhibit acid and alkaline phosphatases or serine/threonine phosphatases. Surgical denervation caused an increase in protein tyrosine phosphatase activity in rat hindlimb muscles. The increase in phosphatase activity reached a maximum (2-fold above the normal) 4 days post-denervation and maintained a plateau for up to 24 days. The biochemical properties of the phosphatase activity in denervated muscle were similar to those of the phosphatase activity in the innervated muscles. These results demonstrate that protein tyrosine phosphatase activity in skeletal muscle is regulated by motoneurons.
Collapse
Affiliation(s)
- M Tanowitz
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | |
Collapse
|
44
|
Ferns M, Deiner M, Hall Z. Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation. J Cell Biol 1996; 132:937-44. [PMID: 8603924 PMCID: PMC2120739 DOI: 10.1083/jcb.132.5.937] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Agrin is thought to be the nerve-derived factor that initiates acetylcholine receptor (AChR) clustering at the developing neuromuscularjunction. We have investigated the signaling pathway in mouse C2 myotubes and report that agrin induces a rapid but transient tyrosine phosphorylation of the AChR beta subunit. As the beta-subunit tyrosine phosphorylation occurs before the formation of AChR clusters, it may serve as a precursor step in the clustering mechanism. Consistent with this, we observed that tyrosine phosphorylation of the beta subunit correlated precisely with the presence or absence of clustering under several experimental conditions. Moreover, two tyrosine kinase inhibitors, herbimycin and staurosporine, that blocked beta-subunit phosphorylation also blocked agrin-induced clustering. Surprisingly, the inhibitors also dispersed preformed AChR clusters, suggesting that the tyrosine phosphorylation of other proteins may be required for the maintenance of receptor clusters. These findings indicate that in mammalian muscle, agrin-induced AChR clustering occurs through a mechanism that requires tyrosine phosphorylation and may involve tyrosine phosphorylation of the AChR itself.
Collapse
Affiliation(s)
- M Ferns
- Department of Physiology, University of California at San Francisco, 94143-0444, USA
| | | | | |
Collapse
|
45
|
Moss SJ, McDonald BJ, Rudhard Y, Schoepfer R. Phosphorylation of the predicted major intracellular domains of the rat and chick neuronal nicotinic acetylcholine receptor alpha 7 subunit by cAMP-dependent protein kinase. Neuropharmacology 1996; 35:1023-8. [PMID: 9121604 DOI: 10.1016/s0028-3908(96)00083-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The predicted major intracellular domains of the chick and rat neuronal nicotinic acetylcholine receptor alpha 7 subunits were expressed in E. coli as glutathione-S-transferase fusion proteins. These proteins were then purified to near homogeneity by chromatography on immobilized glutathione. The intracellular domains of the alpha 7 subunit from both species were phosphorylated to high stoichiometry by cAMP-dependent protein kinase, but not by protein kinase C, cGMP-dependent protein kinase, or calcium/calmodulin-dependent protein kinase. Phosphorylation occurred on serine residues only within an identical single tryptic peptide for both proteins. This conserved phosphorylation site was identified as Ser 342 utilizing site-directed mutagenesis. These results demonstrate that the intracellular domain of the alpha 7 subunit is a substrate of PKA, and suggest a role for protein phosphorylation in mediating cellular regulation upon neuronal AChRs containing this subunit.
Collapse
Affiliation(s)
- S J Moss
- Department of Pharmacology, University College London, U.K
| | | | | | | |
Collapse
|
46
|
Francis MM, Papke RL. Muscle-type nicotinic acetylcholine receptor delta subunit determines sensitivity to noncompetitive inhibitors, while gamma subunit regulates divalent permeability. Neuropharmacology 1996; 35:1547-56. [PMID: 9025102 DOI: 10.1016/s0028-3908(96)00103-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterologous expression of nicotinic acetylcholine receptor (nAChR) RNAs in Xenopus oocytes was used to examine the structural basis for pharmacological and physiological differences between muscle-type and neuronal nAChRs. Neuronal nAChRs have a higher permeability to calcium than muscle-type nAChRs and display inward rectification. while muscle-type nAChRs have a linear current-voltage relation. In addition, neuronal nAChRs are more sensitive to inhibition by a class of compounds known as "ganglionic blockers". It has been shown previously that neuronal-muscle hybrid receptors show increased sensitivity to the use-dependent inhibitor of neuronal nAChRs, BTMPS, based on the presence of a neuronal beta subunit. In this study, we report that omission of gamma subunit RNA has a similar effect. alpha beta delta receptors exhibit prolonged inhibition by BTMPS; show a significant permeability to divalent ions, display inward rectification and are more sensitive to mecamylamine. However, while pharmacological effects are associated with the presence of an additional delta subunit, the physiological changes described seem to be associated with the presence or absence of a gamma subunit. These results suggest that, for nAChRs, as is also the case for non-NMDA ionotropic glutamate receptors, the crucial functional property of limiting calcium permeability can be served by a single subunit.
Collapse
Affiliation(s)
- M M Francis
- Department of Neuroscience, University of Florida, Gainesville 32610-0244, USA
| | | |
Collapse
|
47
|
Olds-Clarke P, Pilder SH, Visconti PE, Moss SB, Orth JM, Kopf GS. Sperm from mice carrying two t haplotypes do not possess a tyrosine phosphorylated form of hexokinase. Mol Reprod Dev 1996; 43:94-104. [PMID: 8720118 DOI: 10.1002/(sici)1098-2795(199601)43:1<94::aid-mrd12>3.0.co;2-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mouse sperm contain a tyrosine phosphorylated form of hexokinase type 1 (HK1; Kalab et al., 1994: J Biol Chem 269:3810-3817) that has properties consistent with an integral plasma membrane protein. Furthermore, this tyrosine phosphorylated form of HK1 has an extracellular domain and HK1 is localized to both the head and flagellum of nonpermeabilized cells (Visconti et al., 1995c). We have characterized HK1 in mature sperm from sterile tw32/tw5 mice (mutant sperm) that have defects in motility and sperm-egg interaction (Johnson et al., 1995: Dev Biol 168:138-149). Immunoprecipitation of mouse sperm extracts with an antiserum made against purified rat brain HK1 demonstrates the presence of HK1 in mutant sperm. Various biochemical and immunofluorescence assays indicate that at least a portion of the HK1 present in these cells is an integral membrane protein with an extracellular domain located on the sperm head and flagellum. However, immunoblot analysis with anti-phoshotyrosine antibodies demonstrates that HK1 in mutant sperm is not tyrosine phosphorylated. Northern blot and RT-PCR analysis does not indicate any obvious abnormalities in the transcription of somatic or germ cell-specific HK1 isoforms in mutant testes, and RFLP analysis of recombinant mice indicates that no genes specifying HK1 isoforms are located on chromosome 17. We have mapped the locus responsible for the lack of tyrosine phosphorylation of HK1 mutant sperm to the most proximal (to the centromere) of the four inversions within the t haplotype. A male sterility factor is located in this same inversion (Lyon, 1986: Cell 44:357-363). Since the mutant sperm are unable to complete fertilization, there could be a relationship between sterility and the lack of tyrosine phosphorylation of HK1 in these mutant sperm.
Collapse
Affiliation(s)
- P Olds-Clarke
- Department of Obstetrics & Gynecology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
48
|
Meier T, Perez GM, Wallace BG. Immobilization of nicotinic acetylcholine receptors in mouse C2 myotubes by agrin-induced protein tyrosine phosphorylation. J Cell Biol 1995; 131:441-51. [PMID: 7593170 PMCID: PMC2199987 DOI: 10.1083/jcb.131.2.441] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Agrin induces the formation of highly localized specializations on myotubes at which nicotinic acetylcholine receptors (AChRs) and many other components of the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction accumulate. Agrin also induces AChR tyrosine phosphorylation. Treatments that inhibit tyrosine phosphorylation prevent AChR aggregation. To examine further the relationship between tyrosine phosphorylation and receptor aggregation, we have used the technique of fluorescence recovery after photobleaching to assess the lateral mobility of AChRs and other surface proteins in mouse C2 myotubes treated with agrin or with pervanadate, a protein tyrosine phosphatase inhibitor. Agrin induced the formation of patches in C2 myotubes that stained intensely with anti-phosphotyrosine antibodies and within which AChRs were relatively immobile. Pervanadate, on the other hand, increased protein tyrosine phosphorylation throughout the myotube and caused a reduction in the mobility of diffusely distributed AChRs, without affecting the mobility of other membrane proteins. Pervanadate, like agrin, caused an increase in AChR tyrosine phosphorylation and a decrease in the rate at which AChRs could be extracted from intact myotubes by mild detergent treatment, suggesting that immobilized receptors were phosphorylated and therefore less extractable. Indeed, phosphorylated receptors were extracted from agrin-treated myotubes more slowly than nonphosphorylated receptors. AChR aggregates at developing neuromuscular junctions in embryonic rat muscles also labeled with anti-phosphotyrosine antibodies, suggesting that tyrosine phosphorylation could mediate AChR aggregation in vivo as well. Thus, agrin appears to induce AChR aggregation by creating circumscribed domains of increased protein tyrosine phosphorylation within which receptors become phosphorylated and immobilized.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
49
|
Carbonetto S, Lindenbaum M. The basement membrane at the neuromuscular junction: a synaptic mediatrix. Curr Opin Neurobiol 1995; 5:596-605. [PMID: 8580711 DOI: 10.1016/0959-4388(95)80064-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The basement membrane at the neuromuscular junction directs formation of pre- and postsynaptic elements at this synapse. Efforts to understand the molecular basis for development of the postsynaptic specialization have brought new insights into extracellular matrix proteins and their cell-surface receptors. Recent evidence for an agrin receptor and mice null for the s-laminin gene have reinforced the function of the basement membrane in both orthograde and retrograde signalling across the synapse.
Collapse
Affiliation(s)
- S Carbonetto
- Centre for Neuroscience Research, McGill University, Montreal General Hospital Research Institute, PQ, Canada.
| | | |
Collapse
|
50
|
Abstract
Neuronal factors co-released with neurotransmitters may play an important role in synaptic development and function. Extracellular application of adenosine 5'-triphosphate (ATP), a substance co-stored and co-released with acetylcholine (ACh) in peripheral nervous systems, potentiated the spontaneous secretion of ACh at developing neuromuscular synapses in Xenopus 1-day-old cell cultures, as shown by a marked increase in the frequency of spontaneous synaptic currents recorded in the post-synaptic muscle cell. ATP also increased the frequency of miniature endplate potentials in the isolated tails of 2-week-old Xenopus tadpoles, with much smaller effect than that observed in cell cultures. The potentiation effect of ATP on ACh release in Xenopus cell cultures was inhibited by L-type Ca2+ channel blockers, suggesting that the L-type Ca2+ channel is responsible for the positive regulation of spontaneous ACh secretion by ATP at the developing neuromuscular synapses. The frequency of spontaneous synaptic events was found to vary greatly from cell to cell in the culture, over two orders of magnitude. Synapses with high frequency events are probably under the influence of endogenously released ATP. In addition, ATP was shown to potentiate the responses of isolated myocytes to iontophoretically-applied ACh. Local application of ATP to one region of the elongated myocyte surface resulted in potentiated ACh responses only at the ATP-treated region. Single channel recording showed that ATP specifically increased the open time and opening frequency of embryonic-type, low conductance ACh channels. Pharmacological experiments suggest that ATP exerted both its pre- and post-synaptic effects by binding to P2-purinoceptors and activating protein kinase C. Moreover, the potentiation effects of ATP were restricted to the early stages of embryos. Taken together, these results suggest that ATP co-released with ACh or released from stimulated myocytes may promote synaptic development by potentiating pre-synaptic ACh release and post-synaptic ACh channel activity during the early phase of synaptogenesis.
Collapse
Affiliation(s)
- W M Fu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|