1
|
Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021; 6:e139160. [PMID: 34100382 PMCID: PMC8262278 DOI: 10.1172/jci.insight.139160] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
β3-Adrenergic receptors (β3-ARs) are the predominant regulators of rodent brown adipose tissue (BAT) thermogenesis. However, in humans, the physiological relevance of BAT and β3-AR remains controversial. Herein, using primary human adipocytes from supraclavicular neck fat and immortalized brown/beige adipocytes from deep neck fat from 2 subjects, we demonstrate that the β3-AR plays a critical role in regulating lipolysis, glycolysis, and thermogenesis. Silencing of the β3-AR compromised genes essential for thermogenesis, fatty acid metabolism, and mitochondrial mass. Functionally, reduction of β3-AR lowered agonist-mediated increases in intracellular cAMP, lipolysis, and lipolysis-activated, uncoupling protein 1-mediated thermogenic capacity. Furthermore, mirabegron, a selective human β3-AR agonist, stimulated BAT lipolysis and thermogenesis, and both processes were lost after silencing β3-AR expression. This study highlights that β3-ARs in human brown/beige adipocytes are required to maintain multiple components of the lipolytic and thermogenic cellular machinery and that β3-AR agonists could be used to achieve metabolic benefit in humans.
Collapse
Affiliation(s)
- Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Farnaz Shamsi
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
3
|
Dibe HA, Townsend LK, McKie GL, Wright DC. Epinephrine responsiveness is reduced in livers from trained mice. Physiol Rep 2020; 8:e14370. [PMID: 32061187 PMCID: PMC7023888 DOI: 10.14814/phy2.14370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is the primary metabolic organ involved in the endogenous production of glucose through glycogenolysis and gluconeogenesis. Hepatic glucose production (HGP) is increased via neural-hormonal mechanisms such as increases in catecholamines. To date, the effects of prior exercise training on the hepatic response to epinephrine have not been fully elucidated. To examine the role of epinephrine signaling on indices of HGP in trained mice, male C57BL/6 mice were either subjected to 12 days of voluntary wheel running or remained sedentary. Epinephrine, or vehicle control, was injected intraperitoneally on day 12 prior to sacrifice with blood glucose being measured 15 min postinjection. Epinephrine caused a larger glucose response in sedentary mice and this was paralleled by a greater reduction in liver glycogen in sedentary compared to trained mice. There was a main effect of epinephrine to increase the phosphorylation of protein kinase-A (p-PKA) substrates in the liver, which was driven by increases in the sedentary, but not trained, mice. Similarly, epinephrine-induced increases in the mRNA expression of hepatic adrenergic receptors (Adra1/2a, Adrb1), and glucose-6-phosphatase (G6pc) were greater in sedentary compared to trained mice. The mRNA expression of cAMP-degrading enzymes phosphodiesterase 3B and 4B (Pde3b, Pde4b) was greater in trained compared to sedentary mice. Taken together, our data suggest that prior exercise training reduces the liver's response to epinephrine. This could be beneficial in the context of training-induced glycogen sparing during exercise.
Collapse
Affiliation(s)
- Hana A Dibe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Feres DDS, Dos Santos MP, Buzelle SL, Pereira MP, de França SA, Garófalo MAR, Andrade CMB, Froelich M, de Almeida FJS, Frasson D, Chaves VE, Kawashita NH. In vitro TNF-α- and noradrenaline-stimulated lipolysis is impaired in adipocytes from growing rats fed a low-protein, high-carbohydrate diet. Lipids 2013; 48:779-86. [PMID: 23794137 DOI: 10.1007/s11745-013-3809-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
The aim of this study was to investigate tumor necrosis factor alpha (TNF-α)- and noradrenaline (NE)-stimulated lipolysis in retroperitoneal (RWAT) and epididymal (EAT) white adipose tissue as a means of understanding how low-protein, high-carbohydrate (LPHC) diet-fed rats maintain their lipid storage in a catabolic environment (marked by increases in serum TNF-α and corticosterone and sympathetic flux to RWAT and EAT), as previously observed. Adipocytes or tissues from the RWAT and EAT of rats fed an LPHC diet and rats fed a control (C) diet for 15 days were used in the experiments. The adipocytes from both tissues of the LPHC rats exhibited lower TNF-α- stimulated lipolysis compared to adipocytes from the C rats. The intracellular lipolytic agents IBMX, DBcAMPc and FSK increased lipolysis in both tissues from rats fed the C and LPHC diets compared to basal lipolysis; however, the effect was approximately 2.5-fold lower in adipocytes from LPHC rats. The LPHC diet induced a marked reduction in the β3 and α2-AR, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) content in RWAT and EAT. The LPHC diet did not affect TNF-α receptor 1 content but did induce a reduction in ERK p44/42 in both tissues. The present work indicates that RWAT and EAT from LPHC rats have an impairment in the lipolysis signaling pathway activated by NE and TNF-α, and this impairment explains the reduced response to these lipolytic stimuli, which may be fundamental to the maintenance of lipid storage in LPHC rats.
Collapse
Affiliation(s)
- Daniel D S Feres
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nino G, Hu A, Grunstein JS, Grunstein MM. Mechanism regulating proasthmatic effects of prolonged homologous beta2-adrenergic receptor desensitization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297:L746-57. [PMID: 19666775 DOI: 10.1152/ajplung.00079.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Use of long-acting beta(2)-adrenergic receptor (beta2AR) agonists to treat asthma incurs an increased risk of asthma morbidity with impaired bronchodilation and heightened bronchoconstriction, reflecting the adverse effects of prolonged homologous beta2AR desensitization on airway smooth muscle (ASM) function. Since phosphodiesterase 4 (PDE4) regulates ASM relaxation and contractility, we examined whether the changes in ASM function induced by prolonged homologous beta2AR desensitization are attributed to altered expression and action of PDE4. Cultured human ASM cells and isolated rabbit ASM tissues exposed for 24 h to the long-acting beta2AR agonist salmeterol exhibited impaired acute beta2AR-mediated cAMP accumulation and relaxation, respectively, together with ASM constrictor hyperresponsiveness. These proasthmatic-like changes in ASM function were associated with upregulated PDE4 activity due to enhanced expression of the PDE4D5 isoform and were prevented by pretreating the ASM preparations with the PDE4 inhibitor rolipram or with inhibitors of either PKA or ERK1/2 signaling. Extended studies using gene silencing and pharmacological approaches demonstrated that: 1) the mechanism underlying upregulated PDE4D5 expression following prolonged beta2AR agonist exposure involves PKA-dependent activation of G(i) protein signaling via its betagamma-subunits, which elicits downstream activation of ERK1/2 and its induction of PDE4D5 transcription; and 2) the induction of PDE4 activity and consequent changes in ASM responsiveness are prevented by pretreating the beta2AR agonist-exposed ASM preparations with inhibitors of G(i)-betagamma signaling. Collectively, these findings identify that the proasthmatic changes in ASM function resulting from prolonged homologous beta2AR desensitization are attributed to upregulated PDE4 expression induced by G(i)-betagamma-mediated cross-talk between the PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Gustavo Nino
- Joseph Stokes Jr. Research Institute, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
6
|
Hu A, Nino G, Grunstein JS, Fatma S, Grunstein MM. Prolonged heterologous beta2-adrenoceptor desensitization promotes proasthmatic airway smooth muscle function via PKA/ERK1/2-mediated phosphodiesterase-4 induction. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1055-67. [PMID: 18359889 DOI: 10.1152/ajplung.00021.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta2-adrenergic receptor (beta2AR) agonists acutely relieve bronchoconstriction via cAMP-mediated relaxation of airway smooth muscle (ASM). Airway constrictor responsiveness may be significantly heightened, however, following protracted exposure to these agents, presumably reflecting the effects of beta2AR desensitization in ASM accompanying prolonged cAMP signaling. Because cAMP phosphodiesterase (PDE) activity can significantly modulate ASM contractility, we investigated the mechanism regulating PDE expression and its potential role in mediating changes in agonist-induced constrictor and relaxation responsiveness in ASM following its heterologous beta2AR desensitization by prolonged exposure to cAMP-elevating agents. Isolated rabbit ASM tissues and cultured human ASM cells treated for 24 h with the receptor- or nonreceptor-coupled cAMP-stimulating agent, prostaglandin E(2) (PGE(2)) or forskolin, respectively, exhibited constrictor hyperresponsiveness to acetylcholine and impaired beta2AR-mediated relaxation and cAMP accumulation. These proasthmatic-like changes in ASM function were associated with upregulated PDE4 activity, reflective of increased transcription of the PDE4D5 isoform, and were prevented by pretreatment of the ASM with a PDE4 inhibitor. Extended studies using gene silencing and pharmacological approaches to inhibit specific intracellular signaling molecules demonstrated that the mechanism underlying PGE(2)-induced transcriptional upregulation of PDE4D5 involves PKA-dependent activation of G(i) protein signaling via the betagamma-subunits, the latter eliciting downstream activation of ERK1/2 and its consequent induction of PDE4D5 transcription. Collectively, these findings identify that beta2AR desensitization in ASM following prolonged exposure to cAMP-elevating agents is associated with proasthmatic-like changes in ASM responsiveness that are mediated by upregulated PDE4 expression induced by activated cross talk between the PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Aihua Hu
- The Joseph Stokes Jr. Research Institute, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
7
|
Faisy C, Risse PA, Naline E, Guerot E, Fagon JY, Devillier P, Advenier C. Phosphodiesterase 4 inhibitors modulate beta2-adrenoceptor agonist-induced human airway hyperresponsiveness. Life Sci 2006; 79:1929-35. [PMID: 16820175 DOI: 10.1016/j.lfs.2006.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
Chronic exposure of human isolated bronchi to beta2-adrenergic agonists, especially fenoterol, potentiates smooth muscle contraction in response to endothelin-1 (ET-1), a peptide implicated in chronic inflammatory airway diseases. 5'-Cyclic adenosine monophosphate (cAMP) pathways are involved in fenoterol-induced hyperresponsiveness. The present study investigated whether chronic elevation of intracellular cAMP by other pathways than beta2-adrenoceptor stimulation provokes bronchial hyperresponsiveness. Samples from eighteen human bronchi were sensitized to ET-1 by prolonged incubation with 0.1 microM fenoterol (15 h, 21 degrees C), or, under similar conditions, were incubated with a selective type-3 phosphodiesterase inhibitor (1 microM siguazodan), two selective type-4 phosphodiesterase inhibitors (0.1 microM rolipram and 0.1 microM cilomilast), a combination of fenoterol and rolipram (0.1 microM each) or of fenoterol and cilomilast (0.1 microM each). Rolipram and cilomilast, but not siguazodan, induced hyperresponsiveness (p < 0.01 and p < 0.05 vs. paired controls, respectively) similar to the fenoterol effect. Fenoterol-induced bronchial hyperresponsiveness was significantly enhanced by coincubation with cilomilast (p < 0.05 vs. fenoterol alone) but not with rolipram. Our results suggest that prolonged activation of intracellular cAMP through phosphodiesterase 4 inhibition induces hyperresponsiveness to ET-1 in human isolated bronchi. However, differences in subcellular localization of phosphodiesterase 4 may provoke divergent responsiveness patterns when human bronchi are continuously exposed to selective phosphodiesterase inhibitors with or without beta2-adrenergic agonists.
Collapse
Affiliation(s)
- Christophe Faisy
- UPRES EA220, Faculté de Médecine Paris-Ouest and UFR Biomédicale des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Marion-Latard F, De Glisezinski I, Crampes F, Berlan M, Galitzky J, Suljkovicova H, Riviere D, Stich V. A single bout of exercise induces beta-adrenergic desensitization in human adipose tissue. Am J Physiol Regul Integr Comp Physiol 2001; 280:R166-73. [PMID: 11124148 DOI: 10.1152/ajpregu.2001.280.1.r166] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to assess whether physiological activation of the sympathetic nervous system induced by exercise changes adipose tissue responsiveness to catecholamines in humans. Lipid mobilization in abdominal subcutaneous adipose tissue was studied with the use of a microdialysis method in 11 nontrained men (age: 22. 3 +/- 1.5 yr; body mass index: 23.0 +/- 1.6). Adipose tissue adrenergic sensitivity was explored with norepinephrine, dobutamine (beta(1)-agonist), or terbutaline (beta(2)-agonist) perfused during 30 min through probes before and after 60-min exercise (50% of the maximal aerobic power). The increase in extracellular glycerol concentration during infusion was significantly lower after the exercise when compared with the increase observed before the exercise (P < 0.05, P < 0.02, and P < 0.01, respectively, for norepinephrine, dobutamine, and terbutaline). In a control experiment realized without exercise, no difference in norepinephrine-induced glycerol increase between the two infusions was observed. To assess the involvement of catecholamines in the blunted beta-adrenergic-induced lipolytic response after exercise, adipose tissue adrenergic sensitivity was explored with two 60-min infusions of norepinephrine or epinephrine separated by a 60-min interval. With both catecholamines, the increase in glycerol was significantly lower during the second infusion (P < 0.05). The findings suggest that aerobic exercise, which increased adrenergic activity, induces a desensitization in beta(1)- and beta(2)-adrenergic lipolytic pathways in human subcutaneous adipose tissue.
Collapse
Affiliation(s)
- F Marion-Latard
- Laboratory of the Adaptations to Exercise, Purpan University Hospital, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Derks MG, Koopmans RP, Oosterhoff E, Van Boxtel CJ. Prevention by theophylline of beta-2-receptor down regulation in healthy subjects. Eur J Drug Metab Pharmacokinet 2000; 25:179-88. [PMID: 11420887 DOI: 10.1007/bf03192311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adrenergic down-regulation can occur rapidly in many tissues. Therefore beta 2-agonists might have a rapidly decreasing effect in time, which is a potential problem for the treatment of bronchial asthma. This in vivo study tested the hypothesis that theophyline can prevent adrenergic down-regulation. A randomised, double blind, placebo-controlled cross-over study was performed in eight healthy subjects. Terbutaline concentration-effect relationships were studied before and after one week of dosing of terbutaline, with or without theophylline. Slow-release terbutaline 5 mg daily was administered for 7 days in combination with either placebo or slow-release theophylline. Concentration-effect relationships of terbutaline after a single subcutaneous injection were studied before and after the 7 day terbutaline treatment. Eosinopenia and hypokalemia were the systemic effect parameters. Terbutaline concentration-time courses were described with a two-compartment model and those of theophylline with a polynomial equation. A hypothetical effect compartment model was applied to link terbutaline plasma concentration via an Emax model to the studied effects. The interaction of theophylline and terbutaline was described with a non-competitive pharmacodynamic model. After one week of oral terbutaline, the mean EC50 (ng/L) of terbutaline increased for the eosinopenia from 1.87 +/- 1.66 to 3.78 +/- 2.18 (+102%) (p = 0.012) with placebo, and to 2.73 +/- 1.99 (+46%) (p = 0.025) with theophylline; for the hypokalemia the EC50 increased from 4.70 +/- 2.91 to 8.52 +/- 7.26 (+81%) (p = 0.012) with placebo, and to 5.64 + 2.59 (+20%) (p = 0.16) with theophylline. The results indicate that the non-specific phosphodiesterase inhibitor theophylline can prevent terbutaline-induced adrenergic down-regulation to a substantial degree.
Collapse
Affiliation(s)
- M G Derks
- Department of Clinical Pharmacology & Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
|
11
|
Rose RJ, Liu H, Palmer D, Maurice DH. Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity. Br J Pharmacol 1997; 122:233-40. [PMID: 9313930 PMCID: PMC1564933 DOI: 10.1038/sj.bjp.0701376] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- R J Rose
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
|
13
|
Barbe P, Millet L, Galitzky J, Lafontan M, Berlan M. In situ assessment of the role of the beta 1-, beta 2- and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol 1996; 117:907-13. [PMID: 8851509 PMCID: PMC1909425 DOI: 10.1111/j.1476-5381.1996.tb15279.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The involvement of beta 1-, beta 2- and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow was investigated in abdominal subcutaneous adipose tissue of healthy young adults by use of an in situ microdialysis technique. 2. Dialysis probes were infused either with isoprenaline (non-selective beta-adrenoceptor agonist), CGP 12,177 (selective beta 3-adrenoceptor agonist having beta 1-/beta 2-antagonist properties), dobutamine (selective beta 1-adrenoceptor agonist) or terbutaline (selective beta 2-adrenoceptor agonist). The recovery of each probe used for perfusion was calculated by an in vivo calibration method. The local blood flow was estimated through the measurement of the escape of ethanol infused simultaneously with the drugs included in the probe. 3. Isoprenaline infusion at 0.01 microM had a weak effect while higher concentrations of isoprenaline (0.1 and 1 microM) caused a rapid, sustained and concentration-dependent increase of glycerol outflow; the maximum increase was 306 +/- 34% with 1 microM. Isoprenaline also increased the nutritive blood flow in adipose tissue; a significant effect appeared at 0.1 microM isoprenaline and was greater at 1 microM. 4. CGP 12,177 (10 and 100 microM) increased the glycerol concentration in the dialysate (128 +/- 8 and 149 +/- 12%, respectively) and nutritive blood flow. Terbutaline and dobutamine (100 microM) both provoked rapid and similar increases in glycerol outflow (252 +/- 18 and 249 +/- 18%, respectively). Both, terbutaline and dobutamine increased nutritive blood flow. 5. It is concluded that beta 1- and beta 2-adrenoceptor subtypes are both mainly involved in the mobilization of lipids and in the control of nutritive blood flow. beta 3-Adrenoceptors play a weaker role in the control of lipolysis and nutritive blood flow in human subcutaneous abdominal adipose tissue.
Collapse
Affiliation(s)
- P Barbe
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 317, Toulouse, France
| | | | | | | | | |
Collapse
|