1
|
de Oliveira RD, Novello V, da Silva LF, Gomez JGC, Le Roux GAC. Glucose metabolism in Pseudomonas aeruginosa is cyclic when producing Polyhydroxyalkanoates and Rhamnolipids. J Biotechnol 2021; 342:54-63. [PMID: 34687809 DOI: 10.1016/j.jbiotec.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa is an important chassis for production of polyhydroxyalkanoates (PHA) and rhamnolipids (RHL). Advances in the understanding of the biosynthesis metabolism of these biocompounds are crucial for increasing yield. 13C-Metabolic Flux Ratio Analysis (13C-MFA) is a technique to estimate in vivo metabolic fluxes ratios. PHA and RHL are essentially non-growth associated products of biotechnological interest and both contain hydroxyalkanoates (HAs), whose labeling patterns could be accessed by GC-MS. In this study, to reveal the relative contributions of the Entner-Doudoroff (ED) pathway and the non-oxidative Pentose Phosphate (PP) pathway to PHA and RHL production, 13C-MFA was performed in Pseudomonas aeruginosa LFM634 when supplied with labeled glucose. This bacterial strain lacks both functional EMP and the oxidative PP branch. Labeling patterns in HAs were measured. Experiments with [U-13C] glucose indicated a low flux though PP pathway. An optimal design of labeling experiment showed that [6-13C] glucose would be the best substrate to enable an estimation of the ED flux with high accuracy. Results of experiments performed with this isotope indicated that about two-thirds of glyceraldehyde 3-phosphate is recycled through a cyclic ED architecture, suggesting that P. aeruginosa utilizes that cycle to regulate the NADPH/Acetyl-CoA ratio for PHA and RHL biosynthesis.
Collapse
Affiliation(s)
| | - Vânia Novello
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
de Paula CBC, de Paula-Elias FC, Rodrigues MN, Coelho LF, de Oliveira NML, de Almeida AF, Contiero J. Polyhydroxyalkanoate Synthesis by Burkholderia glumae into a Sustainable Sugarcane Biorefinery Concept. Front Bioeng Biotechnol 2021; 8:631284. [PMID: 33520976 PMCID: PMC7838591 DOI: 10.3389/fbioe.2020.631284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) bioplastic was synthesized by Burkholderia glumae MA13 from carbon sources and industrial byproducts related to sugarcane biorefineries: sucrose, xylose, molasses, vinasse, bagasse hydrolysate, yeast extract, yeast autolysate, and inactivated dry yeast besides different inorganic nitrogen sources. Sugarcane molasses free of pre-treatment was the best carbon source, even compared to pure sucrose, with intracellular polymer accumulation values of 41.1–46.6% cell dry weight. Whereas, xylose and bagasse hydrolysate were poor inducers of microbial growth and polymer synthesis, the addition of 25% (v/v) sugarcane vinasse to the culture media containing molasses was not deleterious and resulted in a statistically similar maximum polymer content of 44.8% and a maximum PHA yield of 0.18 g/g, at 34°C and initial pH of 6.5, which is economic and ecologically interesting to save water required for the industrial processes and especially to offer a fermentative recycling for this final byproduct from bioethanol industry, as an alternative to its inappropriate disposal in water bodies and soil contamination. Ammonium sulfate was better even than tested organic nitrogen sources to trigger the PHA synthesis with polymer content ranging from 29.7 to 44.8%. GC-MS analysis showed a biopolymer constituted mainly of poly(3-hydroxybutyrate) although low fractions of 3-hydroxyvalerate monomer were achieved, which were not higher than 1.5 mol% free of copolymer precursors. B. glumae MA13 has been demonstrated to be adapted to synthesize bioplastics from different sugarcane feedstocks and corroborates to support a biorefinery concept with value-added green chemicals for the sugarcane productive chain with additional ecologic benefits into a sustainable model.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex Fernando de Almeida
- Graduate Program on Food Science and Technology, Federal University of Tocantins, Gurupi, Brazil
| | - Jonas Contiero
- Institute for Research in Bioenergy, São Paulo State University, Rio Claro, Brazil.,Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
3
|
Cardinali-Rezende J, Di Genova A, Nahat RATPS, Steinbüchel A, Sagot MF, Costa RS, Oliveira HC, Taciro MK, Silva LF, Gomez JGC. The relevance of enzyme specificity for coenzymes and the presence of 6-phosphogluconate dehydrogenase for polyhydroxyalkanoates production in the metabolism of Pseudomonas sp. LFM046. Int J Biol Macromol 2020; 163:240-250. [PMID: 32622773 DOI: 10.1016/j.ijbiomac.2020.06.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Reconstruction of genome-based metabolic model is a useful approach for the assessment of metabolic pathways, genes and proteins involved in the environmental fitness capabilities or pathogenic potential as well as for biotechnological processes development. Pseudomonas sp. LFM046 was selected as a good polyhydroxyalkanoates (PHA) producer from carbohydrates and plant oils. Its complete genome sequence and metabolic model were obtained. Analysis revealed that the gnd gene, encoding 6-phosphogluconate dehydrogenase, is absent in Pseudomonas sp. LFM046 genome. In order to improve the knowledge about LFM046 metabolism, the coenzyme specificities of different enzymes was evaluated. Furthermore, the heterologous expression of gnd genes from Pseudomonas putida KT2440 (NAD+ dependent) and Escherichia coli MG1655 (NADP+ dependent) in LFM046 was carried out and provoke a delay on cell growth and a reduction in PHA yield, respectively. The results indicate that the adjustment in cyclic Entner-Doudoroff pathway may be an interesting strategy for it and other bacteria to simultaneously meet divergent cell needs during cultivation phases of growth and PHA production.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil; Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany.
| | - Alex Di Genova
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael A T P S Nahat
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Alexander Steinbüchel
- Westfalische Wilhelms-Universitat Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, D-48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marie-France Sagot
- ERABLE Team, Inria Grenoble Rhône-Alpes, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| | - Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; REQUIMTE/LAQV, Department of Chemistry, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Henrique C Oliveira
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Marilda K Taciro
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - Luiziana F Silva
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil
| | - José Gregório C Gomez
- University of São Paulo, Institute of Biomedical Sciences, Bioproducts Laboratory, Prof. Lineu Prestes Avenue, 1374 São Paulo, Brazil.
| |
Collapse
|
4
|
Harvey DJ, Vouros P. MASS SPECTROMETRIC FRAGMENTATION OF TRIMETHYLSILYL AND RELATED ALKYLSILYL DERIVATIVES. MASS SPECTROMETRY REVIEWS 2020; 39:105-211. [PMID: 31808199 DOI: 10.1002/mas.21590] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/13/2019] [Indexed: 05/11/2023]
Abstract
This review describes the mass spectral fragmentation of trimethylsilyl (TMS) and related alkylsilyl derivatives used for preparing samples for analysis, mainly by combined gas chromatography and mass spectrometry (GC/MS). The review is divided into three sections. The first section is concerned with the TMS derivatives themselves and describes fragmentation of derivatized alcohols, thiols, amines, ketones, carboxylic acids and bifunctional compounds such as hydroxy- and amino-acids, halo acids and hydroxy ethers. More complex compounds such as glycerides, sphingolipids, carbohydrates, organic phosphates, phosphonates, steroids, vitamin D, cannabinoids, and prostaglandins are discussed next. The second section describes intermolecular reactions of siliconium ions such as the TMS cation and the third section discusses other alkylsilyl derivatives. Among these latter compounds are di- and trialkyl-silyl derivatives, various substituted-alkyldimethylsilyl derivatives such as the tert-butyldimethylsilyl ethers, cyclic silyl derivatives, alkoxysilyl derivatives, and 3-pyridylmethyldimethylsilyl esters used for double bond location in fatty acid spectra. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 0000:1-107, 2019.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Paul Vouros
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, Massachusetts, 02115
| |
Collapse
|
5
|
Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Urbina L, Wongsirichot P, Corcuera MÁ, Gabilondo N, Eceiza A, Winterburn J, Retegi A. Application of cider by-products for medium chain length polyhydroxyalkanoate production by Pseudomonas putida KT2440. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Huang P, Okoshi T, Mizuno S, Hiroe A, Tsuge T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Biosci Biotechnol Biochem 2018; 82:1615-1623. [DOI: 10.1080/09168451.2018.1473027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.
Collapse
Affiliation(s)
- Pengtao Huang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Takaya Okoshi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Ayaka Hiroe
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Chemistry for life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
8
|
Kumar V, Thakur V, Ambika, Kumar S, Singh D. Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 2018; 365:5037922. [DOI: 10.1093/femsle/fny144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| |
Collapse
|
9
|
Kozlowski K, Cieslik M, Mazurkiewicz J, Smurzynska A, Brzoski M, Chelkowski D, Jezowska A, Neugebauer M, Oniszczuk T, Kupryaniuk K. The influence of mixing inside the fermentation reactors during the study of biogas efficiency of the substrates in mesophilic technology. BIO WEB OF CONFERENCES 2018. [DOI: 10.1051/bioconf/20181001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Along with the development of environmental friendly technologies, an increasing interest in generating the electricity and heat from renewable sources has been observed in Poland. Perfect example of such installations are agricultural biogas plants, where methane fermentation produces high-energy gas fuel i.e. biogas. Before investing, it is necessary to perform a detailed studies of the biogas efficiency of the substrates used. The proper run of fermentation process, as well as the high biogas production related to the operation, depend on many factors, including the mixing inside the reactor. The DIN 38 414-S8 standard, commonly used in the tests, assumes the mixing of the whole eudiometric sets, used in accredited laboratory units, which due to their uniform construction may cause problems. The aim of the study was to determine the effect of laboratory mixing in the fermentation reactor on the biogas efficiency of the maize straw. The experiment tests were performed in the Laboratory of Ecotechnologies, in the Poznan, in accordance with the current standard DIN 38 414-S8.The obtained research results confirmed the effect of mixing inside the fermentation reactors on the biogas efficiency of the maize straw.
Collapse
|
10
|
Ge L, Tan GYA, Wang L, Chen CL, Li L, Tan SN, Wang JY. Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance. Talanta 2015; 146:107-13. [PMID: 26695241 DOI: 10.1016/j.talanta.2015.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are commercially-valuable biocompatible and biodegradable polymers with many potential medical, pharmaceutical and other industrial applications. The analysis of PHA monomeric composition is especially challenging due to the broad chemical diversity of PHA monomers and lack of analytical standards to represent the chemically-diverse PHA monomer constituents. In this study, a novel strategy based on on-line liquid chromatography-mass spectrometry (LC-MS) and off-line liquid chromatography-nuclear magnetic resonance (LC-NMR) was established to quantify seven PHA monomers with available standards and used to elucidate the structures of unknown PHA monomers. The strategy was successfully applied for the determination of monomeric composition in bacterial PHAs isolated from Pseudomonads cultivated on different carbon sources after hydrolysis. The results of this work demonstrated that the newly-developed strategy was efficient, repeatable, and could have good potential to be employed for detailed analysis of PHA monomeric composition.
Collapse
Affiliation(s)
- Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Giin-Yu Amy Tan
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Chia-Lung Chen
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Ling Li
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Swee Ngin Tan
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore.
| | - Jing-Yuan Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
11
|
Koller M, Rodríguez-Contreras A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Martin Koller
- Department of Physical and Theoretical Chemistry, Institute of Chemistry; University of Graz; Graz Austria
| | | |
Collapse
|
12
|
|
13
|
Tan GYA, Chen CL, Ge L, Li L, Wang L, Zhao L, Mo Y, Tan SN, Wang JY. Enhanced gas chromatography-mass spectrometry method for bacterial polyhydroxyalkanoates analysis. J Biosci Bioeng 2014; 117:379-82. [DOI: 10.1016/j.jbiosc.2013.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/21/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022]
|
14
|
Mendonça T, Gomez J, Buffoni E, Sánchez Rodriguez R, Schripsema J, Lopes M, Silva L. Exploring the potential of Burkholderia sacchari
to produce polyhydroxyalkanoates. J Appl Microbiol 2013; 116:815-29. [DOI: 10.1111/jam.12406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- T.T. Mendonça
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - J.G.C. Gomez
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - E. Buffoni
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - R.J. Sánchez Rodriguez
- Centro de Ciências e Tecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes Brasil
| | - J. Schripsema
- Grupo Metabolômica; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes Brasil
| | - M.S.G. Lopes
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| | - L.F. Silva
- Departamento de Microbiologia; Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo Brasil
| |
Collapse
|
15
|
O'Connor S, Szwej E, Nikodinovic-Runic J, O'Connor A, Byrne AT, Devocelle M, O'Donovan N, Gallagher WM, Babu R, Kenny ST, Zinn M, Zulian QR, O'Connor KE. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. Biomaterials 2013; 34:2710-8. [PMID: 23343631 DOI: 10.1016/j.biomaterials.2012.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/22/2012] [Indexed: 01/25/2023]
Abstract
The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range.
Collapse
Affiliation(s)
- Stephen O'Connor
- School of Biomolecular and Biomedical Sciences and Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hao LP, Lü F, Shao LM, He PJ. Improving the performance of thermophilic anaerobic digester through recirculation of low hydrogen biogas. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1431-1436. [PMID: 23705619 DOI: 10.1080/10934529.2013.781900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biogas recirculation was conducted to improve the performance of two thermophilic anaerobic sequenced batch reactors (ASBRs), in which high concentrations of volatile fatty acids (VFAs) were accumulated. To accelerate degradation of VFAs, facilitating acetate consumption via syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis (SAO-HM) was expected to be effective. Hence, to promote the SAO-HM pathway, hydrogen was removed to create low hydrogen partial pressure (pH2) in reactor RH, yet in reactor RB, hydrogen was not treated. The performance of RB and RH on VFAs degradation and methane production processes was compared at steady stage; the VFAs and soluble microbial products (SMP) in the effluents were monitored. The results showed that low pH2 intensified the SAO reaction, thereby accelerating conversion of acetate to methane, as well as acetate production from glucose and VFAs. Glucose fermentation type was also influenced. VFAs and SMP in the effluents were reduced after the introduction of biogas mixing, which proceeded much faster in RH with low pH2. Recirculation of low hydrogen biogas with SAO-HM pathway being promoted should be more effective to alleviate high acid level stress and to improve the reactor performance.
Collapse
Affiliation(s)
- Li P Hao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | | | | | | |
Collapse
|
17
|
Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose. Int J Biol Macromol 2012; 51:1063-9. [DOI: 10.1016/j.ijbiomac.2012.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/05/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
|
18
|
Ashby RD, Solaiman DKY, Strahan GD, Zhu C, Tappel RC, Nomura CT. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers. BIORESOURCE TECHNOLOGY 2012; 118:272-280. [PMID: 22705534 DOI: 10.1016/j.biortech.2012.05.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/14/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Glycerine (a biodiesel co-product) and levulinic acid (a pulp and paper co-product) were used as co-substrates for the fermentative synthesis of short-chain polyhydroxyalkanoate (sc-PHA) biopolymers with tunable monomer and molecular weight characteristics. Pseudomonas oleovorans NRRL B-14682 utilized glycerine alone to produce poly(3-hydroxybutyrate) (PHB). When levulinic acid was added to the media at shake-flask scale in concentrations ≤0.6 wt.%, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/V) copolymers were produced with 3-HV contents ranging from 37 to 97 mol%; a glycerine:levulinic acid ratio of 0.2%:0.8% (w/v) resulted in poly(3-hydroxyvalerate) (PHV). Ten-liter batch fermentations using glycerine:levulinic acid ratios of 1%:0, 0.75%:0.25%, 0.5%:0.5% and 0.25%:0.75% (w/v) resulted in PHB, P(73%-3HB-co-27%-3HV), P(30%-3HB-co-70%-3HV) and PHV with increasing number average molecular weights (×10(3) g/mol) of 328, 511, 728 and 1330, respectively, owing to glycerine-based chain termination. These results provide a novel means by which glycerine and levulinic acid can be used collectively to produce an array of distinct sc-PHA biopolymers.
Collapse
Affiliation(s)
- Richard D Ashby
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Development of a three-steps derivatization assay for the localization of double bond in monounsaturated monomers of poly-beta-hydroxyalkanoates by GC–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 900:64-70. [DOI: 10.1016/j.jchromb.2012.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/15/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022]
|
20
|
Efficient Utilization of Crude Glycerol as Fermentation Substrate in the Synthesis of Poly(3-hydroxybutyrate) Biopolymers. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1755-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tanadchangsaeng N, Kitagawa A, Yamamoto T, Abe H, Tsuge T. Identification, Biosynthesis, and Characterization of Polyhydroxyalkanoate Copolymer Consisting of 3-Hydroxybutyrate and 3-Hydroxy-4-methylvalerate. Biomacromolecules 2009; 10:2866-74. [DOI: 10.1021/bm900696c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nuttapol Tanadchangsaeng
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Chemical Analysis Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Asahi Kitagawa
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Chemical Analysis Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Tetsuya Yamamoto
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Chemical Analysis Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hideki Abe
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Chemical Analysis Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takeharu Tsuge
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan, and Chemical Analysis Team, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Silva-Queiroz S, Silva L, Pradella J, Pereira E, Gomez J. PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. J Biotechnol 2009; 143:111-8. [DOI: 10.1016/j.jbiotec.2009.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
|
23
|
Ashby RD, Ngo HL, Solaiman DKY, Strahan G. Methyl-branched poly(hydroxyalkanoate) biosynthesis from 13-methyltetradecanoic acid and mixed isostearic acid isomer substrates. Appl Microbiol Biotechnol 2009; 85:359-70. [PMID: 19644690 DOI: 10.1007/s00253-009-2134-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 06/16/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
Abstract
Pseudomonas resinovorans, a known medium-chain-length (mcl-) poly(hydroxyalkanoate) (PHA) producer, was grown on 13-methyltetradecanoic acid (13-MTDA) and a mixture of isostearic acid (IA) isomers to produce methyl-branched mcl-PHA polymers. Shake-flask experiments revealed polymer productivities (the percent of the cell mass that is polymer) of 31 +/- 1% (n = 3) and 23 +/- 3% (n = 3) when grown in 13-MTDA and IA, respectively. Monomer content was determined by a combination of gas chromatography/mass spectrometry (GC/MS) of the acid hydrolyzed, silylated methyl esters, and nuclear magnetic resonance spectroscopy. Results showed that the mcl-PHA polymer derived from 13-MTDA was primarily composed of 3-hydroxy-7-methyloctanoic acid and 3-hydroxy-9-methyldecanoic acid (67 and 16 mol% by GC/MS, respectively). In contrast, the mcl-polymers synthesized from the IA isomeric mixture were more complex, containing both even and odd chain-length monomers as well as varying distributions of methyl-branched derivatives. The PHA distributions among the C8, C10, C12, and C14 carbon chain-length monomers included three isomers of C8, five isomers of C10, seven isomers of C12, and nine isomers of C14 each containing one linear-chain derivative and n-6 methyl-branched derivatives where n equals the total number of carbon atoms in each monomer unit (C8-C14).
Collapse
Affiliation(s)
- Richard D Ashby
- Fats, Oils and Animal Coproducts Research Unit, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
24
|
Bassas M, Marqués A, Manresa A. Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Solaiman DKY, Ashby RD, Licciardello G, Catara V. Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata. J Ind Microbiol Biotechnol 2007; 35:111-20. [PMID: 17987331 DOI: 10.1007/s10295-007-0272-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
The complete sequence of the pha locus responsible for the biosynthesis of poly(hydroxyalkanoates) (PHAs) in Pseudomonas corrugata 388 was determined. As with the other known pseudomonad pha gene loci, the one in P. corrugata 388 also consists of phaC1 (1,680 bps; PHA synthase 1), phaZ (858 bp; PHA depolymerase) and phaC2 (1,683 bp; PHA synthase 2) genes. A BLAST search showed that the nucleotide sequences of these genes and the amino-acid sequences of their respective gene products are homologous to those of P. corrugata CFBP5454 and P. mediterranea CFBP5447. A putative intrinsic transcription terminator consisting of a dyad symmetry (24 bp; Delta G = -41.8 kcals) that precedes a stretch of dA residues was located in the phaC1-phaZ intergenic region. P. corrugata mutant-clones XI 32-1 and XI 32-4 were constructed in which this intergenic region was replaced with a selectable kanamycin-resistance gene. These mutant clones when grown on oleic acid for 48 h showed 4.7-to 7.0-fold increases of phaC1 and phaC2 relative expression in comparison to the initial inoculants, whereas the parental strain showed only 1.2- to 1.4-fold increases. Furthermore, in comparison to parental P. corrugata with only a few large PHA inclusion bodies, the mutants grown on oleic acid produce numerous smaller PHA granules that line the periphery of the cells. With glucose as a substrate, XI 32-1 and XI 32-4 clones produce mcl-PHA with a high content (26-31 mol%) of the mono-unsaturated 3-hydroxydodecenoate as a repeat-unit monomer. Our results show for the first time the effects of the phaC1-phaZ intergenic region on the substrate-dependent temporal expression of phaC1 and phaC2 genes, the repeat-unit composition of mcl-PHA, and the morphology of the PHA granules.
Collapse
MESH Headings
- Base Sequence
- Biosynthetic Pathways/genetics
- Cytoplasmic Granules
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Intergenic
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Bacterial
- Gene Order
- Genes, Bacterial
- Glucose/metabolism
- Inclusion Bodies
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oleic Acid/pharmacology
- Polyhydroxyalkanoates/biosynthesis
- Polyhydroxyalkanoates/genetics
- Pseudomonas/cytology
- Pseudomonas/genetics
- Pseudomonas/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- Daniel K Y Solaiman
- US Department of Agriculture, Eastern Regional Research Center, Agricultural Research Service, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
26
|
Furrer P, Hany R, Rentsch D, Grubelnik A, Ruth K, Panke S, Zinn M. Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. J Chromatogr A 2007; 1143:199-206. [PMID: 17223121 DOI: 10.1016/j.chroma.2007.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 12/11/2006] [Accepted: 01/02/2007] [Indexed: 11/29/2022]
Abstract
Standard chromatographic methods for the quantification of bacterial poly(3-hydroxyalkanoate) (PHA) proved to be inappropriate for the analysis of medium-chain-length PHA (mcl-PHA). Transesterification catalyzed by protic acids is not quantitative for mcl-PHA under common conditions due to slow reaction kinetics and formation of side-products in case of functionalized side-chains. To circumvent these limitations, an improved method for the quantification of mcl-PHA by GC-FID was developed. Boron trifluoride in methanol was successfully applied to quantitatively methanolyse different mcl-PHA (recovery >94%). This novel method is well-suited for the analysis of purified mcl-PHA as well as for mcl-PHA in biomass.
Collapse
Affiliation(s)
- Patrick Furrer
- Empa, Materials Science and Technology, Laboratory for Biomaterials, Lerchenfeldstr. 5, CH-9014 St. Gallen, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Ashby RD, Solaiman DKY, Foglia TA. Synthesis of Short-/Medium-Chain-Length Poly(hydroxyalkanoate) Blends by Mixed Culture Fermentation of Glycerol†. Biomacromolecules 2005; 6:2106-12. [PMID: 16004451 DOI: 10.1021/bm058005h] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycerol was used as a substrate in the bio-production of poly(hydroxyalkanoates) (PHAs) in an effort to establish an alternative outlet for glycerol and produce value-added products. Pseudomonas oleovorans NRRL B-14682 and Pseudomonas corrugata 388 grew and synthesized poly(3-hydroxybutyrate) (P3HB) and medium-chain-length PHA (mcl-PHA) consisting primarily of 3-hydroxydecanoic acid (C(10:0); 44 +/- 2 mol %) and 3-hydroxydodecenoic acid (C(12:1); 31 +/- 2 mol %), respectively, from glycerol at concentrations up to 5% (v/v). Cellular productivity maximized at 40% for P. oleovorans in 5% (v/v) glycerol and 20% for P. corrugata in 2% (v/v) glycerol after 72 h. Increasing the glycerol media concentration from 1% to 5% (v/v) caused a 61% and 72% reduction in the molar mass (M(n)) of the P3HB and mcl-PHA polymers, respectively. Proton-NMR analysis of the glycerol-derived P3HB revealed that the M(n) decrease was the result of esterification of glycerol onto the polymer in a chain terminating position. However, no evidence of glycerol-based chain termination was present in the mcl-PHA. The growth patterns of P. oleovorans and P. corrugata on glycerol permitted their use as mixed cultures to produce natural blends of P3HB and mcl-PHA. By incorporating a staggered inoculation pattern and varying the duration of the fermentations, P3HB/mcl-PHA ratios were achieved that varied from 34:66 to 96:4.
Collapse
Affiliation(s)
- Richard D Ashby
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
28
|
Solaiman DKY, Catara V, Greco S. Poly(hydroxyalkanoate) synthase genotype and PHA production of Pseudomonas corrugata and P. mediterranea. J Ind Microbiol Biotechnol 2005; 32:75-82. [PMID: 15726440 DOI: 10.1007/s10295-005-0205-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/07/2005] [Indexed: 11/29/2022]
Abstract
A collection of Pseudomonas corrugata and P. mediterranea strains, two closely related species, was evaluated for the presence and variability of pha loci. Using PCR methods that specifically amplify segments of medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) synthase genes, we demonstrated the presence of phaC1 and phaC2 in all P. mediterranea strains tested and in six out of 56 strains of P. corrugata screened. The remaining 50 strains of P. corrugata yielded only the phaC2 subgene fragment on detection by a combined PCR-restriction endonuclease analysis method or a semi-nested PCR-amplification approach. A Southern hybridization study on a representative strain from this group, however, indicated the presence of the phaC1 gene. Nucleic acid sequences of the subgene phaC fragments of the representative strains from the three groups showed an overall similarity ranging from 95% to 100%. The major repeat-unit monomers of the mcl-PHAs isolated from these selected strains are beta-hydroxyoctanoate (33-47 mol%) and beta-hydroxydecanoate (26-36 mol%). These results differentiate for the first time the strains of P. corrugata into two pha-distinguishable groups. This study also documents for the first time the production of mcl-PHA in P. mediterranea.
Collapse
Affiliation(s)
- Daniel K Y Solaiman
- Agricultural Research Service, US Department of Agriculture, Eastern Regional Research Center, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | |
Collapse
|
29
|
Ashby RD, Solaiman DK, Foglia TA, Liu CK. Glucose/lipid mixed substrates as a means of controlling the properties of medium chain length poly(hydroxyalkanoates). Biomacromolecules 2002; 2:211-6. [PMID: 11749175 DOI: 10.1021/bm000098+] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glucose-triacylglycerol (TAG) mixed substrates were used to modulate the physical and mechanical properties of medium-chain-length poly(hydroxyalkanoates) (mcl-PHAs). Pseudomonas resinovorans NRRL B-2649 grew and produced mcl-PHAs on glucose and TAGs (coconut oil, C; soybean oil, S) after 24 h in a shake flask culture. However, with the exception of coconut oil, maximum cell productivity was not reached in any of the cultures until 72 h post-inoculation. Here, 50:50 mixtures of glucose and coconut oil (glc/C) or glucose and soybean oil (glc/S) resulted in intermediate cell productivities with a maximum of 57% and 48% of the CDW at 72 h, respectively. In addition, mixed substrates resulted in mcl-PHAs with compositions that varied slightly over time. PHA-glc/C and PHA-glc/S were composed of 7 mol % and 8 mol % 3-hydroxydodecenoic acid (C(12:1)), respectively at 72 h. These concentrations were intermediate to the C(12:1) concentration of PHA-glc and respective PHA-TAG. Also, significant amounts of 3-hydroxytetradecanoic acid (C(14:0)), 3-hydroxytetradecenoic acid (C(14:1)), and 3-hydroxytetradecadienoic acid (C(14:2)) were present in PHA-glc/C and PHA-glc/S, which were derived from the respective TAG, as glucose resulted in almost no C(14:)(X) monomers. The molar masses of each of the polymers remained relatively constant between 24 and 96 h. At 72 h, the number-average molar masses (M(n)) of PHA-glc/C and PHA-glc/S were 178,000 and 163,000 g/mol, respectively, which were also intermediate to the M(n) of PHA-glc (225,000 g/mol) and the respective PHA-TAG (PHA-C = 153,000 g/mol; PHA-S = 75,000 g/mol). These physical differences caused variations in the mechanical properties of mcl-PHA films, thus providing a new and effective method of modifying their properties.
Collapse
Affiliation(s)
- R D Ashby
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | | | | | | |
Collapse
|
30
|
de Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B. Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 2002; 77:717-22. [PMID: 11807767 DOI: 10.1002/bit.10139] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel and efficient method for the production of enantiomericaly pure R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters was developed. The described method is based on hydrolysis of poly(hydroxyalkanoate) copolymers synthesized by Pseudomonas putida. The polymer was isolated via solvent recovery and hydrolyzed by acid methanolysis. The obtained 3-hydroxyalkanoic acid methylester mixture was distilled into several fractions with an overall yield of 96.6% (w/w). Gas chromatography-mass spectrometry analysis of the fractions showed that 3-hydroxyhexanoic-, 3-hydroxyoctanoic-, 3 hydroxydecanoic-, and 3-hydroxydodecanoic acid methylesters were enriched to purities exceeding 96 mol%, with distillation yields of 99.9, 99.8, 88.4, and 56.8% (w/w), respectively. Subsequent saponification of the purified methylester fractions yielded the corresponding 3-hydroxyalkanoic acids, which were recovered up to 92.8% (w/w). Chiral gas chromatography analysis confirmed that both 3-hydroxyoctanoic acid and 3-hydroxyoctanoic acid methylester are present in the R-form at a very high enantiomeric excess (>99.9%).
Collapse
Affiliation(s)
- Guy de Roo
- Institute of Biotechnology, Swiss Federal Institute of Technology, ETH Zürich, ETH Hönggerberg HPT, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Ashby RD, Foglia TA, Solaiman DK, Liu C, Nuñez A, Eggink G. Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int J Biol Macromol 2000; 27:355-61. [PMID: 10998494 DOI: 10.1016/s0141-8130(00)00140-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Medium-chain-length poly(hydroxyalkanoate) (mcl-PHA) polymers derived from linseed oil (PHA-L) have a relatively small molar mass and contain a high concentration of unsaturated side-chains. As such, these polymers are amorphous and take on the consistency of a viscous liquid at room temperature. In order to increase the application potential of this material, the side-chain olefinic groups of PHA-L were converted to epoxy derivatives (PHA-LE) using m-chloroperoxybenzoic acid (m-CPBA). Epoxidation resulted in a 37% conversion of olefinic to epoxy groups. The epoxy groups enhanced the PHA-LE film susceptibility to crosslinking upon exposure to air. PHA-LE films began to crosslink and stiffen in less than 25 days, whereas PHA-L films began to crosslink between days 50 and 75. The PHA-LE films showed an increase in tensile strength (TS, from 4.8 to 20.7 MPa) and Young's modulus (YM, from 12.9 to 510.6 MPa) between 25 and 100 days. In contrast, PHA-L had a TS of 25.0 MPa and YM of 767.8 MPa after 100 days. Epoxidation helped induce crosslink formation; however, aging for 100 days ultimately resulted in crosslinked films from both PHA-L and PHA-LE with higher strength and durability than the original materials.
Collapse
Affiliation(s)
- R D Ashby
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Prieto MA, Kellerhals MB, Bozzato GB, Radnovic D, Witholt B, Kessler B. Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl Environ Microbiol 1999; 65:3265-71. [PMID: 10427005 PMCID: PMC91490 DOI: 10.1128/aem.65.8.3265-3271.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to scale up medium-chain-length polyhydroxyalkanoate (mcl-PHA) production in recombinant microorganisms, we generated and investigated different recombinant bacteria containing a stable regulated expression system for phaC1, which encodes one of the mcl-PHA polymerases of Pseudomonas oleovorans. We used the mini-Tn5 system as a tool to construct Escherichia coli 193MC1 and P. oleovorans POMC1, which had stable antibiotic resistance and PHA production phenotypes when they were cultured in a bioreactor in the absence of antibiotic selection. The molecular weight and the polydispersity index of the polymer varied, depending on the inducer level. E. coli 193MC1 produced considerably shorter polyesters than P. oleovorans produced; the weight average molecular weight ranged from 67,000 to 70,000, and the polydispersity index was 2.7. Lower amounts of inducer added to the media shifted the molecular weight to a higher value and resulted in a broader molecular mass distribution. In addition, we found that E. coli 193MC1 incorporated exclusively the R configuration of the 3-hydroxyoctanoate monomer into the polymer, which corroborated the enantioselectivity of the PhaC1 polymerase enzyme.
Collapse
Affiliation(s)
- M A Prieto
- Institute of Biotechnology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Klinke S, Ren Q, Witholt B, Kessler B. Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 1999; 65:540-8. [PMID: 9925580 PMCID: PMC91059 DOI: 10.1128/aem.65.2.540-548.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was shown recently that recombinant Escherichia coli, defective in the beta-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303-309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I ('thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., the bad promoter and alk promoter, for the 'thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the 'thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinant E. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and 'thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and beta-oxidation.
Collapse
Affiliation(s)
- S Klinke
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
34
|
Lee EY, Choi CY. Biosynthesis and biotechnological production of degradable polyhydroxyalkanoic acid. BIOTECHNOL BIOPROC E 1997. [DOI: 10.1007/bf02932454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|