1
|
Lee PT, Zirin J, Kanca O, Lin WW, Schulze KL, Li-Kroeger D, Tao R, Devereaux C, Hu Y, Chung V, Fang Y, He Y, Pan H, Ge M, Zuo Z, Housden BE, Mohr SE, Yamamoto S, Levis RW, Spradling AC, Perrimon N, Bellen HJ. A gene-specific T2A-GAL4 library for Drosophila. eLife 2018; 7:35574. [PMID: 29565247 PMCID: PMC5898912 DOI: 10.7554/elife.35574] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
We generated a library of ~1000 Drosophila stocks in which we inserted a construct in the intron of genes allowing expression of GAL4 under control of endogenous promoters while arresting transcription with a polyadenylation signal 3’ of the GAL4. This allows numerous applications. First, ~90% of insertions in essential genes cause a severe loss-of-function phenotype, an effective way to mutagenize genes. Interestingly, 12/14 chromosomes engineered through CRISPR do not carry second-site lethal mutations. Second, 26/36 (70%) of lethal insertions tested are rescued with a single UAS-cDNA construct. Third, loss-of-function phenotypes associated with many GAL4 insertions can be reverted by excision with UAS-flippase. Fourth, GAL4 driven UAS-GFP/RFP reports tissue and cell-type specificity of gene expression with high sensitivity. We report the expression of hundreds of genes not previously reported. Finally, inserted cassettes can be replaced with GFP or any DNA. These stocks comprise a powerful resource for assessing gene function. Determining what role newly discovered genes play in the body is an important part of genetics. This task requires a lot of extra information about each gene, such as the specific cells where the gene is active, or what happens when the gene is deleted. To answer these questions, researchers need tools and methods to manipulate genes within a living organism. The fruit fly Drosophila is useful for such experiments because a toolbox of genetic techniques is already available. Gene editing in fruit flies allows small pieces of genetic information to be removed from or added to anywhere in the animal’s DNA. Another tool, known as GAL4-UAS, is a two-part system used to study gene activity. The GAL4 component is a protein that switches on genes. GAL4 alone does very little in Drosophila cells because it only recognizes a DNA sequence called UAS. However, if a GAL4-producing cell is also engineered to contain a UAS-controlled gene, GAL4 will switch the gene on. Lee et al. used gene editing to insert a small piece of DNA, containing the GAL4 sequence followed by a ‘stop’ signal, into many different fly genes. The insertion made the cells where each gene was normally active produce GAL4, but – thanks to the stop signal – rendered the rest of the original gene non-functional. This effectively deleted the proteins encoded by each gene, giving information about the biological processes they normally control. Lee et al. went on to use their insertion approach to make a Drosophila genetic library. This is a collection of around 1,000 different strains of fly, each carrying the GAL4/stop combination in a single gene. The library allows any gene in the collection to be studied in detail simply by combining the GAL4 with different UAS-controlled genetic tools. For example, introducing a UAS-controlled marker would pinpoint where in the body the original gene was active. Alternatively, adding UAS-controlled human versions of the gene would create humanized flies, which are a valuable tool to study potential disease-causing genes in humans. This Drosophila library is a resource that contributes new experimental tools to fly genetics. Insights gained from flies can also be applied to more complex animals like humans, especially since around 65% of genes are similar across humans and Drosophila. As such, Lee et al. hope that this resource will help other researchers shed new light on the role of many different genes in health and disease.
Collapse
Affiliation(s)
- Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Karen L Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Rong Tao
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Colby Devereaux
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Verena Chung
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Ying Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yuchun He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Ming Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | | | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Robert W Levis
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
2
|
Fisher YE, Yang HH, Isaacman-Beck J, Xie M, Gohl DM, Clandinin TR. FlpStop, a tool for conditional gene control in Drosophila. eLife 2017; 6:e22279. [PMID: 28211790 PMCID: PMC5342825 DOI: 10.7554/elife.22279] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation.
Collapse
Affiliation(s)
- Yvette E Fisher
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, United States
| | | | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Daryl M Gohl
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, United States
| |
Collapse
|
3
|
MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 2011; 8:737-43. [PMID: 21985007 PMCID: PMC3191940 DOI: 10.1038/nmeth.1662] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We demonstrate the versatility of a collection of insertions of the transposon Minos mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp system. Insertions within coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the Drosophila melanogaster toolkit.
Collapse
|
4
|
SGNP: an essential Stress Granule/Nucleolar Protein potentially involved in 5.8s rRNA processing/transport. PLoS One 2008; 3:e3716. [PMID: 19005571 PMCID: PMC2579992 DOI: 10.1371/journal.pone.0003716] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022] Open
Abstract
Background Stress Granules (SG) are sites of accumulation of stalled initiation complexes that are induced following a variety of cellular insults. In a genetic screen for factors involved in protecting human myoblasts from acute oxidative stress, we identified a gene encoding a protein we designate SGNP (Stress Granule and Nucleolar Protein). Methodology/Principal Findings A gene-trap insertional mutagenesis screen produced one insertion that conferred resistance to sodium arsenite. RT-PCR/3′ RACE was used to identify the endogenous gene expressed as a GFP-fusion transcript. SGNP is localized in both the cytoplasm and nucleolus and defines a non-nucleolar compartment containing 5.8S rRNA, a component of the 60S ribosomal subunit. Under oxidative stress, SGNP nucleolar localization decreases and it rapidly co-localizes with stress granules. The decrease in nucleolar SGNP following oxidative stress was accompanied by a large increase in nucleolar 5.8S rRNA. Knockdown of SGNP with shRNA increased global mRNA translation but induced growth arrest and cell death. Conclusions These results suggest that SGNP is an essential gene that may be involved in ribosomal biogenesis and translational control in response to oxidative stress.
Collapse
|
5
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
6
|
Morin X, Daneman R, Zavortink M, Chia W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci U S A 2001; 98:15050-5. [PMID: 11742088 PMCID: PMC64981 DOI: 10.1073/pnas.261408198] [Citation(s) in RCA: 648] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, enhancer trap strategies allow rapid access to expression patterns, molecular data, and mutations in trapped genes. However, they do not give any information at the protein level, e.g., about the protein subcellular localization. Using the green fluorescent protein (GFP) as a mobile artificial exon carried by a transposable P-element, we have developed a protein trap system. We screened for individual flies, in which GFP tags full-length endogenous proteins expressed from their endogenous locus, allowing us to observe their cellular and subcellular distribution. GFP fusions are targeted to virtually any compartment of the cell. In the case of insertions in previously known genes, we observe that the subcellular localization of the fusion protein corresponds to the described distribution of the endogenous protein. The artificial GFP exon does not disturb upstream and downstream splicing events. Many insertions correspond to genes not predicted by the Drosophila Genome Project. Our results show the feasibility of a protein trap in Drosophila. GFP reveals in real time the dynamics of protein's distribution in the whole, live organism and provides useful markers for a number of cellular structures and compartments.
Collapse
Affiliation(s)
- X Morin
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | |
Collapse
|
7
|
Standiford DM, Sun WT, Davis MB, Emerson CP. Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts. Genetics 2001; 157:259-71. [PMID: 11139507 PMCID: PMC1461464 DOI: 10.1093/genetics/157.1.259] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing of Drosophila muscle myosin heavy chain (MHC) transcripts is precisely regulated to ensure the expression of specific MHC isoforms required for the distinctive contractile activities of physiologically specialized muscles. We have used transgenic expression analysis in combination with mutagenesis to identify cis-regulatory sequences that are required for muscle-specific splicing of exon 11, which is encoded by five alternative exons that produce alternative "converter" domains in the MHC head. Here, we report the identification of three conserved intronic elements (CIE1, -2, and -3) that control splicing of exon 11e in the indirect flight muscle (IFM). Each of these CIE elements has a distinct function: CIE1 acts as a splice repressor, while CIE2 and CIE3 behave as splice enhancers. These CIE elements function in combination with a nonconsensus splice donor to direct IFM-specific splicing of exon 11e. An additional cis-regulatory element that is essential in coordinating the muscle-specific splicing of other alternative exon 11s is identified. Therefore, multiple interacting intronic and splice donor elements establish the muscle-specific splicing of alternative exon 11s.
Collapse
Affiliation(s)
- D M Standiford
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennyslvania 19104, USA
| | | | | | | |
Collapse
|
8
|
Hodges D, Cripps RM, O'Connor ME, Bernstein SI. The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA. Genetics 1999; 151:263-76. [PMID: 9872965 PMCID: PMC1460470 DOI: 10.1093/genetics/151.1.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exon 18 of the muscle myosin heavy chain gene (Mhc) of Drosophila melanogaster is excluded from larval transcripts but included in most adult transcripts. To identify cis-acting elements regulating this alternative RNA splicing, we sequenced the 3' end of Mhc from the distantly related species D. virilis. Three noncoding regions are conserved: (1) the nonconsensus splice junctions at either end of exon 18; (2) exon 18 itself; and (3) a 30-nucleotide, pyrimidine-rich sequence located about 40 nt upstream of the 3' splice site of exon 18. We generated transgenic flies expressing Mhc mini-genes designed to test the function of these regions. Improvement of both splice sites of adult-specific exon 18 toward the consensus sequence switches the splicing pattern to include exon 18 in all larval transcripts. Thus nonconsensus splice junctions are critical to stage-specific exclusion of this exon. Deletion of nearly all of exon 18 does not affect stage-specific utilization. However, splicing of transcripts lacking the conserved pyrimidine sequence is severely disrupted in adults. Disruption is not rescued by insertion of a different polypyrimidine tract, suggesting that the conserved pyrimidine-rich sequence interacts with tissue-specific splicing factors to activate utilization of the poor splice sites of exon 18 in adult muscle.
Collapse
Affiliation(s)
- D Hodges
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | |
Collapse
|
9
|
Standiford DM, Davis MB, Miedema K, Franzini-Armstrong C, Emerson CP. Myosin rod protein: a novel thick filament component of Drosophila muscle. J Mol Biol 1997; 265:40-55. [PMID: 8995523 DOI: 10.1006/jmbi.1996.0710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Myosin rod protein (MRP), a 155 kDa protein encoded by a gene internal to the Drosophila muscle myosin heavy chain (Mhc) gene, contains the MHC rod domain, but has 77 unique N-terminal residues that exactly replace the MHC motor and light chain binding domains. Originally described as an abundant testis protein, we now demonstrate the MRP also is a major component of myofilaments in Drosophila. Specifically, the Mrp promoter directs the expression of a LacZ reporter transgene in somatic, cardiac and visceral muscles. MRP-specific antibodies detect the protein in detergent-insoluble fractions of muscle extracts and co-localize the protein with MHC to the sarcomeric A-band in immunostained muscles. Immunoblot analysis shows that in a set of adult direct flight muscles (DFM), the ratio of MRP to MHC is 1:3. Chemical cross-link and co-immunoprecipitation experiments using 0.5 M KCl-extracted thick filament proteins indicate that native MRP is a homodimer. Electron microscopy of DFM49, which has a high MRP content, shows in cross section, disordered myofilament packing and a variable thin to thick filament ratio and, in longitudinal section, severely bent thin filaments that are not well associated with thick filaments. In rigor, thick filaments from DFM49 consist of segments with cross bridges that are interspersed with smooth domains lacking cross bridges. These data indicate that MRP is a novel contractile protein that co-integrates with myosin into the thick filament, thereby changing structure and function of the sarcomere.
Collapse
Affiliation(s)
- D M Standiford
- Department of Cell and Developmental Biology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6058, USA
| | | | | | | | | |
Collapse
|
10
|
Miedema K, Hanske M, Akhmanova A, Bindels P, Hennig W. Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene. Mech Dev 1995; 51:67-81. [PMID: 7669694 DOI: 10.1016/0925-4773(95)00356-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Searching for structural proteins involved in spermatogenesis of Drosophila, we found a novel myosin isoform in the testis of Drosophila hydei and D. melanogaster. The transcript encoding this isoform, which we called 'minor-myosin', initiates within the intron between exons 12 and 13 of the muscle myosin heavy chain (mMHC) gene. Minor-myosin contains a common myosin tail but no ordinary myosin head domain. Instead, it has a short N-terminal domain which displays similarity with the N-termini of certain myosin light chain proteins. Western blots with male germ line mutants showed that the novel mMHC isoform is synthesized in the male germ cells, mainly postmeiotically. However, minor-myosin is not testis-specific, as it is expressed at a low level in the fly carcasses. The possible functions of the myosin isoform in the male germ line are discussed.
Collapse
Affiliation(s)
- K Miedema
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Miedema K, Harhangi H, Mentzel S, Wilbrink M, Akhmanova A, Hooiveld M, Bindels P, Hennig W. Interspecific sequence comparison of the muscle-myosin heavy-chain genes from Drosophila hydei and Drosophila melanogaster. J Mol Evol 1994; 39:357-68. [PMID: 7966366 DOI: 10.1007/bf00160268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The muscle-myosin heavy-chain (mMHC) gene of Drosophila hydei has been sequenced completely (size 23.3 kb). The sequence comparison with the D. melanogaster mMHC gene revealed that the exon-intron pattern is identical. The protein coding regions show a high degree of conservation (97%). The alternatively spliced exons (3a-b, 7a-d, 9a-c, 11a-e, and 15a-b) display more variations in the number of nonsynonymous and synonymous substitutions than the common exons (2, 4, 5, 6, 8, 10, 12, 13, 14, 16, 17, and 19). The base composition at synonymous sites of fourfold degenerate codons (third position) is not biased in the alternative exons. In the common exons there exists a bias for C and against A. These findings imply that the alternative exons of the Drosophila mMHC gene evolve at a different, in several cases higher, rate than the common ones. The 5' splice junctions and 5' and 3' untranslated regions show a high level of similarity, indicating a functional constraint on these sequences. The intron regions vary considerably in length within one species, but the corresponding introns are very similar in length between the two species and all contain stretches of sequence similarity. A particular example is the first intron, which contains multiple regions of similarity. In the conserved regions of intron 12 (head-tail border) sequences were found which have the potential to direct another smaller mMHC transcript.
Collapse
Affiliation(s)
- K Miedema
- Department of Molecular and Developmental Genetics, Faculty of Sciences, Catholic University of Nijmegen, Toernooiveld, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Polyomavirus late pre-mRNAs contain one 5' splice site and two message body 3' splice sites, which are not used at equal frequencies. As a result of alternative splicing, the total late mRNA population consists of about 5% mVP2 (no message body splice chosen), about 15% mVP3 (promoter-proximal 3' splice site chosen), and about 80% mVP1 (promoter-distal 3' splice site chosen). To determine whether it is splice site strength that determines the ratio of spliced products, constructs containing duplicated or rearranged 3' splice sites were created. In construct VP1,1, 160 bp surrounding the VP3 3' splice site was substituted with the corresponding region of the VP1 3' splice site. This construct resulted in the duplication of the VP1 3' splicing signal. VP3,3 (two identical VP3 3' splice sites) and VP1,3 (VP1 and VP3 3' splice sites reversed) were similarly created. Each construct maintained wild-type spacing between the 3' splice sites. Analysis of RNAs from transfections showed that in each construct, the 3' splice closest to the polyadenylation site was used preferentially. Analysis of a number of additional constructs indicated that there are no strong cis-acting positive or negative regulators of polyomavirus late splicing; rather, splicing choices appear to be determined largely by relative position of splice sites.
Collapse
Affiliation(s)
- D B Batt
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
13
|
Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5' splice site. Mol Cell Biol 1994. [PMID: 8246990 DOI: 10.1128/mcb.13.12.7734] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.
Collapse
|
14
|
Hodges D, Bernstein SI. Genetic and biochemical analysis of alternative RNA splicing. ADVANCES IN GENETICS 1994; 31:207-81. [PMID: 8036995 DOI: 10.1016/s0065-2660(08)60399-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- D Hodges
- Biology Department, San Diego State University, California 92182-0057
| | | |
Collapse
|
15
|
Horabin JI, Schedl P. Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5' splice site. Mol Cell Biol 1993; 13:7734-46. [PMID: 8246990 PMCID: PMC364845 DOI: 10.1128/mcb.13.12.7734-7746.1993] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.
Collapse
Affiliation(s)
- J I Horabin
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
16
|
Kister L, Domenjoud L, Gallinaro H, Monique J. A cis-acting selector of a 5' splice site. Cooperation between the sequence of the site and an upstream exonic element. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80633-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Abstract
Over the past year, significant progress has been made in the understanding of how RNA-binding factors may facilitate splice-site selection and spliceosome assembly, and confer fidelity to the pre-mRNA splicing reaction. In addition, a number of studies have revealed a complex network of RNA-RNA interactions in the spliceosome, strengthening the structural and functional parallels between nuclear pre-mRNA splicing and the self-splicing group I and group II introns. These new data further support the idea that pre-mRNA splicing occurs by RNA-mediated catalysis and illustrate quite dramatically the dynamic nature of conformational changes in the spliceosome cycle. With respect to tissue-specific pre-mRNA splicing, a number of studies have begun to illuminate mechanisms underlying control of splice-site selection and how so-called 'general' RNA-binding proteins, such as heterogeneous nuclear ribonucleoproteins, may be involved in determining different splicing patterns. Finally, an emerging theme involving the role of splicing in development is that differential transcriptional programs can be triggered in different cell types by alternative splicing patterns that generate transcription factor isoforms with different activities or DNA-binding specificities.
Collapse
Affiliation(s)
- D C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| |
Collapse
|
18
|
Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 1993. [PMID: 8441386 DOI: 10.1128/mcb.13.3.1408] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila melanogaster, sex determination in somatic cells is controlled by a cascade of genes whose expression is regulated by alternative splicing [B. S. Baker, Nature (London) 340:521-524, 1989; J. Hodgkin, Cell 56:905-906, 1989]. The master switch gene in this hierarchy is Sex-lethal. Sex-lethal is turned on only in females, and an autoregulatory feedback loop which controls alternative splicing maintains this state (L. R. Bell, J. I. Horabin, P. Schedl, and T. W. Cline, Cell 65:229-239, 1991; L. N. Keyes, T. W. Cline, and P. Schedl, Cell 68:933-943, 1992). Sex-lethal also promotes female differentiation by controlling the splicing of RNA from the next gene in the hierarchy, transformer. Sosnowski et al. (B. A. Sosnowski, J. M. Belote, and M. McKeown, Cell 58:449-459, 1989) have shown that the mechanism for generating female transformer transcripts is not through the activation of the alternative splice site but by the blockage of the default splice site. We have tested whether an activation or a blockage mechanism is involved in Sex-lethal autoregulation. The male exon of Sex-lethal with flanking splice sites was placed into the introns of heterologous genes. Our results support the blockage mechanism. The poly(U) run at the male exon 3' splice site is required for sex-specific splicing. However, unlike transformer, default splicing to the male exon is sensitive to the sequence context within which the exon resides. This and the observation that the splice signals at the exon are suboptimal are discussed with regard to alternate splicing.
Collapse
|
19
|
Horabin JI, Schedl P. Regulated splicing of the Drosophila sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 1993; 13:1408-14. [PMID: 8441386 PMCID: PMC359450 DOI: 10.1128/mcb.13.3.1408-1414.1993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In Drosophila melanogaster, sex determination in somatic cells is controlled by a cascade of genes whose expression is regulated by alternative splicing [B. S. Baker, Nature (London) 340:521-524, 1989; J. Hodgkin, Cell 56:905-906, 1989]. The master switch gene in this hierarchy is Sex-lethal. Sex-lethal is turned on only in females, and an autoregulatory feedback loop which controls alternative splicing maintains this state (L. R. Bell, J. I. Horabin, P. Schedl, and T. W. Cline, Cell 65:229-239, 1991; L. N. Keyes, T. W. Cline, and P. Schedl, Cell 68:933-943, 1992). Sex-lethal also promotes female differentiation by controlling the splicing of RNA from the next gene in the hierarchy, transformer. Sosnowski et al. (B. A. Sosnowski, J. M. Belote, and M. McKeown, Cell 58:449-459, 1989) have shown that the mechanism for generating female transformer transcripts is not through the activation of the alternative splice site but by the blockage of the default splice site. We have tested whether an activation or a blockage mechanism is involved in Sex-lethal autoregulation. The male exon of Sex-lethal with flanking splice sites was placed into the introns of heterologous genes. Our results support the blockage mechanism. The poly(U) run at the male exon 3' splice site is required for sex-specific splicing. However, unlike transformer, default splicing to the male exon is sensitive to the sequence context within which the exon resides. This and the observation that the splice signals at the exon are suboptimal are discussed with regard to alternate splicing.
Collapse
Affiliation(s)
- J I Horabin
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
20
|
Bernstein SI, O'Donnell PT, Cripps RM. Molecular genetic analysis of muscle development, structure, and function in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 143:63-152. [PMID: 8449665 DOI: 10.1016/s0074-7696(08)61874-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S I Bernstein
- Department of Biology, San Diego State University, California 92182
| | | | | |
Collapse
|