1
|
Linz D, Hohl M, Schütze J, Mahfoud F, Speer T, Linz B, Hübschle T, Juretschke HP, Dechend R, Geisel J, Rütten H, Böhm M. Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens 2015; 28:256-65. [PMID: 25023205 DOI: 10.1093/ajh/hpu123] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hypertension and metabolic syndrome (MetS) are associated with increased sympathetic activation possibly contributing to the progression of renal damage and cardiac remodeling. Renal sympathetic denervation (RDN) decreases sympathetic renal efferent and afferent nerve activity. METHODS Obese spontaneously hypertensive rats (SHRs-ob) were subjected to RDN at the age of 34 weeks (SHRs-ob + RDN) and were compared with sham-operated SHRs-ob and their normotensive lean controls (Ctrs). Blood pressure was measured by telemetry. Kidney and heart function were determined by magnetic resonance imaging (MRI). Renal and cardiac remodeling were characterized by immunohistochemical analyses. Animals were killed at the age of 48 weeks. RESULTS In SHRs-ob, RDN attenuated the progressive increase in blood pressure and preserved a mean blood pressure of 156±7mm Hg compared with 220±8mm Hg in sham-operated SHRs-ob at 100 days after RDN, whereas heart rate, body weight, and metabolic parameters remained unchanged. Renal catecholamine and tyrosine hydroxylase levels were significantly reduced after RDN, suggesting effective renal denervation. Progression of renal dysfunction as characterized by increased urinary albumin/creatinine ratio and reduced glomerular filtration rate were attenuated by RDN. In SHRs-ob, renal perfusion was significantly reduced and normalized by RDN. Cardiac fibrosis and cardiac diastolic dysfunction measured by MRI and invasive pressure measurements were significantly attenuated by RDN. CONCLUSIONS In SHRs-ob, progressive increase in blood pressure and progression of renal injury and cardiac remodelling are mediated by renal sympathetic activation as they were attenuated by RDN.
Collapse
Affiliation(s)
- Dominik Linz
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany;
| | - Mathias Hohl
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Jonathan Schütze
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Thimoteus Speer
- Klinik für Innere Medizin IV, Nephrologie und Hypertension, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Benedikt Linz
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Thomas Hübschle
- Sanofi-Aventis, Diabetes Division and BioImaging, Frankfurt, Germany
| | | | - Ralf Dechend
- Experimental and Clinical Research Center (Campus Buch), Berlin, Germany
| | - Jürgen Geisel
- Zentrallabor, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Hartmut Rütten
- Sanofi-Aventis, Diabetes Division and BioImaging, Frankfurt, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
2
|
Ennis RC, Asico LD, Armando I, Yang J, Feranil JB, Jurgens JA, Escano CS, Yu P, Wang X, Sibley DR, Jose PA, Villar VAM. Dopamine D₁-like receptors regulate the α₁A-adrenergic receptor in human renal proximal tubule cells and D₁-like dopamine receptor knockout mice. Am J Physiol Renal Physiol 2014; 307:F1238-48. [PMID: 25339698 DOI: 10.1152/ajprenal.00119.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D₁-like dopamine receptors [dopamine D₁ and D₅ receptors (D₁Rs and D₅Rs, respectively)] and the α₁A-adrenergic receptor (α₁A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na(+) transport, i.e., natriuresis (via D₁Rs and D5Rs) or antinatriuresis (via α₁A-ARs). We tested the hypothesis that the D₁R/D₅R regulates the α₁A-AR. D₁-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with α₁A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D₁R/D₅R agonist fenoldopam resulted in decreased D₁R and D₅R expression but increased α₁A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na(+)-K(+)-ATPase from the plasma membrane to the cytosol that was partially reversed by an α₁A-AR agonist, which by itself induced Na(+)-K(+)-ATPase translocation from the cytosol to the plasma membrane. The α₁A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na(+)-K(+)-ATPase activity. To determine the interaction among D₁Rs, D₅Rs, and α₁A-ARs in vivo, we used phenylephrine and A610603 to decrease Na(+) excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na(+) excretion in wild-type mice and its abolition in D1R knockout, D₅R knockout, and D₁R-D₅R double-knockout mice. Our results demonstrate the ability of the D₁-like dopamine receptors to regulate the expression and activity of α₁A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems.
Collapse
Affiliation(s)
- Riley Charles Ennis
- Thomas Jefferson High School for Science and Technology, Alexandria, Virgina
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jun B Feranil
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julie A Jurgens
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Crisanto S Escano
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peiying Yu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;
| |
Collapse
|
3
|
Hein P, Michel MC. Signal transduction and regulation: are all alpha1-adrenergic receptor subtypes created equal? Biochem Pharmacol 2006; 73:1097-106. [PMID: 17141737 DOI: 10.1016/j.bcp.2006.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 02/06/2023]
Abstract
The current manuscript reviews the evidence whether and how subtypes of alpha(1)-adrenergic receptors, i.e. alpha(1A)-, alpha(1B)- and alpha(1D)-adrenergic receptors, differentially couple to signal transduction pathways and exhibit differential susceptibility to regulation. In both regards studies in tissues or cells natively expressing the subtypes are hampered because the relative expression of the subtypes is poorly controlled and the observed effects may be cell-type specific. An alternative approach, i.e. transfection of multiple subtypes into the same host cell line overcomes this limitation, but it often remains unclear whether results in such artificial systems are representative for the physiological situation. The overall evidence suggests that indeed subtype-intrinsic and cell type-specific factors interact to direct alpha(1)-adrenergic receptor signaling and regulation. This may explain why so many apparently controversial findings have been reported from various tissues and cells. One of the few consistent themes is that alpha(1D)-adrenergic receptors signal less effectively upon agonist stimulation than the other subtypes, most likely because they exhibit spontaneous internalization.
Collapse
Affiliation(s)
- Peter Hein
- Department of Pharmacology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Banday AA, Asghar M, Hussain T, Lokhandwala MF. Dopamine-mediated inhibition of renal Na,K-ATPase is reduced by insulin. Hypertension 2003; 41:1353-8. [PMID: 12707290 DOI: 10.1161/01.hyp.0000069260.11830.cd] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently we have reported that rosiglitazone treatment of obese Zucker rats reduced plasma insulin and restored the ability of dopamine to inhibit Na,K-ATPase (NKA) in renal proximal tubules. The present study was performed to test the hypothesis that a chronic increase in levels of insulin causes a decrease in expression of the D1 receptor and its uncoupling from G proteins, which may account for the diminished inhibitory effect of dopamine on NKA in obese Zucker rats. We conducted experiments in primary proximal tubule epithelial cells obtained from Sprague-Dawley rat kidneys. These cells at 80% to 90% confluence were pretreated with insulin (100 nmol/L for 24 hours) in growth factor-/serum-free medium. SKF-38393, a D1 receptor agonist, inhibited NKA activity in untreated cells, but the agonist failed to inhibit enzyme activity in insulin-pretreated cells. Basal NKA activity was similar in untreated and insulin-pretreated cells. Measurement of D1 receptors in the plasma membranes revealed that [3H]SCH-23390 binding, a D1 receptor ligand, as well as D1 receptor protein abundance, was significantly reduced in insulin-pretreated cells compared with untreated cells. SKF-38393 (10 micromol/L) elicited significant stimulation of [35S]GTPgammaS binding in the membranes from control cells, suggesting that the D1 receptor-G protein coupling was intact. However, the stimulatory effect of SKF-38393 was absent in membranes from insulin-pretreated cells. We suggest that chronic exposure of cells to insulin causes both the reduction in D1 receptor abundance and its uncoupling from G proteins. These phenomena might account for the diminished inhibitory effect of dopamine on NKA activity in hyperinsulinemic rats.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors
- Animals
- Benzazepines/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Insulin/pharmacology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/metabolism
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, University of Houston, Houston, Tex 77204, USA
| | | | | | | |
Collapse
|
5
|
Féraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 2001; 81:345-418. [PMID: 11152761 DOI: 10.1152/physrev.2001.81.1.345] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Collapse
Affiliation(s)
- E Féraille
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
6
|
Lokhandwala MF, Hussain T. Defective renal dopamine D1-like receptor signal transduction in obese hypertensive rats. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:251-5. [PMID: 10691809 DOI: 10.1046/j.1365-201x.2000.00667.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is reported that dopamine promotes renal sodium excretion via activation of D1-like dopamine receptors located on the proximal tubules. In spontaneously hypertensive rats the natriuretic and diuretic response to exogenously administered and endogenously produced dopamine is reduced, which results from a diminished dopamine-induced inhibition of the enzyme, Na+,K+-ATPase. The present study was designed to examine dopamine-receptor mediated inhibition of Na+,K+-ATPase and its associated signal transduction pathway in the proximal tubules of Zucker obese and lean control rats. The obese animals were hypertensive, hyperinsulinaemic and hyperglycaemic compared with the lean rats. While dopamine caused inhibition of Na+,K+-ATPase activity in lean rats, this effect was significantly attenuated in the obese animals. There was significant reduction in D1-like receptor numbers in the basolateral membranes of obese rats compared with lean rats with no change in the affinity to the ligand [3H]SCH 23390 between the two groups of rats. Dopamine failed to stimulate G proteins as measured by [35S]GTPgammaS binding in the obese rats. Also, dopamine was unable to cause phospholipase-C activation in obese rats, but it did activate phospholipase-C in lean rats. These results show that reduction in D1-like receptor numbers and a defect in receptor-G protein coupling may account for the inability of dopamine to activate the D1-like receptor-coupled signal transduction pathway and cause inhibition of Na+,K+-ATPase in the obese hypertensive rats.
Collapse
Affiliation(s)
- M F Lokhandwala
- Institute for Cardiovascular Studies, College of Pharmacy, University of Houston, Houston 77204-5511, USA
| | | |
Collapse
|
7
|
Abstract
Heterogeneity of vascular alpha 1-adrenoceptor subtypes has been revealed by pharmacological and molecular biology studies (i.e., alpha 1A-, alpha 1B-, and alpha 1D-adrenoceptors). The alpha 1D-adrenoceptor subtype is predominantly involved in the contraction of a variety of vessels and its role in the control of blood pressure has been suggested, a phenomenon probably related to aging. Recent advances in the use of young pre-hypertensive rats and adult spontaneously hypertensive rats with one kidney and Grollman-type renal hypertension suggest vascular alpha 1D-adrenoceptor involvement in the increased blood pressure. The possible role of alpha 1D-adrenoceptors in the genesis/maintenance of hypertension is discussed in this review.
Collapse
Affiliation(s)
- R Villalobos-Molina
- Departamento de Farmacología y Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, D.F., Mexico.
| | | |
Collapse
|
8
|
Efendiev R, Bertorello AM, Pedemonte CH. PKC-beta and PKC-zeta mediate opposing effects on proximal tubule Na+,K+-ATPase activity. FEBS Lett 1999; 456:45-8. [PMID: 10452527 DOI: 10.1016/s0014-5793(99)00925-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopamine (DA) inhibits rodent proximal tubule Na+,K+-ATPase via stimulation of protein kinase C (PKC). However, direct stimulation of PKC by phorbol 12-myristate 13-acetate (PMA) results in increased Na+,K+-ATPase. LY333531, a specific inhibitor of the PKC-beta isoform, prevents PMA-dependent activation of Na+,K+-ATPase, but has no effect on DA inhibition of this activity. A similar result was obtained with a PKC-beta inhibitor peptide. Concentrations of staurosporine, that inhibits PKC-zeta, prevent DA-dependent inhibition of Na+,K+-ATPase and a similar effect was obtained with a PKC-zeta inhibitor peptide. Thus, PMA-dependent stimulation of Na+,K+-ATPase is mediated by activation of PKC-beta, whereas inhibition by DA requires activation of PKC-zeta.
Collapse
Affiliation(s)
- R Efendiev
- College of Pharmacy, University of Houston, TX 77204-5515, USA
| | | | | |
Collapse
|
9
|
Hussain T, Kansra V, Lokhandwala MF. Renal dopamine receptor signaling mechanisms in spontaneously hypertensive and Fischer 344 old rats. Clin Exp Hypertens 1999; 21:25-36. [PMID: 10052639 DOI: 10.3109/10641969909068646] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dopamine plays an important role in the regulation of renal sodium excretion. The activation of D1-like receptors located on the proximal tubules causes inhibition of tubular sodium reabsorption by inhibiting Na,H-exchanger and Na,K-ATPase activity. The D1-like receptors are linked via G proteins to the multiple cellular signaling systems namely adenylyl cyclase and phospholipase C (PLC). A defective renal dopamine receptor function exists in spontaneously hypertensive rats (SHR). In the proximal tubules of SHR, the stimulation of adenylyl cyclase and PLC caused by dopamine was significantly reduced in comparison with Wistar-Kyoto (WKY) rats. Also unlike the effects seen in WKY, D1-like receptor activation did not inhibit Na,K-ATPase and Na,H-exchanger activities in SHR. In addition, reduced quantity of Gq/11alpha proteins was detected in the basolateral membranes of SHR compared to WKY rats. Studies revealed that there may be a primary defect in D1-like receptors leading to an altered signaling system in the proximal tubules and reduced dopamine-mediated effect on renal sodium excretion in SHR. Recently, it has been shown that the disruption of D1A receptors at the gene level causes hypertension in mice. Similar to SHR, dopamine and D1-like receptor agonist failed to inhibit Na,K-ATPase activity in the proximal tubules of old Fischer 344 rats. Unlike the observations in SHR where D1-like receptors were equal to WKY rats, there is a 50% decrease in D1-like receptor number in basolateral membranes of the old rats compared to the adult rats. Dopamine was unable to stimulate G proteins in the basolateral membranes of old rats compared to the adult rats. It is suggested that a defective dopamine receptors/signaling system may contribute to the development and maintenance of hypertension. Also, the inability of dopamine to inhibit Na,K-ATPase may lead to a reduced renal sodium excretion in response to dopamine in old rats.
Collapse
Affiliation(s)
- T Hussain
- Institute for Cardiovascular Studies, College of Pharmacy, University of Houston, TX 77204-5511, USA
| | | | | |
Collapse
|
10
|
Abstract
During the past decade, it has become evident that dopamine plays an important role in the regulation of renal function and blood pressure. Dopamine exerts its actions via a class of cell-surface receptors coupled to G-proteins that belong to the rhodopsin family. Dopamine receptors have been classified into two families based on pharmacologic and molecular cloning studies. In mammals, two D1-like receptors that have been cloned, the D1 and D5 receptors (known as D1A and D1B, respectively, in rodents), are linked to stimulation of adenylyl cyclase. Three D2-like receptors that have been cloned (D2, D3, and D4) are linked to inhibition of adenylyl cyclase and Ca2+ channels and stimulation of K+ channels. All the mammalian dopamine receptors, initially cloned from the brain, have been found to be expressed outside the central nervous system, in such sites as the adrenal gland, blood vessels, carotid body, intestines, heart, parathyroid gland, and the kidney and urinary tract. Dopamine receptor subtypes are differentially expressed along the nephron, where they regulate renal hemodynamics and electrolyte and water transport, as well as renin secretion. The ability of renal proximal tubules to produce dopamine and the presence of receptors in these tubules suggest that dopamine can act in an autocrine or paracrine fashion; this action becomes most evident during extracellular fluid volume expansion. This renal autocrine/paracrine function is lost in essential hypertension and in some animal models of genetic hypertension; disruption of the D1 or D3 receptor produces hypertension in mice. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to the hypertension. The molecular basis for the dopaminergic dysfunction in hypertension is not known, but may involve an abnormal post-translational modification of the dopamine receptor.
Collapse
Affiliation(s)
- P A Jose
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
11
|
Abstract
Dopamine plays an important role in the regulation of renal sodium excretion. The synthesis of dopamine and the presence of dopamine receptor subtypes (D1A, D1B, as D1-like and D2, and D3 as D2-like) have been shown within the kidney. The activation of D1-like receptors located on the proximal tubules causes inhibition of tubular sodium reabsorption by inhibiting Na,H-exchanger and Na,K-ATPase activity. The D1-like receptors are linked to the multiple cellular signaling systems (namely, adenylyl cyclase, phospholipase C, and phospholipase A2) in the different regions of the nephron. Defective renal dopamine production and/or dopamine receptor function have been reported in human primary hypertension as well as in genetic models of animal hypertension. There may be a primary defect in D1-like receptors and an altered signaling system in the proximal tubules that lead to reduced dopamine-mediated effects on renal sodium excretion in hypertension. Recently, it has been shown in animal models that the disruption of either D1A or D3 receptors at the gene level causes hypertension in mice. Dopamine and dopamine receptor agonists also provide therapeutic potential in treatment of various cardiovascular pathological conditions, including hypertension. However, because of the poor bioavailability of the currently available compounds, the use of D1-like agonists is limited to the management of patients with severe hypertension when a rapid reduction of blood pressure is clinically indicated and in acute management of patients with heart failure. In conclusion, there is convincing evidence that dopamine and dopamine receptors play an important role in regulation of renal function, suggesting that a defective dopamine receptor/signaling system may contribute to the development and maintenance of hypertension. Further studies need to be directed toward establishing a direct correlation between defective dopamine receptor gene in the kidney and development of hypertension. Subsequently, it may be possible to use a therapeutic approach to correct the defect in dopamine receptor gene causing the hypertension.
Collapse
Affiliation(s)
- T Hussain
- Institute for Cardiovascular Studies, College of Pharmacy, University of Houston, Texas 77204-5511, USA
| | | |
Collapse
|
12
|
Liu F, Nesbitt T, Drezner MK, Friedman PA, Gesek FA. Proximal nephron Na+/H+ exchange is regulated by alpha 1A- and alpha 1B-adrenergic receptor subtypes. Mol Pharmacol 1997; 52:1010-8. [PMID: 9415710 DOI: 10.1124/mol.52.6.1010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of alpha 1-adrenergic receptors (alpha 1-AR) increases Na+/H+ exchange (NHE) in proximal tubule. NHE mediates the majority of active Na+ absorption in the proximal tubule. Three alpha 1-AR subtypes have been detected in kidney by molecular and binding techniques. We detected message for all three alpha 1-AR subtypes in mouse proximal tubule cells through reverse transcription-polymerase chain reaction and Northern analysis. To determine the alpha 1-AR subtypes that regulate NHE in mouse proximal tubule cells, two strategies were used: (i) antisense oligodeoxynucleotides (ODNs) to selectively inhibit expression of alpha 1A-, alpha 1B-, and alpha 1D-AR subtypes and (ii) subtype-selective alpha 1-AR antagonists. Streptolysin-O permeabilization was used to introduce antisense and sense ODNs into cells three times over 72 hr. Western blot analysis of membranes prepared from cells treated with alpha 1B-AR antisense ODN demonstrated that alpha 1B-AR protein expression was reduced by 90% at 72 hr compared with control or sense ODN treatments. Functional regulation of NHE by alpha 1-ARs was determined by alpha 1-AR agonist changes in intracellular pH (pHi) in cells grown on coverslips and loaded with 2',7'-bis(2-carboxyethyl)-5(6)carboxyfluorescein-acetoxymethyl ester. Antisense ODNs for alpha 1B-AR significantly reduced phenylephrine (PHE)-induced maximal changes in pHi by 49%. The PHE-induced changes in pHi observed in cells treated with alpha 1A-AR antisense ODNs was reduced by 42%. The selective alpha 1A-AR antagonist WB-4101 and the alpha 1B-AR antagonist spiperone reduce PHE-induced pHi increases to a comparable extent. No significant changes in pHi were observed with cells treated with alpha 1D-AR antisense ODNs or the alpha 1D-AR antagonist BMY 7378 compared with untreated cells. Combined treatment with alpha 1A- and alpha 1B-AR antisense ODNs and antagonists additively inhibits PHE-induced delta pHi by 90%. We conclude that alpha 1A and alpha 1B-AR but not alpha 1D-ARs regulate NHE in proximal tubule cells.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Cells, Cultured
- DNA, Complementary/metabolism
- Dioxanes/pharmacology
- Hydrogen-Ion Concentration
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/ultrastructure
- Mice
- Nephrons/metabolism
- Nephrons/ultrastructure
- Oligonucleotides, Antisense/pharmacology
- Piperazines/pharmacology
- Polymerase Chain Reaction
- RNA/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Sodium-Hydrogen Exchangers/metabolism
- Spiperone/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- F Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
13
|
Vieira-Coelho MA, Gomes P, Serrão MP, Soares-da-Silva P. Renal and intestinal autocrine monoaminergic systems: dopamine versus 5-hydroxytryptamine. Clin Exp Hypertens 1997; 19:43-58. [PMID: 9028634 DOI: 10.3109/10641969709080803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M A Vieira-Coelho
- Institute of Pharmacology & Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | | | |
Collapse
|
14
|
Soares-da-Silva P, Pinto-do-O PC, Bertorello AM. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: increase in Na+, K(+)-ATPase activity in renal proximal tubules via activation of 5-HT1A receptors. Br J Pharmacol 1996; 117:1199-203. [PMID: 8882616 PMCID: PMC1909776 DOI: 10.1111/j.1476-5381.1996.tb16716.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. 5-Hydroxytryptamine (5-HT) is antinatriuretic. Since this effect of 5-HT is not accomplished by changes in glomerular haemodynamics, we have examined in this study whether 5-HT may influence sodium excretion by affecting the Na+, K(+)-ATPase activity in renal cortical tubules. 2. Na+, K(+)-ATPase activity was determined as the rate of [32P]-ATP hydrolysis in renal cortical tubules in suspension. Basal Na+, K(+)-ATPase activity in renal tubules was 4.8 +/- 0.4 mumol Pi mg-1 protein h-1 (n = 8). The 5-HT1A receptor agonist, (+/-)-8-hydroxy-2-(di-n-propylamino) tetraline (8-OH-DPAT) (10 to 3000 nM) induced a concentration-dependent increase (P < 0.05) in Na+, K(+)-ATPase activity with an EC50 value of 355 nM (95% confidence limits: 178, 708). Maximal stimulation elicited by 3000 nM of 8-OH-DPAT was antagonized by the selective 5-HT1A receptor antagonist, (+)-WAY 100135 10 to 1000 nM) with an IC50 value of 20 nM (14, 29); 0.3 microM (+)-WAY 100135 completely abolished (P < 0.01) the stimulatory effect of 8-OH-DPAT. The stimulatory effect of 8-OH-DPAT was found to be time-dependent (15 +/- 2% and 66 +/- 7% increase at 2.5 and 5.0 min, respectively). The 5-HT2 receptor agonist alpha-methyl-5-HT (100 to 3000 nM) did not induce any significant changes in Na+, K(+)-ATPase activity (5.0 +/- 1.5 mumol Pi mg-1 protein h-1; n = 4). 3. The stimulatory effect 8-OH-DPAT was absent when homogenates were used. Stimulation occurred at a Vmax concentration (70 mM) of sodium supporting the notion that stimulation occurs independently of increasing sodium permeability. 4. The inhibitory effect of dopamine (P < 0.05) on Na+, K(+)-ATPase activity was blunted by co-incubation with 8-OH-DPAT (0.5 microM). 5. It is concluded that activation of 5-HT1A receptors increases Na+, K(+)-ATPase activity in renal cortical tubules; this effect may represent an important cellular mechanism, at the tubule level, responsible for the antinatriuretic effect of 5-HT.
Collapse
Affiliation(s)
- P Soares-da-Silva
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | |
Collapse
|
15
|
Beguin P, Beggah A, Cotecchia S, Geering K. Adrenergic, dopaminergic, and muscarinic receptor stimulation leads to PKA phosphorylation of Na-K-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C131-7. [PMID: 8772438 DOI: 10.1152/ajpcell.1996.270.1.c131] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Na-K-adenosinetriphosphatase (Na-K-ATPase) is a potential target for phosphorylation by protein kinase A (PKA) and C (PKC). We have investigated whether the Na-K-ATPase alpha-subunit becomes phosphorylated at its PKA or PKC phosphorylation sites upon stimulation of G protein-coupled receptors primarily linked either to the PKA or the PKC pathway. COS-7 cells, transiently or stably expressing Bufo marinus Na-K-ATPase wild-type alpha- or mutant alpha-subunits affected in its PKA or PKC phosphorylation site, were transfected with recombinant DNA encoding beta 2- or alpha 1-adrenergic (AR), dopaminergic (D1A-R), or muscarinic cholinergic (M1-AChR) receptor subspecies. Agonist stimulation of beta 2-AR or D1A-R led to phosphorylation of the wild-type alpha-subunit, as well as the PKC mutant, but not of the PKA mutant, indicating that these receptors can phosphorylate the Na-K-ATPase via PKA activation. Surprisingly, stimulation of the alpha 1B-AR, alpha 1C-AR, and M1-AChR also increased the phosphorylation of the wild-type alpha-subunit and its PKC mutant but not of its PKA mutant. Thus the phosphorylation induced by these primarily phospholipase C-linked receptors seems mainly mediated by PKA activation. These data indicate that the Na-K-ATPase alpha-subunit can act as an ultimate target for PKA phosphorylation in a cascade starting with agonist-receptor interaction and leading finally to a phosphorylation-mediated regulation of the enzyme.
Collapse
Affiliation(s)
- P Beguin
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Kansra V, Chen C, Lokhandwala MF. Dopamine causes stimulation of protein kinase C in rat renal proximal tubules by activating dopamine D1 receptors. Eur J Pharmacol 1995; 289:391-4. [PMID: 7621915 DOI: 10.1016/0922-4106(95)90119-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although it is suggested that in the renal proximal tubules, dopamine D1 receptor activation causes inhibition of Na+/K+ATPase via a phospholipase C and protein kinase C coupled pathway, the direct stimulation of protein kinase C by dopamine has not been reported. The present study was designed to examine the effects of dopamine and selective dopamine D1 receptor and dopamine D2 receptor agonists on protein kinase C activity. The renal proximal tubule suspensions were obtained from male Sprague-Dawley rats. The tubules were incubated separately with dopamine and fenoldopam in the presence or absence of dopamine D1 receptor antagonist, SCH 23390 ([(R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3- benzazepine]). The protein kinase C activity was measured by using a kinase target peptide, conjugated to a fluorescent molecule in water. The amino acid sequence of this peptide is, Proline-Leucine-Serine-Arginine-Threonine-Leucine-Serine-Valine-Alanine- Alanine-Lysine(PKSRTLSVAAK). We found that dopamine and fenoldopam [6-chloro-2,3,4,5-tetrahydro-1-(4-hydroxyphenyl)-1H-3-benzazepine-7,8-di ol] produced concentration-dependent increases in protein kinase C activity, which was blocked by SCH 23390. However, the dopamine D2 receptor agonist, bromocriptine [(5' alpha)-2-bromo-12'-hydroxy-2'-(1-methyl-ethyl)-5'-(2-methylpropyl)erg o- taman-3',6',18-trione] failed to stimulate protein kinase C activity at all the concentrations tested. These results provide direct evidence that dopamine stimulates protein kinase C activity via activation of dopamine D1 receptors.
Collapse
Affiliation(s)
- V Kansra
- Institute for Cardiovascular Studies, College of Pharmacy, University of Houston, TX 77204, USA
| | | | | |
Collapse
|