1
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Müller WEG, Wang X, Neufurth M, Schröder HC. Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:145-189. [PMID: 35697940 DOI: 10.1007/978-3-031-01237-2_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyanions as polymers carrying multiple negative charges have been extensively studied with regard to their potential antiviral activity. Most studies to date focused on organic polyanionic polymers, both natural and synthetic. The inorganic polymer, polyphosphate (polyP), despite the ubiquitous presence of this molecule from bacteria to man, has attracted much less attention. More recently, and accelerated by the search for potential antiviral agents in the fight against the pandemic caused by the coronavirus SARS-CoV-2, it turned out that polyP disrupts the first step of the viral replication cycle, the interaction of the proteins in the virus envelope and in the cell membrane that are involved in the docking process of the virus with the target host cell. Experiments on a molecular level using the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the cellular angiotensin converting enzyme 2 (ACE2) receptor revealed that polyP strongly inhibits the binding reaction through an electrostatic interaction between the negatively charged centers of the polyP molecule and a cationic groove, which is formed by positively charged amino acids on the RBD surface. In addition, it was found that polyP, due to its morphogenetic and energy delivering activities, enhances the antiviral host innate immunity defense of the respiratory epithelium. The underlying mechanisms and envisaged application of polyP in the therapy and prevention of COVID-19 are discussed.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Rana MM. Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:1219-1249. [PMID: 33787467 PMCID: PMC8054481 DOI: 10.1080/09205063.2021.1909412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The recent coronavirus disease-2019 (COVID-19) outbreak has increased at an alarming rate, representing a substantial cause of mortality worldwide. Respiratory injuries are major COVID-19 related complications, leading to poor lung circulation, tissue scarring, and airway obstruction. Despite an in-depth investigation of respiratory injury's molecular pathogenesis, effective treatments have yet to be developed. Moreover, early detection of viral infection is required to halt the disease-related long-term complications, including respiratory injuries. The currently employed detection technique (quantitative real-time polymerase chain reaction or qRT-PCR) failed to meet this need at some point because it is costly, time-consuming, and requires higher expertise and technical skills. Polymer-based nanobiosensing techniques can be employed to overcome these limitations. Polymeric nanomaterials have the potential for clinical applications due to their versatile features like low cytotoxicity, biodegradability, bioavailability, biocompatibility, and specific delivery at the targeted site of action. In recent years, innovative polymeric nanomedicine approaches have been developed to deliver therapeutic agents and support tissue growth for the inflamed organs, including the lung. This review highlights the most recent advances of polymer-based nanomedicine approaches in infectious disease diagnosis and treatments. This paper also focuses on the potential of novel nanomedicine techniques that may prove to be therapeutically efficient in fighting against COVID-19 related respiratory injuries.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Bianculli RH, Mase JD, Schulz MD. Antiviral Polymers: Past Approaches and Future Possibilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01273] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel H. Bianculli
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jonathan D. Mase
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Phosphorothioate 2' deoxyribose oligomers as microbicides that inhibit human immunodeficiency virus type 1 (HIV-1) infection and block Toll-like receptor 7 (TLR7) and TLR9 triggering by HIV-1. Antimicrob Agents Chemother 2010; 54:4064-73. [PMID: 20625151 DOI: 10.1128/aac.00367-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topical microbicides may prove to be an important strategy for preventing human immunodeficiency virus type 1 (HIV-1) transmission. We examined the safety and efficacy of sequence-nonspecific phosphorothioate 2' deoxyribose oligomers as potential novel microbicides. A short, 13-mer poly(T) phosphorothioate oligodeoxynucleotide (OPB-T) significantly inhibited infection of primary peripheral blood mononuclear cells (PBMC) by high-titer HIV-1(Ba-L) and simian immunodeficiency virus mac251 (SIV(mac251)). Continuous exposure of human vaginal and foreskin tissue explants to OPB-T showed no toxicity. An abasic 14-mer phosphorothioate 2' deoxyribose backbone (PDB) demonstrated enhanced anti-HIV-1 activity relative to OPB-T and other homo-oligodeoxynucleotide analogs. When PDB was used to pretreat HIV-1, PDB was effective against R5 and X4 isolates at a half-maximal inhibitory concentration (IC(50)) of <1 μM in both PBMC and P4-R5 MAGI cell infections. PDB also reduced HIV-1 infectivity following the binding of virus to target cells. This novel topical microbicide candidate exhibited an excellent in vitro safety profile in human PBMC and endocervical epithelial cells. PDB also retained activity in hydroxyethylcellulose gel at pH 4.4 and after transition to a neutral pH and was stable in this formulation for 30 days at room temperature. Furthermore, the compound displayed potent antiviral activity following incubation with a Lactobacillus strain derived from normal vaginal flora. Most importantly, PDB can inhibit HIV-1-induced alpha interferon production. Phosphorothioate 2' deoxyribose oligomers may therefore be promising microbicide candidates that inhibit HIV-1 infection and also dampen the inflammation which is critical for the initial spread of the virus.
Collapse
|
6
|
Polyanionic drugs and viral oncogenesis: a novel approach to control infection, tumor-associated inflammation and angiogenesis. Molecules 2008; 13:2758-85. [PMID: 19002078 PMCID: PMC6245429 DOI: 10.3390/molecules13112758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/13/2008] [Accepted: 10/29/2008] [Indexed: 01/01/2023] Open
Abstract
Polyanionic macromolecules are extremely abundant both in the extracellular environment and inside the cell, where they are readily accessible to many proteins for interactions that play a variety of biological roles. Among polyanions, heparin, heparan sulfate proteoglycans (HSPGs) and glycosphingolipids (GSLs) are widely distributed in biological fluids, at the cell membrane and inside the cell, where they are implicated in several physiological and/or pathological processes such as infectious diseases, angiogenesis and tumor growth. At a molecular level, these processes are mainly mediated by microbial proteins, cytokines and receptors that exert their functions by binding to HSPGs and/or GSLs, suggesting the possibility to use polyanionic antagonists as efficient drugs for the treatment of infectious diseases and cancer. Polysulfated (PS) or polysulfonated (PSN) compounds are a heterogeneous group of natural, semi-synthetic or synthetic molecules whose prototypes are heparin and suramin. Different structural features confer to PS/PSN compounds the capacity to bind and inhibit the biological activities of those same heparin-binding proteins implicated in infectious diseases and cancer. In this review we will discuss the state of the art and the possible future development of polyanionic drugs in the treatment of infectious diseases and cancer.
Collapse
|
7
|
Zaneveld LJD, Waller DP, Anderson RA, Chany C, Rencher WF, Feathergill K, Diao XH, Doncel GF, Herold B, Cooper M. Efficacy and safety of a new vaginal contraceptive antimicrobial formulation containing high molecular weight poly(sodium 4-styrenesulfonate). Biol Reprod 2002; 66:886-94. [PMID: 11906905 DOI: 10.1095/biolreprod66.4.886] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Host cell infection by sexually transmitted disease (STD)-causing microbes and fertilization by spermatozoa may have some mechanisms in common. If so, certain noncytotoxic agents could inhibit the functional activity of both organisms. High molecular mass poly(sodium 4-styrenesulfonate) (T-PSS) may be one of these compounds. T-PSS alone (1 mg/ml) or in a gel (2% or 5% T-PSS) completely prevented conception in the rabbit. Contraception was not due to sperm cytotoxicity or to an effect on sperm migration. However, T-PSS inhibited sperm hyaluronidase (IC(50) = 5.3 microg/ml) and acrosin (IC(50) = 0.3 microg/ml) and caused the loss of acrosomes from spermatozoa (85% maximal loss by 0.5 microg/ml). T-PSS (5% in gel) also reduced sperm penetration into bovine cervical mucus (73% inhibition by 1 mg gel/ml). T-PSS (5% in gel) inhibited human immunodeficiency virus (HIV; IC(50)= 16 microg gel/ml) and herpes simplex viruses (HSV-1 and HSV-2; IC(50) = 1.3 and 1.0 microg gel/ml, respectively). The drug showed high efficacy against a number of clinical isolates and laboratory strains. T-PSS (5% in gel) also inhibited Neisseria gonorrhea (IC(50) < 1.0 gel/ml) and Chlamydia trachomatis (IC(50) = 1.2 microg gel/ml) but had no effect on lactobacilli. These results imply that T-PSS is an effective functional inhibitor of both spermatozoa and certain STD-causing microbes. The noncytotoxic nature should make T-PSS safe for vaginal use. T-PSS was nonmutagenic in vitro and possessed an acute oral toxicity of >5 g/kg (rat). Gel with 10% T-PSS did not irritate the skin or penile mucosa (rabbit) and caused no dermal sensitization (guinea pig). Vaginal administration of the 5% T-PSS gel to the rabbit for 14 consecutive days caused no systemic toxicity and only mild (acceptable) vaginal irritation. T-PSS in gel form is worthy of clinical evaluation as a vaginal contraceptive HIV/STD preventative.
Collapse
Affiliation(s)
- Lourens J D Zaneveld
- Program for the Topical Prevention of Conception and Disease, Department of Obstetrics and Gynecology, Rush University, Rush-Presbyterian-St. Luke's Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lüscher-Mattli M. Polyanions--a lost chance in the fight against HIV and other virus diseases? Antivir Chem Chemother 2000; 11:249-59. [PMID: 10950387 DOI: 10.1177/095632020001100401] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyanions are known to exhibit potent antiviral activity in vitro, and may represent future therapeutic agents. This review summarizes literature reports, pertinent to anionic polymers as antiviral agents. The in vitro antiviral effects of numerous polyanionic compounds (sulphated polysaccharides, negatively charged serum albumin and milk proteins, synthetic sulphated polymers, polymerized anionic surfactants and polyphosphates) are described. This class of antiviral agent exhibits several unique properties that are not shared by other presently known antiviral agents: (i) a remarkable broad-spectrum antiviral activity against HIV-1, HIV-2 and a series of other enveloped viruses; (ii) the ability to inhibit syncytium formation between HIV-infected and normal CD4 T lymphocytes, a mechanism that drastically enhances HIV infectivity; and (iii) a low induction of viral drug-resistance. There is increasing evidence that polyanions interfere with the fusion process, a vital step in the viral replication cycle. The inhibition of virus-cell fusion appears to be the source of the antiviral activity of polyanions. In vivo, the pharmacological properties of polyanions result in a low bioavailability of the drugs to their viral targets, and hence a poor antiviral activity in vivo. It is suggested that polyanions must be used in combination with drug delivery systems in order to become therapeutically useful antiviral agents. Some drug delivery systems are briefly discussed.
Collapse
|
9
|
Sawada H, Ohashi A, Baba M, Kawase T, Hayakawa Y. Synthesis and surfactant properties of fluoroalkylated sulfonic acid oligomers as a new class of human immunodeficiency virus inhibitors. J Fluor Chem 1996. [DOI: 10.1016/s0022-1139(96)03476-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sawada H, Tanba KI, Itoh N, Hosoi C, Oue M, Baba M, Kawase T, Mitani M, Nakajima H. Synthesis and surfactant properties of novel acrylic acid co-oligomers containing fluoroalkylated end-groups: a new approach to polymeric inhibitors of human immunodeficiency virus type-1. J Fluor Chem 1996. [DOI: 10.1016/0022-1139(95)03378-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ikeda S, Neyts J, Verma S, Wickramasinghe A, Mohan P, De Clercq E. In vitro and in vivo inhibition of ortho- and paramyxovirus infections by a new class of sulfonic acid polymers interacting with virus-cell binding and/or fusion. Antimicrob Agents Chemother 1994; 38:256-9. [PMID: 8192454 PMCID: PMC284437 DOI: 10.1128/aac.38.2.256] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A series of sulfonic acid polymers were shown to be potent and selective inhibitors of respiratory syncytial virus (RSV) and influenza A virus. The compounds inhibit the replication of RSV and influenza A virus in HeLa and MDCK cells, at concentrations of 0.16 and 4.0 micrograms/ml, respectively, and are nontoxic to growing cells at concentrations of > 100 micrograms/ml. The mode of antiviral action of the sulfonic acid polymers can be ascribed to inhibition of virus-cell fusion (for influenza A virus) or inhibition of both virus-cell binding and fusion (for RSV). The sulfonic acid prototype PAMPS [poly(2-acrylamido-2-methyl-1-propanesulfonic acid)], when administered intranasally to mice as a single dose of 10 or 50 mg per kg of body weight at the time of infection, completely inhibited influenza A virus replication (in lungs) and virus-associated lung consolidation in immunocompetent mice and completely protected NMRI and SCID (severe combined immune deficiency) mice against influenza A virus-associated mortality. When administered 1 h before or after virus inoculation, no protective effect was observed at a dose of 10 or 100 mg/kg. Sulfonic acid polymers exert selective inhibitory effects on RSV and influenza A virus replication.
Collapse
Affiliation(s)
- S Ikeda
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | |
Collapse
|