1
|
Possible transfer of lncRNA H19-derived miRNA miR-675-3p to adjacent H19-non-expressing trophoblast cells in near-term mouse placenta. Histochem Cell Biol 2022; 159:363-375. [PMID: 36484822 DOI: 10.1007/s00418-022-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
LncRNA H19 serves as a regulatory RNA in mouse placental development. However, there is little information available on the in situ expression of H19 in the late-gestation mouse placenta. In this study, we performed quantitative polymerase chain reaction (qPCR) and in situ hybridization (ISH) analyses of lncRNA H19 and its exon 1-derived miRNA miR-675-3p to identify cell types expressing these non-coding RNAs in the mouse placenta during mid-to-late gestation. By qPCR analysis, we confirmed that H19 was highly expressed during mid-to-late gestation (E10.5-E18.5) and that H19-derived miRNA miR-675-3p was remarkably upregulated in the E18.5 placenta. ISH analysis revealed trophoblast cell type-specific expression of lncRNA H19 and miR-675-3p during later stages of gestation. In the junctional zone and decidua of late-gestation placenta, H19 was expressed in trophoblast giant cells and glycogen trophoblast cells; however, H19 was absent in spongiotrophoblast cells. In the labyrinth and chorionic plate, H19 was present in sinusoidal mononuclear trophoblast giant cells, fetal vascular endothelial cells, and basal chorionic trophoblast cells, but not in syncytiotrophoblasts. As expected, these lncRNA H19-expressing cells exhibited miR-675-3p in the E18.5 placenta. Intriguingly, miR-675-3p was also present in H19-negative spongiotrophoblast cells and syncytiotrophoblasts, implying the possible transfer of miR-675-3p from H19-exprssing cells to adjacent H19-non-expressing trophoblast cells. These findings suggest that the mouse placenta expresses lncRNA H19 in a trophoblast cell type-specific fashion during later stages of gestation.
Collapse
|
2
|
Qiu X, Xiao X, Ren A, Xiao M, Tian H, Ling W, Wang M, Li Y, Zhao Y. Effects of PXD101 and Embryo Aggregation on the In Vitro Development of Mouse Parthenogenetic Embryos. Cell Reprogram 2020; 22:14-21. [PMID: 32011921 DOI: 10.1089/cell.2019.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To improve the isolation efficiency of parthenogenetic embryonic stem cells (pESCs) in mice, it is necessary to optimize the method to increase in vitro developmental competence of mice parthenogenetic blastocysts. Therefore, this study aims to investigate an optimal method for the production of mouse parthenogenetic blastocysts and isolation of pESC colonies by comparing the effects of two methods: (1) the treatment of histone deacetylase inhibitor PXD101 before, during, or after parthenogenetic activation; (2) parthenogenetic embryo aggregation; and (3) their combination treatment. The results suggest that application of PXD101 treatment and embryo aggregation could both improve the development of mouse parthenogenetic blastocysts (50 nM PXD101 treated 4 hours during activation and further 4 hours after activation: 40.0% vs. 20.0%; p < 0.05; two-cell embryo aggregation: 38.3% vs. 20.0%; p < 0.05) and also enhance the isolation rate of pESC colonies (PXD101: 33.3% vs. 11.8%; p < 0.05; two-cell embryo aggregation: 36.4% vs. 11.8%; p < 0.05). The combination of their treatments had the higher rate of parthenogenetic blastocyst development (41.7%) and significantly higher rate of pESC colony isolation from parthenogenetic blastocysts (45.0%); therefore, we concluded that the combination of these two methods (50 nM PXD101 treated for 8 hours and then aggregated at two-cell stage with 0.25% pronase for 10 minutes in our self-made concave) is considered the optimal way for the in vitro development of parthenogenetic blastocysts and subsequent pESC colony isolation in mice, opening new opportunities for application of this combination method to improve the parthenogenetic embryo development in other species.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Xiong Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Aoru Ren
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Min Xiao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Haoyu Tian
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Wenhui Ling
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Mingyu Wang
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yuemin Li
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science & Technology, Southwest University, Chongqing, P. R. China
| |
Collapse
|
3
|
Mackin SJ, Thakur A, Walsh CP. Imprint stability and plasticity during development. Reproduction 2018; 156:R43-R55. [PMID: 29743259 DOI: 10.1530/rep-18-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field.
Collapse
Affiliation(s)
- Sarah-Jayne Mackin
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Avinash Thakur
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research GroupSchool of Biomedical Sciences, Ulster University, Northern Ireland, UK
| |
Collapse
|
4
|
QIU X, LI N, XIAO X, LI Y. Aggregation of a parthenogenetic diploid embryo and a male embryo improves the blastocyst development and parthenogenetic embryonic stem cell derivation. Turk J Biol 2017. [DOI: 10.3906/biy-1612-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
5
|
Abstract
Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.
Collapse
|
6
|
Ge ZJ, Liang XW, Guo L, Liang QX, Luo SM, Wang YP, Wei YC, Han ZM, Schatten H, Sun QY. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol Reprod 2013; 88:117. [PMID: 23515675 DOI: 10.1095/biolreprod.112.105981] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.
Collapse
Affiliation(s)
- Zhao-Jia Ge
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes. PLoS One 2012; 7:e41256. [PMID: 22905100 PMCID: PMC3419697 DOI: 10.1371/journal.pone.0041256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs) were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.
Collapse
|
8
|
Naturil-Alfonso C, Saenz-de-Juano MD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Anim Reprod Sci 2011; 127:222-8. [PMID: 21890291 DOI: 10.1016/j.anireprosci.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022]
Abstract
Parthenote embryos offer multiple possibilities in biotechnological investigation, such as stem cell research. However, there is still a dearth of knowledge of this kind of embryo. In this study, development and ploidy were analysed in parthenotes under in vitro and in vivo culture conditions. Subsequently, using real-time PCR, the expressions of factor OCT-4, Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptor 3 and Transforming Growth Factor β2 genes were analysed to compare the embryo types at the blastocyst stage. Development and implantation of parthenote embryos were described after transfer at day 10 of pregnancy. Parthenotes showed similar blastocyst development for both culture conditions and most of the parthenotes produced were diploid. However, parthenotes developed under in vivo conditions showed similar mRNA expression of OCT-4, VEGF and TGF-β2 to 5 and 6 day old blastocysts. In contrast, parthenotes developed under in vitro conditions had altered the expression pattern of these genes, except for erbB3 mRNA. Finally, transferred parthenotes had the ability to implant but showed severe growth retardation and lesser size. This is the first demonstration of the influence of culture conditions on parthenote mRNA expression. Our study highlights the importance of culture conditions in subsequent uses of parthenotes, such as the production of stem cell lines.
Collapse
Affiliation(s)
- C Naturil-Alfonso
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | | | |
Collapse
|
9
|
Liu N, Enkemann SA, Liang P, Hersmus R, Zanazzi C, Huang J, Wu C, Chen Z, Looijenga LHJ, Keefe DL, Liu L. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis. J Mol Cell Biol 2010; 2:333-44. [PMID: 20926514 DOI: 10.1093/jmcb/mjq029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bressan FF, De Bem THC, Perecin F, Lopes FL, Ambrosio CE, Meirelles FV, Miglino MA. Unearthing the roles of imprinted genes in the placenta. Placenta 2009; 30:823-34. [PMID: 19679348 DOI: 10.1016/j.placenta.2009.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mammalian fetal survival and growth are dependent on a well-established and functional placenta. Although transient, the placenta is the first organ to be formed during pregnancy and is responsible for important functions during development, such as the control of metabolism and fetal nutrition, gas and metabolite exchange, and endocrine control. Epigenetic marks and gene expression patterns in early development play an essential role in embryo and fetal development. Specifically, the epigenetic phenomenon known as genomic imprinting, represented by the non-equivalence of the paternal and maternal genome, may be one of the most important regulatory pathways involved in the development and function of the placenta in eutherian mammals. A lack of pattern or an imprecise pattern of genomic imprinting can lead to either embryonic losses or a disruption in fetal and placental development. Genetically modified animals present a powerful approach for revealing the interplay between gene expression and placental function in vivo and allow a single gene disruption to be analyzed, particularly focusing on its role in placenta function. In this paper, we review the recent transgenic strategies that have been successfully created in order to provide a better understanding of the epigenetic patterns of the placenta, with a special focus on imprinted genes. We summarize a number of phenotypes derived from the genetic manipulation of imprinted genes and other epigenetic modulators in an attempt to demonstrate that gene-targeting studies have contributed considerably to the knowledge of placentation and conceptus development.
Collapse
Affiliation(s)
- F F Bressan
- Department of Basic Sciences, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells 2009; 27:2136-45. [DOI: 10.1002/stem.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Tveden-Nyborg PY, Alexopoulos NI, Cooney MA, French AJ, Tecirlioglu RT, Holland MK, Thomsen PD, D'Cruz NT. Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos. Theriogenology 2008; 70:1119-28. [PMID: 18675451 DOI: 10.1016/j.theriogenology.2008.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 04/24/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.
Collapse
Affiliation(s)
- P Y Tveden-Nyborg
- Dep. of Basic Animal and Veterinary Sciences, Groennegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Moore K, Kramer JM, Rodriguez-Sallaberry CJ, Yelich JV, Drost M. Insulin-like growth factor (IGF) family genes are aberrantly expressed in bovine conceptuses produced in vitro or by nuclear transfer. Theriogenology 2007; 68:717-27. [PMID: 17628655 DOI: 10.1016/j.theriogenology.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 06/06/2007] [Indexed: 11/19/2022]
Abstract
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.
Collapse
Affiliation(s)
- K Moore
- Department of Animal Sciences, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
| | | | | | | | | |
Collapse
|
14
|
Gupta MK, Uhm SJ, Han DW, Lee HT. Embryo quality and production efficiency of porcine parthenotes is improved by phytohemagglutinin. Mol Reprod Dev 2007; 74:435-44. [PMID: 16998814 DOI: 10.1002/mrd.20547] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vitro production of porcine embryos has become routine in most laboratories but the yield and quality of the resultant blastocysts remain suboptimal. Phytohemagglutinin (PHA) is an N-acetylgalactosamine/galactose sugar-specific lectin with a wide variety of biological activities including mitogenesis, mediation of cell recognition, and agglutination of cells. This study was therefore, designed to investigate the effect of PHA on the preimplantation embryo development and quality of in vitro produced porcine parthenotes. Parthenogenetic presumptive diploid zygotes were produced in vitro by electrical activation and cultured in the absence or presence of PHA at different concentrations (0, 5, 10, 15, 20 microg/ml). There were no significant differences in the cleavage rate of porcine parthenotes in control and treatment groups at all tested concentrations of PHA (P < 0.05). However, supplementation of PHA at the concentration of 15 microg/ml significantly improved the blastocyst rate (68.9 +/- 1.5% vs. 43.1 +/- 4.1%), hatching rate (25.8 +/- 3.1% vs. 8.9 +/- 2.0%), and total nuclei number (95.5 +/- 9.3 vs. 63.4 +/- 4.3) when compared to control group (P > 0.05). TUNEL labeling revealed that blastocysts in PHA group were less predisposed to biochemical apoptosis than in control group while total apoptosis and nuclear fragmentation remained unaltered. Real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis further revealed that PHA decreased the expression ratio of BAX/BCL-XL and enhanced the relative abundance of IGF2 transcripts. Therefore, our study suggests that PHA improves the blastocyst yield and quality by enhancing blastocyst expansion, hatching, and total cell number and decreasing the apoptosis by positively modulating the expression of embryo survival related genes.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul, South Korea
| | | | | | | |
Collapse
|
15
|
Ogawa H, Wu Q, Komiyama J, Obata Y, Kono T. Disruption of parental-specific expression of imprinted genes in uniparental fetuses. FEBS Lett 2006; 580:5377-84. [PMID: 16987518 DOI: 10.1016/j.febslet.2006.08.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/12/2006] [Accepted: 08/29/2006] [Indexed: 11/26/2022]
Abstract
In mammals, imprinted genes show parental origin-dependent expression based on epigenetic modifications called genomic imprinting (GI), which are established independently during spermatogenesis or oogenesis. Due to GI, uniparental fetuses never develop to term. To determine whether such expression of imprinted genes is maintained in uniparental mouse fetuses, we analyzed the expression of 20 paternally and 11 maternally expressed genes in androgenetic and parthenogenetic fetuses. Four genes of each type were expressed in both groups of fetuses. Furthermore, quantitative analysis showed that expression levels deviated from the presumed levels for some imprinted genes. These results suggest that mechanisms acting in trans between paternal and maternal alleles are involved in the appropriate expression of some imprinted genes.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo 156-8502, Japan
| | | | | | | | | |
Collapse
|
16
|
Kubisch HM, Rasmussen TA, Johnson KM. Interferon-tau in bovine blastocysts following parthenogenetic activation of oocytes: pattern of secretion and polymorphism in expressed mRNA sequences. Mol Reprod Dev 2003; 64:79-85. [PMID: 12420302 DOI: 10.1002/mrd.10211] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of experiments were conducted to examine the pattern of production and secretion of interferon-tau (IFN-tau) by blastocysts following parthenogenetic activation of bovine oocytes. In the first experiment, 36.8, 24.1, and 33.2% of IVF-derived and parthenogenetically activated oocytes cultured in the presence or absence of a monolayer of buffalo rat liver cells, respectively, reached the blastocyst stage. Following individual culture of blastocysts, IFN-tau concentration in medium droplets was similar among the three groups, although IVF-derived blastocysts contained significantly more cells. In the second experiment, 156 IVF-derived blastocysts were sexed by PCR with 75 and 81, respectively, being male and female. IFN-tau secretion of these was compared to that of 70 parthenogenetic blastocysts. Female and parthenogenetic blastocysts produced significantly more IFN-tau than their male counterparts. In the third experiment, the ability of hatched blastocysts to form outgrowths and the pattern of their IFN-tau secretion were examined. Of the 48 IVF-derived blastocysts, 44 formed outgrowths compared to 41 of the 42 hatched parthenotes. Parthenogenetic outgrowths were significantly larger after 7 days, but this difference had disappeared after 14 days. IFN-tau secretion did not differ between the two groups. Lastly, sequence analyses of expressed mRNA from individual parthenogenetic blastocyst outgrowths showed four different transcript types which, based on their predicted amino acid sequence, belong to two subgroups, IFN-tau1 and IFN-tau3. In addition, one new transcript sequence was identified, encoding a new protein isoform.
Collapse
Affiliation(s)
- H Michael Kubisch
- Department of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana 70435, USA.
| | | | | |
Collapse
|
17
|
Sotomaru Y, Katsuzawa Y, Hatada I, Obata Y, Sasaki H, Kono T. Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses. J Biol Chem 2002; 277:12474-8. [PMID: 11805093 DOI: 10.1074/jbc.m109212200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.
Collapse
Affiliation(s)
- Yusuke Sotomaru
- Department of Animal Science, Tokyo University of Agriculture, 1737, Funako, Atsugi, Kanagawa 243-0034, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- N Rougier
- Department of Anatomy, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
19
|
Sotomaru Y, Kawase Y, Ueda T, Obata Y, Suzuki H, Domeki I, Hatada I, Kono T. Disruption of imprinted expression of U2afbp-rs/U2af1-rs1 gene in mouse parthenogenetic fetuses. J Biol Chem 2001; 276:26694-8. [PMID: 11306578 DOI: 10.1074/jbc.m101367200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study shows that the U2afbp-rs gene, a paternally expressed imprinted gene, is activated and expressed in a biallelic manner from maternal alleles in parthenogenetic mouse fetuses on day 9.5 of gestation. The mean expression was detected to be 88% (31-134%) of that in control biparental fetuses, using real-time quantitative reverse transcription and polymerase chain reaction. This disrupted expression of the gene was associated with changes in the chromatin structure but not with the methylation pattern in the regulation region. The present results show that parental specific expression of imprinted genes is not always maintained in uniparental embryos. This suggests that both parental genomes are necessary to establish parental specific expression of the U2afbp-rs gene.
Collapse
Affiliation(s)
- Y Sotomaru
- Department of Animal Science, Tokyo University of Agriculture, 1737, Funako, Atsugi-shi, Kanagawa 243-0034, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kanduri C, Holmgren C, Pilartz M, Franklin G, Kanduri M, Liu L, Ginjala V, Ullerås E, Mattsson R, Ohlsson R. The 5' flank of mouse H19 in an unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr Biol 2000; 10:449-57. [PMID: 10801414 DOI: 10.1016/s0960-9822(00)00442-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND During mouse prenatal development, the neighbouring insulin-like growth factor II (Igf2) and H19 loci are expressed monoallelically from the paternal and maternal alleles, respectively. Identical spatiotemporal expression patterns and enhancer deletion experiments show that the Igf2 and H19 genes share a common set of enhancers. Deletion of a differentially methylated region in the 5' flank of the H19 gene partially relieves the repression of the maternal Igf2 and paternal H19 alleles in the soma. The mechanisms underlying the function of the 5' flank of the H19 gene are, however, unknown. RESULTS Chromatin analysis showed that the 5' flank of the mouse H19 gene contains maternal-specific, multiple nuclease hypersensitive sites that map to linker regions between positioned nucleosomes. These features could be recapitulated in an episomal-based H19 minigene, which was propagated in human somatic cells. Although the 5' flank of the H19 promoter has no intrinsic silencer activity under these conditions, it unidirectionally extinguished promoter-enhancer communications in a position-dependent manner, without directly affecting the enhancer function. CONCLUSIONS The unmethylated 5' flank of the H19 gene adopts an unusual and maternal-specific chromatin conformation in somatic cells and regulates enhancer-promoter communications, thereby providing an explanation for its role in manifesting the repressed state of the maternally inherited Igf2 allele.
Collapse
Affiliation(s)
- C Kanduri
- Department of Animal Development and Genetics, Uppsala University, Uppsala, S-752 36, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gougoulidis T, Trounson AO, Draber P, Dowsing AT. Comparison of the expression of specific cell surface epitopes on in vitro fertilized and parthenogenetic bovine embryos. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-010x(19990901)284:4<392::aid-jez5>3.0.co;2-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G, Ohlsson R, Pfeifer S. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J Biol Chem 1998; 273:28247-52. [PMID: 9774446 DOI: 10.1074/jbc.273.43.28247] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The imprinted H19 gene produces a fully processed transcript that does not exhibit any conserved open reading frame between mouse and man. Although transcriptional control elements associated with the mouse H19 locus have been shown to control the neighboring Igf2 gene in cis, the prevailing view is that the cytoplasmic H19 transcript does not display any function. In contrast to earlier reports, we show here that the H19 transcript is associated with polysomes in a variety of cell types, in both mouse and man. A possible trans-function of the H19 gene is suggested by a reciprocal correlation in trans between cytoplasmic H19 and IGF2 mRNA levels, as well as IGF2 mRNA translatability. We discuss these results in terms of their challenge to the prevailing dogma on the function of the enigmatic H19 gene, as well as with respect to the ontogeny of the Beckwith-Wiedemann syndrome, and propose that the human H19 gene is an antagonist of IGF2 expressivity in trans.
Collapse
Affiliation(s)
- Y M Li
- Department of Animal Development & Genetics, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 1998; 125:1553-60. [PMID: 9502736 DOI: 10.1242/dev.125.8.1553] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parthenogenetic embryos, which contained one genome from a neonate-derived non-growing oocyte and the other from a fully grown oocyte, developed to day 13.5 of gestation in mice, 3 days longer than previously recorded for parthenogenetic development. To investigate the hypothesis that disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes and this parthenogenetic phenotype, we have examined Peg1/Mest, Igf2, Peg3, Snrpn, H19, Igf2r and excess p57KIP2. We show that paternally expressed genes, Peg1/Mest, Peg3 and Snrpn, are expressed in the parthenotes, presumably due to a lack of maternal epigenetic modifications during oocyte growth. In contrast, the expression of Igf2, which is repressed in a competitive manner by transcription of the H19 gene, was very low. Furthermore, we show that the maternally expressed Igf2r and p57KIP2 genes were repressed in the alleles of the non-growing oocyte indicating maternal modifications during oocyte growth are necessary for its expression. Thus, our results show that primary imprinting during oocyte growth exhibits a crucial effect on both the expression and repression of maternal alleles during embryogenesis.
Collapse
Affiliation(s)
- Y Obata
- NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mitsuya K, Meguro M, Sui H, Schulz TC, Kugoh H, Hamada H, Oshimura M. Epigenetic reprogramming of the human H19 gene in mouse embryonic cells does not erase the primary parental imprint. Genes Cells 1998; 3:245-55. [PMID: 9663659 DOI: 10.1046/j.1365-2443.1998.00183.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genomic imprinting in mammals is thought to result from epigenetic modifications to chromosomes during gametogenesis, which leads to differential allelic expression during development. There is a requirement for an appropriate experimental system to enable the analysis of the mechanisms of genomic imprinting during embryogenesis. RESULTS To develop a novel in vitro system for studying the molecular basis of genomic imprinting, we constructed mouse cell lines containing either a paternal or maternal human chromosome 11, by microcell-mediated chromosome transfer. Allele-specific expression and DNA methylation studies revealed that the imprinting status of the human H19 gene was maintained in mouse A9 mono-chromosomal hybrids. Each parental human chromosome was introduced independently into mouse near-diploid immortal fibroblasts (m5S) and two embryonal carcinoma (EC) cell lines (OTF9-63 and P19). The paternal allele of human H19 remained in a repressed state in m5S cells, but was de-repressed in both EC cells. The paternal H19 allele was demethylated extensively in OTF9-63 cells, whereas the only alteration in P19 hybrids was de novo methylation on both alleles in the 3' region. Following in vitro differentiation, the expressed paternal H19 allele was selectively repressed in differentiated derivatives of EC hybrids. CONCLUSION These results indicated that human imprint marks could function effectively in mouse cells, and that the imprinting process was epigenetically reprogrammed in embryonal carcinoma cells, without erasure of the primary imprint that marked the parental origin. Therefore, these mono-chromosomal hybrids could provide a valuable in vitro system to study the mechanisms involved in the regulation of imprinted gene expression.
Collapse
Affiliation(s)
- K Mitsuya
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Genomic imprinting in mammals results in the unequal expression of the two parental alleles of specific genes. The existence of imprinting in the mouse emerged from nuclear transplantation studies and from the abnormal phenotypes associated with uniparental inheritance of particular chromosome segments. Over the past 5 years, 20 or so imprinted genes have been identified. This has emphasized the important roles played by some imprinted genes in development, permitted a description of the epigenetic properties associated with imprinting, and provided the first insights into the regulation of imprinting. In this article, we discuss the generation of experimental material in which imprinting effects can be analyzed, review the properties of imprinted genes, and discuss how to examine them using state-of-the-art techniques. Finally, we consider the means by which new imprinted genes can be identified.
Collapse
Affiliation(s)
- G Kelsey
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
26
|
Svensson K, Mattsson R, James TC, Wentzel P, Pilartz M, MacLaughlin J, Miller SJ, Olsson T, Eriksson UJ, Ohlsson R. The paternal allele of the H19 gene is progressively silenced during early mouse development: the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 1998; 125:61-9. [PMID: 9389664 DOI: 10.1242/dev.125.1.61] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional silencing can reflect heritable, epigenetic inactivation of genes, either singly or in groups, during the life-time of an organism. This phenomenon is exemplified by parent-of-origin-specific inactivation events (genomic imprinting) for a subset of mammalian autosomal genes, such as H19. Very little is known, however, about the timing and mechanism(s) of silencing of the paternal H19 allele during mouse development. Using a novel in situ approach, we present evidence that the silencing of the paternal H19 allele is progressive in the trophectodermal lineage during early mouse development and generates variegated expression patterns. The silencing process apparently involves recruitment of histone deacetylases since the mosaic paternal-specific H19 expression reappears in trichostatin A-treated mouse conceptuses, undergoing in vitro organogenesis. Moreover, the paternal H19 alleles of PatDup.d7 placentas, in which a region encompassing the H19 locus of chromosome 7 is bipaternally derived, partially escape the silencing process and are expressed in a variegated manner. We suggest that allele-specific silencing of H19 share some common features with chromatin-mediated silencing in position-effect variegation.
Collapse
Affiliation(s)
- K Svensson
- Department of Animal Development and Genetics, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alders M, Hodges M, Hadjantonakis AK, Postmus J, van Wijk I, Bliek J, de Meulemeester M, Westerveld A, Guillemot F, Oudejans C, Little P, Mannens M. The human Achaete-Scute homologue 2 (ASCL2,HASH2) maps to chromosome 11p15.5, close to IGF2 and is expressed in extravillus trophoblasts. Hum Mol Genet 1997; 6:859-67. [PMID: 9175731 DOI: 10.1093/hmg/6.6.859] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we describe the cloning of the human Achaete Scute Homologue 2 (HASH2) gene, officially designated ASCL2 (Achaete Scute complex like 2), a homologue of the Drosophila Achaete and Scute genes. In mouse, this gene is imprinted and maps to chromosome 7. We mapped the human homologue close to IGF2 and H19 at 11p15.5, the human region syntenic with mouse chromosome 7, indicating that this imprinted region is highly conserved in mouse and man. HASH2 is expressed in the extravillus trophoblasts of the developing placenta only. The lack of HASH2 expression in non-malignant hydatidiform (androgenetic) moles indicates that HASH2 is also imprinted in man.
Collapse
Affiliation(s)
- M Alders
- Institute of Human Genetics, University of Amsterdam, Academisch Medisch Centrum, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi S, Kohda T, Miyoshi N, Kuroiwa Y, Aisaka K, Tsutsumi O, Kaneko-Ishino T, Ishino F. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Mol Genet 1997; 6:781-6. [PMID: 9158153 DOI: 10.1093/hmg/6.5.781] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mouse Peg1/Mest gene is an imprinted gene that is expressed particularly in mesodermal tissues in early embryonic stages. It was the most abundant imprinted gene among eight paternally expressed genes (Peg 1-8) isolated by a subtraction-hybridization method from a mouse embryonal cDNA library. It has been mapped to proximal mouse chromosome 6, maternal duplication of which causes early embryonic lethality. The human chromosomal region that shares syntenic homology with this is 7q21-qter, and human maternal uniparental disomy 7 (UPD 7) causes apparent growth deficiency and slight morphological abnormalities. Therefore, at least one paternally expressed imprinted gene seems to be present in this region. In this report, we demonstrate that human PEG1/MEST is an imprinted gene expressed from a paternal allele and located on chromosome 7q31-34, near D7S649. It is the first imprinted gene mapped to human chromosome 7 and a candidate for a gene responsible for primordial growth retardation including Silver-Russell syndrome (SRS).
Collapse
Affiliation(s)
- S Kobayashi
- Gene Research Center, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- L H Looijenga
- Dr. Daniel den Hoed Cancer Center, University Hospital Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
30
|
Shemer R, Birger Y, Dean WL, Reik W, Riggs AD, Razin A. Dynamic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci U S A 1996; 93:6371-6. [PMID: 8692822 PMCID: PMC39029 DOI: 10.1073/pnas.93.13.6371] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Monoallelic expression in diploid mammalian cells appears to be a widespread phenomenon, with the most studied examples being X-chromosome inactivation in eutherian female cells and genomic imprinting in the mouse and human. Silencing and methylation of certain sites on one of the two alleles in somatic cells is specific with respect to parental source for imprinted genes and random for X-linked genes. We report here evidence indicating that: (i) differential methylation patterns of imprinted genes are not simply copied from the gametes, but rather established gradually after fertilization; (ii) very similar methylation patterns are observed for diploid, tetraploid, parthenogenic, and androgenic preimplantation mouse embryos, as well as parthenogenic and androgenic mouse embryonic stem cells; (iii) haploid parthenogenic embryos do not show methylation adjustment as seen in diploid or tetraploid embryos, but rather retain the maternal pattern. These observations suggest that differential methylation in imprinted genes is achieved by a dynamic process that senses gene dosage and adjusts methylation similar to X-chromosome inactivation.
Collapse
Affiliation(s)
- R Shemer
- Department of Cellular Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
31
|
McKarney LA, Overall ML, Dziadek M. Expression of H19 and Igf2 genes in uniparental mouse ES cells during in vitro and in vivo differentiation. Differentiation 1996; 60:75-86. [PMID: 8641548 DOI: 10.1046/j.1432-0436.1996.6020075.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genomic imprinting is a process that results in the differential expression of genes according to their parental inheritance. Two imprinted genes, insulin-like growth factor 2 (Igf2) and H19 are closely linked on mouse chromosome 7, and are expressed from the paternal and maternal alleles, respectively. The genes show striking similarity in their tissue-specific expression patterns, which led to the proposal that their transcription is controlled by a common regulatory domain that enables only one gene to be active from each chromosome. Evidence is accumulating, however, that the expression of H19 and Igf2 genes is not always from their respective maternal and paternal alleles. This suggests that their expression is regulated independently of imprinting in some tissues and teratomas. We have analysed the extent of non-imprinted expression of H19 and Igf2 in uniparental mouse embryonic stem (ES) cells during in vitro differentiation, and differentiation in teratomas using Northern blot and in situ hybridisation analysis. The expression patterns observed indicate that both imprinting and non-imprinting mechanisms regulate transcription of these genes. Expression of one or the other gene was observed in certain cell types in differentiated cultures and in teratomas, suggesting that imprinting regulates the expression of H19 and Igf2 genes in some differentiating cell lineages. At the same time, in other subpopulations of cells, co-expression of both genes was observed, demonstrating that the expression of these genes is not always regulated by genomic imprinting.
Collapse
Affiliation(s)
- L A McKarney
- Institute of Reproduction and Development, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | |
Collapse
|
32
|
Adam GI, Cui H, Miller SJ, Flam F, Ohlsson R. Allele-specific in situ hybridization (ASISH) analysis: a novel technique which resolves differential allelic usage of H19 within the same cell lineage during human placental development. Development 1996; 122:839-47. [PMID: 8631262 DOI: 10.1242/dev.122.3.839] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Precursory studies of H19 transcription during human foetal development have demonstrated maternally derived monoallelic expression. Analyses in extra-embryonic tissues, however, have been more equivocal, with discernible levels of expression of the paternal allele of H19 documented in the first trimester placenta. By refining the in situ hybridization technique we have developed an assay to enable the functional imprinting status of H19 to be determined at the cellular level. This assay involves the use of oligonucleotide DNA probes that are able to discriminate between allelic RNA transcripts containing sequence polymorphisms. Biallelic expression of H19 is confined to a subpopulation of cells of the trophoblast lineage, the extravillous cytotrophoblast, while the mesenchymal stroma cells maintain the imprinted pattern of monoallelic expression of H19 throughout placental development. This data demonstrates that the low level of paternal H19 expression previously detected in normal human placenta is not due to a random loss of functional imprinting, but appears to result from a developmentally regulated cell type-specific activation of the paternal allele. In addition, biallelic expression of H19 does not seem to affect the functional imprinting of the insulin-like growth factor II gene, which is monoallelically expressed at relatively high levels in the extra-villous cytotrophoblasts. These results imply that the allelic usage of these two genes in normal human placental development may not be directly analogous to the situation previously documented in the mouse embryo.
Collapse
Affiliation(s)
- G I Adam
- Department of Animal Development and Genetics, University of Uppsala, Sweden
| | | | | | | | | |
Collapse
|
33
|
Mowery-Rushton PA, Driscoll DJ, Nicholls RD, Locker J, Surti U. DNA methylation patterns in human tissues of uniparental origin using a zinc-finger gene (ZNF127) from the Angelman/Prader-Willi region. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 61:140-6. [PMID: 8669440 DOI: 10.1002/(sici)1096-8628(19960111)61:2<140::aid-ajmg7>3.0.co;2-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to further our understanding of the epigenetic modifications of DNA and its role in imprinting, we examined DNA methylation patterns of human tissues of uniparental origin. We used complete hydatidiform moles (CHM), which are totally androgenetic conceptions, to examine the paternal methylation pattern in the absence of a maternal contribution and we used ovarian teratomas to represent the maternal counterpart. We carried out an analysis of DNA methylation of a gene which has been shown to contain sites which are differentially methylated in a parent-specific fashion. The gene, ZNF127, is located on chromosome 15q11-q13 in the region associated with Prader-Willi and Angelman syndromes. The parent-of-origin DNA methylation has been postulated to reflect the presence of an imprint and recent studies have confirmed that ZNF127 is differentially expressed only from the paternal chromosome. We identified a unique pattern of hyper- and hypomethylated sites in androgenetic conceptions which was nearly identical to the paternal pattern found in sperm. This may represent the paternal germ-line methylation imprint. We also studied partial hydatidiform moles, non-molar triploid conceptions, normal chorionic villi, and somatic tissue. These all demonstrated a modified DNA methylation pattern characteristic of normal chorionic villi with only limited findings of the imprint. Our results suggest that human androgenetic conceptions may provide an excellent model to analyze epigenetic DNA modifications, such as methylation, in imprinted genes. The paternal allele-specific methylation imprint will also be useful clinically to confirm the androgenetic nature of suspected molar conceptions in which parental blood samples may not be available.
Collapse
Affiliation(s)
- P A Mowery-Rushton
- Department of Genetics, Magee Womens Hospital, Pittsburgh, Pennsylvania, 1521 USA
| | | | | | | | | |
Collapse
|
34
|
Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, Viville S, Barton SC, Ishino F, Surani MA. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 1995; 11:52-9. [PMID: 7550314 DOI: 10.1038/ng0995-52] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Parthenogenesis in the mouse is embryonic lethal partly because of imprinted genes that are expressed only from the paternal genome. In a systematic screen using subtraction hybridization between cDNAs from normal and parthenogenetic embryos, we initially identified two apparently novel imprinted genes, Peg1 and Peg3. Peg1 (paternally expressed gene 1) or Mest, the first imprinted gene found on the mouse chromosome 6, may contribute to the lethality of parthenogenones and of embryos with a maternal duplication for the proximal chromosome 6. Peg1/Mest is widely expressed in mesodermal tissues and belongs to the alpha/beta hydrolase fold family. A similar approach with androgenones can be used to identify imprinted genes that are expressed from the maternal genome only.
Collapse
Affiliation(s)
- T Kaneko-Ishino
- Gene Research Center, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fundele R, Herzfeld A, Li LL, Barton SC, Surani MA. Proliferation and differentiation of androgenetic cells in fetal mouse chimeras. ACTA ACUST UNITED AC 1995; 204:494-501. [DOI: 10.1007/bf00360857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1995] [Accepted: 05/11/1995] [Indexed: 10/26/2022]
|
36
|
Ekström TJ, Cui H, Nyström A, Rutanen EM, Ohlsson R. Monoallelic expression of IGF2 at the human fetal/maternal boundary. Mol Reprod Dev 1995; 41:177-83. [PMID: 7654371 DOI: 10.1002/mrd.1080410208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IGF2 is expressed in both placental and decidual tissues, enabling an analysis of the parental imprinting over the fetomaternal boundary. Evidence is provided that IGF2 is monoallelically expressed in both placenta and pregnant, as well as nonpregnant, endometrium. These observations suggest that the maternally derived IGF2 allele is inactivated during germline transmission. Comparison of promoter usage in decidua and placental samples shows that the P3 promoter appears to regulated independently of the others. These observations are discussed with respect to current models of IGF2 imprinting and the hypothesized conflict of parental reproductive interests which bears on the phenomenon of parental imprinting.
Collapse
Affiliation(s)
- T J Ekström
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Svensson K, Walsh C, Fundele R, Ohlsson R. H19 is imprinted in the choroid plexus and leptomeninges of the mouse foetus. Mech Dev 1995; 51:31-7. [PMID: 7669691 DOI: 10.1016/0925-4773(94)00345-n] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It has been proposed that either the Igf-2 gene or the H19 gene--but not both--can be expressed from a given chromosome. Igf-2 is known to be biallelically expressed in the choroid plexus and leptomeninges, however, raising the question of whether H19 is down-regulated or absent there. We found by in situ hybridization that H19 is indeed expressed in the choroid plexus and leptomeninges of the developing mouse foetus. Comparison with the expression pattern of Igf-2 showed that the genes are coexpressed in all areas, with the exception of the choroid plexus epithelium. To evaluate whether H19 is also biallelically expressed in these tissues, we microdissected embryos from interspecific crosses and performed RNAse protection analysis on the isolated RNA. This revealed that H19 maintains its imprint in the choroid plexus/leptomeninges, being transcribed from the maternal allele at a level comparable to that in normal liver. We discuss the significance of these results for current models of Igf-2 and H19 imprinting.
Collapse
Affiliation(s)
- K Svensson
- Department of Animal development and Genetics, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Ekström TJ, Cui H, Li X, Ohlsson R. Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 1995; 121:309-16. [PMID: 7768174 DOI: 10.1242/dev.121.2.309] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IGF2 has been shown to be expressed preferentially from the paternally derived allele, although the maternal allele can be found active during both prenatal and postnatal development as well as in neoplastic tumours in humans. We addressed here whether or not the biallelic expression patterns that can be seen during postnatal human liver development reflected a coordinated change in the activities of the four promoters of human IGF2. We show here that the P2, P3 and P4 promoters, but not the P1 promoter, display monoallelic activity in embryonic, neonatal and younger infant liver specimens. The P2, P3 and P4 promoters can, however, be found active either monoallelically or biallelically or even monoallelically on opposite parental alleles in older infant and adult liver specimens. In contrast, H19, which is closely linked to IGF2, is monoallelically expressed in all postnatal liver samples analysed. We conclude that the functional imprinting status of IGF2 during postnatal liver development appears to be promoter/enhancer-specific and either partly or completely independent of H19.
Collapse
Affiliation(s)
- T J Ekström
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
39
|
Latham KE, McGrath J, Solter D. Mechanistic and developmental aspects of genetic imprinting in mammals. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 160:53-98. [PMID: 7558687 DOI: 10.1016/s0074-7696(08)61553-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genetic imprinting in mammals allows the recognition and differential expression of maternal and paternal alleles of certain genes. Recent results from a number of laboratories indicate that, at least for some genes, gametic imprints, which must exist in order to mark chromosomes or genes as having been transmitted via sperm or ovum, are not by themselves sufficient to determine allele expression. Other postfertilization events are required, and these events are subject to both tissue-specific and developmental stage-specific regulation. Changes in imprinted gene methylation during preimplantation and fetal life indicate that the establishment of additional allele-specific modifications is likely to contribute to imprinted regulation. Disruptions in imprinting processes, loss of imprints, and loss of nonimprinted alleles through uniparental disomy are likely to contribute to a variety of developmental abnormalities and pathological conditions in both mice and humans.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
40
|
Kay GF, Barton SC, Surani MA, Rastan S. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 1994; 77:639-50. [PMID: 8205614 DOI: 10.1016/0092-8674(94)90049-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mice, X inactivation is preceded by in cis Xist expression. Initially, normal female embryos express the paternal Xist allele exclusively, preceding imprinted X inactivation in the trophectoderm. Later expression of Xist alleles is random, preceding random X inactivation in the epiblast lineage. In this study using uniparental embryos, we demonstrate that Xist expression is initially dictated solely by parental imprinting, causing expression of all paternal alleles. Maternal alleles remain repressed, irrespective of X chromosome number. At the compacting morula stage, this parental imprint is erased, and the mechanism counting the X chromosomes imposes appropriate Xist expression with respect to chromosome number. Our results also suggest that Xist expression may itself be regulated by a novel imprinted maternally expressed gene.
Collapse
Affiliation(s)
- G F Kay
- Section of Comparative Biology, Medical Research Council Clinical Research Centre, Harrow, England
| | | | | | | |
Collapse
|
41
|
Abstract
One parental copy of an imprinted gene is invariably expressed during development. The characteristic of the heritable epigenetic germline imprint remains elusive, but recent evidence stresses the necessity for additional post-zygotic epigenetic modifications to account for this temporal and tissue-specific mono-allelic expression. Preliminary insight into a diversity of post-zygotic control mechanisms is beginning to emerge.
Collapse
Affiliation(s)
- M A Surani
- Wellcome/CRC Institute of Cancer and Developmental Biology, Cambridge, UK
| |
Collapse
|
42
|
Abstract
The molecular mechanisms introducing epigenetic modifications that lead to differential silencing of some autosomal alleles depending on their parental legacy are still largely unknown, but recent results from studies of endogenously imprinted genes and particular transgenes make DNA methylation a strong candidate. At the same time, these results have raised new questions about the details of the imprinting process.
Collapse
Affiliation(s)
- A Efstratiadis
- Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
43
|
Fundele RH, Surani MA. Experimental embryological analysis of genetic imprinting in mouse development. DEVELOPMENTAL GENETICS 1994; 15:515-22. [PMID: 7834910 DOI: 10.1002/dvg.1020150610] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R H Fundele
- Institut für Biologie III, Universität Freiburg, Germany
| | | |
Collapse
|