1
|
Nguyen MQ, Taniguchi M, Yasumura M, Iguchi T, Sato M. Cytoneme-like protrusion formation induced by LAR is promoted by receptor dimerization. Biol Open 2022; 11:276051. [PMID: 35735010 PMCID: PMC9346286 DOI: 10.1242/bio.059024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Actin-based protrusions called cytonemes are reported to function in cell communication by supporting events such as morphogen gradient establishment and pattern formation. Despite the crucial roles of cytonemes in cell signaling, the molecular mechanism for cytoneme establishment remains elusive. In this study, we showed that the leukocyte common antigen-related (LAR) receptor protein tyrosine phosphatase plays an important role in cytoneme-like protrusion formation. Overexpression of LAR in HEK293T cells induced the formation of actin-based protrusions, some of which exceeded 200 µm in length and displayed a complex morphology with branches. Upon focusing on the regulation of LAR dimerization or clustering and the resulting regulatory effects on LAR phosphatase activity, we found that longer and more branched protrusions were formed when LAR dimerization was artificially induced and when heparan sulfate was applied. Interestingly, although the truncated form of LAR lacking phosphatase-related domains promoted protrusion formation, the phosphatase-inactive forms did not show clear changes, suggesting that LAR dimerization triggers the formation of cytoneme-like protrusions in a phosphatase-independent manner. Our results thus emphasize the importance of LAR and its dimerization in cell signaling. This article has an associated First Person interview with the first author of the paper. Summary: We showed that the formation of cytoneme-like protrusions, which function in cell signaling, is induced by LAR and clarified that it is LAR dimerization which promotes protrusion formation.
Collapse
Affiliation(s)
- Mai Quynh Nguyen
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Japan
| | - Makoto Sato
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui (UGSCD), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
3
|
Zhu Q, Tan Z, Zhao S, Huang H, Zhao X, Hu X, Zhang Y, Shields CB, Uetani N, Qiu M. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination. Neuroscience 2015; 308:106-14. [PMID: 26341907 PMCID: PMC4600676 DOI: 10.1016/j.neuroscience.2015.08.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocytes undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals.
Collapse
Affiliation(s)
- Q Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Z Tan
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - S Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - H Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - X Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China
| | - X Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Y Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - C B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - N Uetani
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - M Qiu
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA; Institute of Developmental and Regenerative Biology, Zhejiang Key Lab of Organ Development and Regeneration, College of Life Sciences, Hangzhou Normal University, China.
| |
Collapse
|
4
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
5
|
Muise A, Rotin D. Apical junction complex proteins and ulcerative colitis: a focus on thePTPRSgene. Expert Rev Mol Diagn 2014; 8:465-77. [DOI: 10.1586/14737159.8.4.465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Lee S, Faux C, Nixon J, Alete D, Chilton J, Hawadle M, Stoker AW. Dimerization of protein tyrosine phosphatase sigma governs both ligand binding and isoform specificity. Mol Cell Biol 2006; 27:1795-808. [PMID: 17178832 PMCID: PMC1820468 DOI: 10.1128/mcb.00535-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling through receptor protein tyrosine phosphatases (RPTPs) can influence diverse processes, including axon development, lymphocyte activation, and cell motility. The molecular regulation of these enzymes, however, is still poorly understood. In particular, it is not known if, or how, the dimerization state of RPTPs is related to the binding of extracellular ligands. Protein tyrosine phosphatase sigma (PTPsigma) is an RPTP with major isoforms that differ in their complements of fibronectin type III domains and in their ligand-binding specificities. In this study, we show that PTPsigma forms homodimers in the cell, interacting at least in part through the transmembrane region. Using this knowledge, we provide the first evidence that PTPsigma ectodomains must be presented as dimers in order to bind heterophilic ligands. We also provide evidence of how alternative use of fibronectin type III domain complements in two major isoforms of PTPsigma can alter the ligand binding specificities of PTPsigma ectodomains. The data suggest that the alternative domains function largely to change the rotational conformations of the amino-terminal ligand binding sites of the ectodomain dimers, thus imparting novel ligand binding properties. These findings have important implications for our understanding of how heterophilic ligands interact with, and potentially regulate, RPTPs.
Collapse
Affiliation(s)
- Simon Lee
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Siu R, Fladd C, Rotin D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol Cell Biol 2006; 27:208-19. [PMID: 17060446 PMCID: PMC1800655 DOI: 10.1128/mcb.00707-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase sigma (PTPsigma) belongs to the LAR family of receptor tyrosine phosphatases and was previously shown to negatively regulate axon growth. The substrate for PTPsigma and the effector(s) mediating this inhibitory effect were unknown. Here we report the identification of N-cadherin as an in vivo substrate for PTPsigma. Using brain lysates from PTPsigma knockout mice, in combination with substrate trapping, we identified a hyper-tyrosine-phosphorylated protein of approximately 120 kDa in the knockout animals (relative to sibling controls), which was identified by mass spectrometry and immunoblotting as N-cadherin. beta-Catenin also precipitated in the complex and was also a substrate for PTPsigma. Dorsal root ganglion (DRG) neurons, which highly express endogenous N-cadherin and PTPsigma, exhibited a faster growth rate in the knockout mice than in the sibling controls when grown on laminin or N-cadherin substrata. However, when N-cadherin function was disrupted by an inhibitory peptide or lowering calcium concentrations, the differential growth rate between the knockout and sibling control mice was greatly diminished. These results suggest that the elevated tyrosine phosphorylation of N-cadherin in the PTPsigma(-/-) mice likely disrupted N-cadherin function, resulting in accelerated DRG nerve growth. We conclude that N-cadherin is a physiological substrate for PTPsigma and that N-cadherin (and likely beta-catenin) participates in PTPsigma-mediated inhibition of axon growth.
Collapse
Affiliation(s)
- Roberta Siu
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Ontario, Canada
| | | | | |
Collapse
|
8
|
Sajnani G, Aricescu AR, Jones EY, Gallagher J, Alete D, Stoker A. PTPσ promotes retinal neurite outgrowth non-cell-autonomously. ACTA ACUST UNITED AC 2005; 65:59-71. [PMID: 16003721 DOI: 10.1002/neu.20175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The receptor-like protein tyrosine phosphatase (RPTP) PTPsigma controls the growth and targeting of retinal axons, both in culture and in ovo. Although the principal actions of PTPsigma have been thought to be cell-autonomous, the possibility that RPTPs related to PTPsigma also have non-cell-autonomous signaling functions during axon development has also been supported genetically. Here we report that a cell culture substrate made from purified PTPsigma ectodomains supports retinal neurite outgrowth in cell culture. We show that a receptor for PTPsigma must exist on retinal axons and that binding of PTPsigma to this receptor does not require the known, heparin binding properties of PTPsigma. The neurite-promoting potential of PTPsigma ectodomains requires a basic amino acid domain, previously demonstrated in vitro as being necessary for ligand binding by PTPsigma. Furthermore, we demonstrate that heparin and oligosaccharide derivatives as short as 8mers, can specifically block neurite outgrowth on the PTPsigma substrate, by competing for binding to this same domain. This is the first direct evidence of a non-cell-autonomous, neurite-promoting function of PTPsigma and of a potential role for heparin-related oligosaccharides in modulating neurite promotion by an RPTP.
Collapse
Affiliation(s)
- Gustavo Sajnani
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
9
|
Beltran PJ, Bixby JL, Masters BA. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003; 456:384-95. [PMID: 12532410 DOI: 10.1002/cne.10532] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Competition and cooperation between type II and type III receptor protein tyrosine phosphatases (RPTPs) regulate axon extension and pathfinding in Drosophila. The first step to investigate whether RPTPs influence axon growth in the more complex vertebrate nervous system is to identify which neurons express a particular RPTP. We studied the expression of mouse PTPRO, a type III RPTP with an extracellular region containing eight fibronectin type III domains, during embryogenesis and after birth. Mouse PTPRO mRNA is expressed exclusively in two cell types: neurons and kidney podocytes. Maximal expression in the brain was coincident with mid to late gestation and axonogenesis in the brain. We cloned two cDNAs, including a splice variant without sequence coding of 28 amino acids within the juxtamembrane domain that was found mostly in kidney. In situ hybridization detected mPTPRO mRNA in the cerebral cortex, olfactory bulb and nucleus, hippocampus, motor neurons, and the spinal cord midline. In addition, mPTPRO mRNA was found throughout dorsal root, cranial, and sympathetic ganglia and within kidney glomeruli. Mouse PTPRO mRNA was observed in neuron populations expressing TrkA, the high-affinity nerve growth factor receptor, or TrkC, the neurotrophin-3 receptor, and immunoreactive mPTPRO and TrkC colocalized in large dorsal root ganglia proprioceptive neurons. Our results suggest that mPTPRO is involved in the differentiation and axonogenesis of central and peripheral nervous system neurons, where it is in a position to modulate intracellular responses to neurotrophin-3 and/or nerve growth factor.
Collapse
Affiliation(s)
- Pedro J Beltran
- The Neuroscience Program and Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
10
|
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are key regulators of neuronal morphogenesis in a variety of different vertebrate and invertebrate systems, yet the mechanisms by which these proteins regulate central nervous system development are poorly understood. In the past few years, studies have begun to outline possible models for RPTP function by demonstrating in vivo roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In addition, the crystal structures of several RPTPs have been solved, numerous downstream effectors of RPTP signaling have been identified, and a small number of RPTP ligands have been described. In this review, we focus on how RPTPs transduce signals from the extracellular environment to the cytoplasm, using a detailed comparative analysis of the different RPTP subfamilies. Focusing on the roles RPTPs play in the development of the central nervous system, we discuss how the elucidation of RPTP crystal structures, the biochemical analysis of phosphatase enzyme catalysis, and the characterization of complex signal transduction cascades downstream of RPTPs have generated testable models of RPTP structure and function.
Collapse
Affiliation(s)
- Karl G Johnson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02446, USA
| | | |
Collapse
|
11
|
Sajnani-Perez G, Chilton JK, Aricescu AR, Haj F, Stoker AW. Isoform-specific binding of the tyrosine phosphatase PTPsigma to a ligand in developing muscle. Mol Cell Neurosci 2003; 22:37-48. [PMID: 12595237 DOI: 10.1016/s1044-7431(02)00026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PTPsigma is a receptor tyrosine phosphatase that is expressed widely in the developing nervous system and that controls the growth and retinotopic mapping of retinal axons. PTPsigma is also expressed in motor neurons where its function is unclear. Given that invertebrate relatives of PTPsigma can control motor axon guidance, target contact, and synaptogenesis, we have asked if extracellular ligands exist for cPTPsigma, the avian PTPsigma orthologue, in the neuromuscular system. Of the two major isoforms cPTPsigma1 and cPTPsigma2, only the shorter cPTPsigma1 isoform is expressed in developing spinal motor neurons and their axons. We show that ectodomains of cPTPsigma1, but not of cPTPsigma2, bind specifically to developing skeletal myotubes. The putative myotube ligand is not related to the previously described binding of cPTPsigma to heparan sulfates within the proteoglycans agrin and collagen XVIII, since heparinase treatment of myotubes does not alter cPTPsigma1 binding and since most mutations that abolish binding of cPTPsigma1 to heparin do not affect myotube binding. The expression of cPTPsigma1 in motor axons and its direct binding to target myotubes suggest an isoform-specific role for axonally expressed cPTPsigma1 during establishment or maintenance of neuromuscular contacts.
Collapse
MESH Headings
- Animals
- Axons/enzymology
- Axons/ultrastructure
- Binding Sites/genetics
- Collagen/genetics
- Collagen/metabolism
- Collagen Type XVIII
- Endostatins
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Growth Cones/enzymology
- Growth Cones/ultrastructure
- Heparan Sulfate Proteoglycans/metabolism
- Immunoglobulins/metabolism
- Ligands
- Mice
- Motor Neurons/cytology
- Motor Neurons/enzymology
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/enzymology
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/enzymology
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary/physiology
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Spinal Cord/cytology
- Spinal Cord/embryology
- Spinal Cord/enzymology
Collapse
Affiliation(s)
- Gustavo Sajnani-Perez
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
12
|
Abstract
Chick PTPsigma (cPTPsigma), also known as CRYPalpha, is a receptor-like protein tyrosine phosphatase found on axons and growth cones. Putative ligands for cPTPsigma are distributed within basement membranes and on glial end feet of the retina, optic nerve, and optic tectum, suggesting that cPTPsigma signaling is occurring along the whole retinotectal pathway. We have shown previously that cPTPsigma plays a role in supporting the retinal phase of axon outgrowth. Here we have now addressed the role of cPTPsigma within retinal axons as they undergo growth and topographic targeting in the optic tectum. With the use of retroviruses, a secretable cPTPsigma ectodomain was ectopically expressed in ovo in the developing chick optic tectum, with the aim of directly disrupting the function of endogenous cPTPsigma. In ovo, the secreted ectodomains accumulated at tectal sites in which cPTPsigma ligands are also specifically found, suggesting that they are binding to these endogenous ligands. Anterograde labeling of retinal axons entering these optic tecta revealed abnormal axonal phenotypes. These included the premature stalling and arborization of fibers, excessive pretectal arbor formation, and diffuse termination zones. Most of the defects were rostral of the predicted termination zone, indicating that cPTPsigma function is necessary for sustaining the growth of retinal axons over the optic tectum and for directing axons to their correct sites of termination. This demonstrates that regulation of cPTPsigma signaling in retinal axons is required for their topographic mapping, the first evidence of this function for a receptor-like protein tyrosine phosphatase in the retinotectal projection.
Collapse
|
13
|
Aricescu AR, McKinnell IW, Halfter W, Stoker AW. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol 2002; 22:1881-92. [PMID: 11865065 PMCID: PMC135600 DOI: 10.1128/mcb.22.6.1881-1892.2002] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues.
Collapse
Affiliation(s)
- A Radu Aricescu
- Neural Development Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | |
Collapse
|
14
|
Chilton JK, Stoker AW. Expression of receptor protein tyrosine phosphatases in embryonic chick spinal cord. Mol Cell Neurosci 2000; 16:470-80. [PMID: 11085882 DOI: 10.1006/mcne.2000.0887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Receptor-like protein tyrosine phosphatases potentially play a crucial role in axon growth and targeting. We focus here on their role within the embryonic avian spinal cord, in particular the development and outgrowth of motorneurons. We have used in situ mRNA hybridization to examine the spatiotemporal expression of eight receptor-like protein tyrosine phosphatases and find that it is both dynamic and highly varied, including novel, isoform-specific expression patterns. CRYP alpha 1 is expressed in all of the ventral motorneuron pools, whereas CRYP2, RPTP gamma, and RPTP alpha are only expressed in specific subsets of these neurons. CRYP alpha 2, RPTP psi, and RPTP delta are neuronally expressed elsewhere in the cord, but not in ventral motorneurons, whereas RPTP mu is unique in being restricted to capillaries. The developmentally regulated expression of these genes strongly suggests that the encoded phosphatases play numerous roles during neurogenesis and axonogenesis in the vertebrate spinal cord.
Collapse
Affiliation(s)
- J K Chilton
- Neural Development Unit, Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
15
|
Abstract
The last 5 years has seen an explosion of evidence linking RPTPs to the regulation of axon growth and guidance. Important questions to be addressed include the ligand-receptor interactions involved in axon growth regulation, the signaling pathways controlled by RPTPs in neurons, and the manner in which different RPTPs within a class, and different classes of RPTPs, coordinate their functions to ensure appropriate axon growth. Are RPTPs signaling ligands, signaling receptors, or both? Do RPTPs function mainly by modifying adhesive preferences, or are they instructive in guidance decisions? Do specific types of RPTPs send specific signals to neurons, or do they work together to fine-tune levels of tyrosine phosphorylation? Whatever the outcome, it seems certain that the answers to these questions will come only from a combination of the powerful genetic approaches possible in Drosophila (and in mice) with the biochemical and cell biological approaches possible in the vertebrate systems.
Collapse
Affiliation(s)
- J L Bixby
- Department of Pharmacology, University of Miami School of Medicine, FL 33136, USA
| |
Collapse
|
16
|
Abstract
Neural cell adhesion molecules (CAMs) of the immunoglobulin superfamily nucleate and maintain groups of cells at key sites during early development and in the adult. In addition to their adhesive properties, binding of CAMs can affect intracellular signaling. Their ability to influence developmental events, including cell migration, proliferation, and differentiation can therefore result both from their adhesive as well as their signaling properties. This review focuses on the two CAMs for which the most information is known, the neural CAM, N-CAM, and L1. N-CAM was the first CAM to be characterized and, therefore, has been studied extensively. The binding of N-CAM to cells leads to a number of signaling events, some of which result in changes in gene expression. Interest in L1 derives from the fact that mutations in its gene lead to human genetic diseases including mental retardation. Much is known about modifications of the L1 cytoplasmic domain and its interaction with cytoskeletal molecules. The study of CAM signaling mechanisms has been assay-dependent rather than molecule-dependent, with particular emphasis on assays of neurite outgrowth and gene expression, an emphasis that is maintained throughout the review. The signals generated following CAM binding that lead to alterations in cell morphology and gene expression have been linked directly in only a few cases. We also review information on other CAMs, giving special consideration to those that are anchored in the membrane by a phospholipid anchor. These proteins, including a form of N-CAM, are presumed to be localized in lipid rafts, membrane substructures that include distinctive subsets of cytoplasmic signaling molecules such as members of the src-family of nonreceptor protein tyrosine kinases. In the end, these studies may reveal that what CAMs do after they bind cells together may have as profound consequences for the cells as the adhesive interactions themselves. This area will therefore remain a rich ground for future studies.
Collapse
Affiliation(s)
- K L Crossin
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
17
|
Johnson KG, Holt CE. Expression of CRYP-alpha, LAR, PTP-delta, and PTP-rho in the developing Xenopus visual system. Mech Dev 2000; 92:291-4. [PMID: 10727868 DOI: 10.1016/s0925-4773(99)00345-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Receptor protein tyrosine phosphatases (RPTPs), are involved in axon outgrowth and guidance not only in the Drosophila visual system (Garrity et al., 1999. Neuron 22, 707-717) but also in the developing vertebrate retina (Ledig et al., 1999a. J. Cell Biol. 147, 375-388). We have cloned a variety of Xenopus RPTPs, including four RPTPs expressed in the developing visual system (LAR, PTP-delta, CRYP-alpha and PTP-rho). These four RPTPs are transcribed in the developing optic vesicle during differentiation and in overlapping but distinct patterns in the developing retina during retinal layer formation. LAR, PTP-delta, and CRYP-alpha are also expressed in retinal ganglion cells during axonogenesis and during axon guidance from the retina to the optic tectum.
Collapse
Affiliation(s)
- K G Johnson
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
18
|
Arregui CO, Balsamo J, Lilien J. Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res 2000; 25:95-105. [PMID: 10685609 DOI: 10.1023/a:1007595617447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During neuronal development, cells respond to a variety of environmental cues through cell surface receptors that are coupled to a signaling transduction machinery based on protein tyrosine phosphorylation and dephosphorylation. Receptor and non-receptor tyrosine kinases have received a great deal of attention; however, in the last few years, receptor (plasma membrane associated) and non-receptor protein-tyrosine phosphatases (PTPs) have also been shown to play important roles in development of the nervous system. In many cases PTPs have provocative distribution patterns or have been shown to be associated with specific cell adhesion and growth factor receptors. Additionally, altering PTP expression levels or activity impairs neuronal behavior. In this review we outline what is currently known about the role of PTPs in development, differentiation and neuronal physiology.
Collapse
Affiliation(s)
- C O Arregui
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
19
|
|
20
|
Ledig MM, Haj F, Bixby JL, Stoker AW, Mueller BK. The receptor tyrosine phosphatase CRYPalpha promotes intraretinal axon growth. J Cell Biol 1999; 147:375-88. [PMID: 10525542 PMCID: PMC2174224 DOI: 10.1083/jcb.147.2.375] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1999] [Accepted: 09/01/1999] [Indexed: 01/06/2023] Open
Abstract
Retinal ganglion cell axons grow towards the optic fissure in close contact with the basal membrane, an excellent growth substratum. One of the ligands of receptor tyrosine phosphatase CRYPalpha is located on the retinal and tectal basal membranes. To analyze the role of this RPTP and its ligand in intraretinal growth and guidance of ganglion cell axons, we disrupted ligand- receptor interactions on the retinal basal membrane in culture. Antibodies against CRYPalpha strongly reduced retinal axon growth on the basal membrane, and induced a dramatic change in morphology of retinal growth cones, reducing the size of growth cone lamellipodia. A similar effect was observed by blocking the ligand with a CRYPalpha ectodomain fusion protein. These effects did not occur, or were much reduced, when axons were grown either on laminin-1, on matrigel or on basal membranes with glial endfeet removed. This indicates that a ligand for CRYPalpha is located on glial endfeet. These results show for the first time in vertebrates that the interaction of a receptor tyrosine phosphatase with its ligand is crucial not only for promotion of retinal axon growth but also for maintenance of retinal growth cone lamellipodia on basal membranes.
Collapse
Affiliation(s)
- Matthias M. Ledig
- Max-Planck-Institut für Entwicklungsbiologie, Physikalische Biologie, D-72076 Tübingen, Germany
| | - Fawaz Haj
- Institute of Child Health, Neural Development Unit, University College London, London WC1N 1EH, United Kingdom
| | - John L. Bixby
- Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101
| | - Andrew W. Stoker
- Institute of Child Health, Neural Development Unit, University College London, London WC1N 1EH, United Kingdom
| | - Bernhard K. Mueller
- Max-Planck-Institut für Entwicklungsbiologie, Physikalische Biologie, D-72076 Tübingen, Germany
| |
Collapse
|
21
|
Wang J, Bixby JL. Receptor tyrosine phosphatase-delta is a homophilic, neurite-promoting cell adhesion molecular for CNS neurons. Mol Cell Neurosci 1999; 14:370-84. [PMID: 10588391 DOI: 10.1006/mcne.1999.0789] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Appropriate regulation of tyrosine phosphorylation is essential for axon growth and guidance; evidence from invertebrates indicates that receptor-type tyrosine phosphatases (RPTPs) are required for correct axon growth during CNS development. One vertebrate RPTP, PTP-delta, is highly expressed in brain and has a cell adhesion molecule-like extracellular domain (ECD) comprising three immunoglobulin repeats and eight fibronectin type III repeats. Using fluorescent beads (Covaspheres) coated with the PTP-delta ECD, as well as insect cells expressing PTP-delta on their surfaces, we show that PTP-delta is a homophilic cell adhesion molecule. A variety of chick neurons adhere strongly to an Fc fusion protein containing the PTP-delta ECD. Additionally, substrate-bound PTP-delta ECD fusion protein strongly promotes neurite outgrowth from forebrain neurons; this effect is separable from its effect on adhesion. Our results indicate that PTP-delta is a neurite-promoting cell adhesion molecule for CNS neurons.
Collapse
MESH Headings
- Animals
- Baculoviridae/genetics
- CHO Cells
- Catalytic Domain
- Cell Adhesion/physiology
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Chick Embryo
- Cloning, Molecular
- Cricetinae
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Humans
- Molecular Sequence Data
- Neurites/enzymology
- Neurons/cytology
- Neurons/enzymology
- Neurons/ultrastructure
- Prosencephalon/cytology
- Protein Binding/physiology
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/analysis
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Recombinant Fusion Proteins/genetics
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- J Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
22
|
Haj F, McKinnell I, Stoker A. Retinotectal ligands for the receptor tyrosine phosphatase CRYPalpha. Mol Cell Neurosci 1999; 14:225-40. [PMID: 10493824 DOI: 10.1006/mcne.1999.0785] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule-like tyrosine phosphatase CRYPalpha is localized on retinal axons and their growth cones. We present evidence that two isoforms of this type IIa phosphatase, CRYPalpha1 and CRYPalpha2, have extracellular ligands along the developing retinotectal pathway. Using alkaline phosphatase fusion proteins containing the CRYPalpha1 ectodomain, we detect a prominent ligand on basement membranes of the early retina, optic stalk, and chiasm. A second ligand is observed in the endfeet region of radial processes in the developing stratum opticum, the site of initial retinal axon invasion. This latter ligand binds CRYPalpha2 preferentially. Further ligand interactions are detected for both CRYPalpha protein isoforms in retinorecipient tectal laminae and on retinal fibers themselves. CRYPalpha thus has cell- and matrix-associated ligands along the entire retinotectal projection. Moreover, these ligands appear to be heterotypic and interact with CRYPalpha through both its immunoglobulin and fibronectin type III regions. The anteroposterior levels of the ligands are relatively uniform within the retina and tectum, suggesting that the CRYPalpha protein within retinal axons does not directly recognise topographically graded guidance cues. We propose that CRYPalpha may have a permissive role in promoting retinal axon growth across the eye and tectum and that its functions are modulated temporally and spatially by isoform-specific interactions with cell- and matrix-associated ligands.
Collapse
Affiliation(s)
- F Haj
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | | | |
Collapse
|
23
|
Ledig MM, McKinnell IW, Mrsic-Flogel T, Wang J, Alvares C, Mason I, Bixby JL, Mueller BK, Stoker AW. Expression of receptor tyrosine phosphatases during development of the retinotectal projection of the chick. JOURNAL OF NEUROBIOLOGY 1999; 39:81-96. [PMID: 10213455 DOI: 10.1002/(sici)1097-4695(199904)39:1<81::aid-neu7>3.0.co;2-k] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Receptor tyrosine kinases and receptor protein tyrosine phosphatases (RPTPs) appear to coordinate many aspects of neural development, including axon growth and guidance. Here, we focus on the possible roles of RPTPs in the developing avian retinotectal system. Using both in situ hybridization analysis and immunohistochemistry, we show for the first time that five RPTP genes--CRYPalpha, CRYP-2, PTPmu, PTPgamma, and PTPalpha--have different but overlapping expression patterns throughout the retina and the tectum. PTPalpha is restricted to Muller glia cells and radial glia of the tectum, indicating a possible function in controlling neuronal migration. PTPgamma expression is restricted to amacrine neurons. CRYPalpha and CRYP-2 mRNAs in contrast are expressed throughout the retinal ganglion cell layer from where axons grow out to their tectal targets. PTPmu is expressed in a subset of these ganglion cells. CRYPalpha, CRYP-2, and PTPmu proteins are also localized in growth cones of retinal ganglion cell axons and are present in defined laminae of the tectum. Thus, the spatial and temporal expression of three distinct RPTP subtypes--CRYPalpha, CRYP-2, and PTPmu--are consistent with the possibility of their involvement in axon growth and guidance of the retinotectal projection.
Collapse
Affiliation(s)
- M M Ledig
- Max-Planck-Institut für Entwicklungsbiologie Abt. I, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Haworth K, Shu KK, Stokes A, Morris R, Stoker A. The expression of receptor tyrosine phosphatases is responsive to sciatic nerve crush. Mol Cell Neurosci 1998; 12:93-104. [PMID: 9790732 DOI: 10.1006/mcne.1998.0707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Given the importance of phosphotyrosine signaling in growth cone dynamics, we have examined the embryonic and adult expression of receptor-like protein tyrosine phosphatases in sensory neurons and studied their responsiveness to nerve lesions in young adult animals. The phosphatases LAR, PTPsigma, and PTPalpha are expressed in most neurons of E14 and E18 rat embryo dorsal root ganglia, while BEM-1 is expressed in a more restricted subset of these neurons. These phosphatases continue to be expressed in young adult animals, suggesting that they have roles in mature as well as in developing dorsal root ganglia neurons. After an experimental sciatic nerve crush, the expression of the phosphatase genes was significantly and differentially altered in these neurons. PTPsigma mRNA was increased by 50% after 3 days, while LAR and PTPalpha expression dropped by 50 and 20%, respectively. BEM-1 mRNA levels were unaltered. These data show that mRNA levels of specific tyrosine phosphatase genes are highly responsive to nerve damage and may be reset to a new and potentially optimal pattern of expression more conducive for nerve regeneration. We propose that tyrosine phosphatases are not only involved in primary axonogenesis but can also now be implicated in the molecular control of adult nerve repair.
Collapse
Affiliation(s)
- K Haworth
- Department of Human Anatomy, University of Oxford, Oxford, OX1 3QX, UK
| | | | | | | | | |
Collapse
|
25
|
Jiang S, Tulloch AG, Kim TA, Fu Y, Rogers R, Gaskell A, White RA, Avraham H, Avraham S. Characterization and chromosomal localization of PTP-NP-2, a new isoform of protein tyrosine phosphatase-like receptor, expressed on synaptic boutons. Gene 1998; 215:345-59. [PMID: 9714834 DOI: 10.1016/s0378-1119(98)00282-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, there have been several reports describing the cloning and characterization of the novel family of protein tyrosine phosphatase-like receptor molecules (known as IA-2 and PTP-NP/PTP-IAR/IA-2beta/phogrin), which may act as autoantigens in diabetes. Here, we report the molecular characterization and chromosomal localization of a new isoform of this family in brain termed PTP-NP-2 (for PTP-NP tyrosine phosphatase isoform), and its function in rat primary hippocampal neurons. PTP-NP-2 has 48% identity to IA-2. The principal difference between PTP-NP-2 and PTP-NP is a 17-amino-acid insert near the N-terminus of PTP-NP that is absent in PTP-NP-2. Genomic DNA analysis indicates that the 17-amino-acid insert is coded by a separate exon, suggesting that both IA-2beta and PTP-NP-2 are isoforms arising by alternate splicing of the same gene. Reverse transcriptase-PCR revealed that both isoforms are present in human SH-SY5Y neuroblastoma cells. PTP-NP-2 mRNA expression is highly restricted, with a 5.5-kb specific transcript in human fetal and adult brain and 5.5 and 3. 8 kb in human adult pancreas. SH-SY5Y neuroblastoma and U87-MG glioblastoma cells showed specific transcripts of 5.5 and 3.8<HSP SP = "0.25">kb, respectively, indicating the existence of several isoforms of this molecule in the nervous system. The human gene encoding PTP-NP-2 was assigned to human chromosome 7q22-qter using Southern blot analysis of genomic DNAs from rodent/human somatic hybrid cell lines. Confocal microscopy analyses of rat primary hippocampal neurons revealed that PTP-NP-2 is abundantly expressed on synaptic boutons in primary neurons. Wild-type PTP-NP-2 showed no measurable tyrosine phosphatase activity using an in-vitro pNPP assay. Examination of the PTP-NP-2 catalytic consensus sequence revealed that this sequence differed from the typical tyrosine phosphatase-domain consensus sequence by an alanine to aspartate change (amino acid 930). Mutation of aspartate 930 to alanine produced a catalytically active enzyme, suggesting that native PTP-NP and its isoform PTP-NP-2 are catalytically inactive receptor protein tyrosine phosphatase homologues. Taken together, these results indicate that the tyrosine phosphatase PTP-NP-2 is a new isoform of PTP-NP tyrosine phosphatase, is expressed on synaptic boutons and may participate in the regulation of synaptic bouton endocytosis.
Collapse
Affiliation(s)
- S Jiang
- Division of Experimental Medicine, Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Serra-Pagès C, Medley QG, Tang M, Hart A, Streuli M. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 1998; 273:15611-20. [PMID: 9624153 DOI: 10.1074/jbc.273.25.15611] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LAR family transmembrane protein-tyrosine phosphatases function in axon guidance and mammary gland development. In cultured cells, LAR binds to the intracellular, coiled coil LAR-interacting protein at discrete ends of focal adhesions, implicating these proteins in the regulation of cell-matrix interactions. We describe seven LAR-interacting protein-like genes in humans and Caenorhabditis elegans that form the liprin gene family. Based on sequence similarities and binding characteristics, liprins are subdivided into alpha-type and beta-type liprins. The C-terminal, non-coiled coil regions of alpha-liprins bind to the membrane-distal phosphatase domains of LAR family members, as well as to the C-terminal, non-coiled coil region of beta-liprins. Both alpha- and beta-liprins homodimerize via their N-terminal, coiled coil regions. Liprins are thus multivalent proteins that potentially form complex structures. Some liprins have broad mRNA tissue distributions, whereas others are predominately expressed in the brain. Co-expression studies indicate that liprin-alpha2 alters LAR cellular localization and induces LAR clustering. We propose that liprins function to localize LAR family tyrosine phosphatases at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates.
Collapse
Affiliation(s)
- C Serra-Pagès
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
During neural development, cells interact dynamically with each other and with the extracellular matrix, using cell signaling to control differentiation, axonogenesis, and survival. Enzymes that regulate protein tyrosine phosphorylation often lie at the core of such cell signaling. Protein tyrosine phosphatases (PTPases) are recognized as being of central importance here, and a growing family of PTPases are now known to be expressed in embryonic neurons and glia. Both receptor-like and cytoplasmic enzymes have been identified. The receptor family includes immunoglobulin superfamily members that influence cell-cell adhesion, proteoglycans that control neurite growth, and enzymes in Drosophila that regulate axon guidance and target cell recognition. Cytoplasmic PTPases are implicated in nerve cell commitment and potentially in the regulation of cell survival. This review outlines what we currently know about PTPases in the nervous system and presents concepts concerning their possible modes of action.
Collapse
Affiliation(s)
- A Stoker
- Department of Human Anatomy, University of Oxford, UK.
| | | |
Collapse
|
28
|
McAndrew PE, Frostholm A, White RA, Rotter A, Burghes AH. Identification and characterization of RPTP rho, a novel RPTP mu/kappa-like receptor protein tyrosine phosphatase whose expression is restricted to the central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:9-21. [PMID: 9602027 DOI: 10.1016/s0169-328x(98)00014-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the cloning, chromosomal localization and characterization of RPTPrho, a new member of the RPTPmu/kappa phosphatase subfamily. Receptor tyrosine phosphatases in this subfamily are comprised of a MAM domain near the N-terminal, an immunoglobulin-like domain, four fibronectin type III repeats, a single transmembrane domain, and a large juxtamembrane segment followed by two intracellular phosphatase domains. An alternatively spliced mini-exon was identified in the extracellular segment of RPTPrho, between the fourth fibronectin type III repeat and the transmembrane domain. The RPTPrho gene was mapped to human chromosome 20 and mouse chromosome 2. Northern blot analysis demonstrated that RPTPrho expression was restricted to the central nervous system, and in situ hybridization studies showed that the RPTPrho transcript was distributed throughout the murine brain and spinal cord. Exceptionally high levels of the transcript were present in the cortex and olfactory bulbs during perinatal development, but were down-regulated during postnatal week two. The motifs found in the extracellular segment of type II receptor protein tyrosine phosphatases are commonly found in neural cell adhesion molecules, suggesting that RPTPrho may be involved in both signal transduction and cellular adhesion in the central nervous system.
Collapse
Affiliation(s)
- P E McAndrew
- Dept. of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Wallace MJ, Fladd C, Batt J, Rotin D. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Mol Cell Biol 1998; 18:2608-16. [PMID: 9566880 PMCID: PMC110640 DOI: 10.1128/mcb.18.5.2608] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTP delta, and PTP sigma, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTP sigma (PTP sigma-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTP delta (PTP delta-D2) as an interactor of PTP sigma-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTP sigma-D1 and PTP delta-D2, an association which required the presence of the wedge sequence in PTP sigma-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTP alpha. This interaction was not reciprocal, as PTP delta-D1 did not bind PTP sigma-D2. Addition of a glutathione S-transferase (GST)-PTP delta-D2 fusion protein (but not GST alone) to GST-PTP sigma-D1 led to approximately 50% inhibition of the catalytic activity of PTP sigma-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTP sigma-D1 activity was obtained with coimmunoprecipitated PTP delta-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTP sigma (PTP sigma-D2), very similar in sequence to PTP delta-D2, bound poorly to PTP sigma-D1. PTP delta-D1 and LAR-D1 were also able to bind PTP delta-D2, but more weakly than PTP sigma-D1, with a binding hierarchy of PTP sigma-D1 >> PTP delta-D1 > LAR-D1. These results suggest that association between PTP sigma-D1 and PTP delta-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.
Collapse
Affiliation(s)
- M J Wallace
- Division of Respiratory Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Zhang JS, Honkaniemi J, Yang T, Yeo TT, Longo FM. LAR Tyrosine Phosphatase Receptor: A Developmental Isoform Is Present in Neurites and Growth Cones and Its Expression Is Regional- and Cell-Specific. Mol Cell Neurosci 1998; 10:271-86. [PMID: 9618218 DOI: 10.1006/mcne.1998.0663] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic mice and Drosophila mutant studies demonstrate that the leukocyte common antigen-related (LAR) protein tyrosine phosphatase (PTPase) receptor is required for formation of neural networks. We assessed the hypothesis that alternative splicing of the LAR extracellular region contributes to this function by establishing temporospatial expression patterns of LAR isoforms containing an alternatively spliced extracellular nine amino acid segment (LAR alternatively spliced element-c; LASE-c). LASE-c was present in multiple alternatively spliced and truncated LAR transcripts. In contrast to LAR isoforms without LASE-c, levels of LAR transcripts and protein isoforms containing LASE-c were primarily present during development, suggesting a mechanism for developmental regulation of LAR function. In situ analysis demonstrated increasingly region- and cell-specific expression of LASE-c during maturation. Immunostaining revealed LASE-c-containing LAR protein along neurites and in growth cones. The discovery of highly regulated, temporospatial extracellular domain alternative splicing of LAR-type PTPase receptors points to a novel mechanism by which these receptors might influence network formation. Copyright 1998 Academic Press.
Collapse
MESH Headings
- Animals
- Animals, Newborn/genetics
- Animals, Newborn/growth & development
- Brain Mapping
- Cells, Cultured
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Developmental
- Humans
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Nerve Tissue Proteins
- Neurites/metabolism
- Neurites/physiology
- Neurons/metabolism
- Neurons/physiology
- Organ Specificity/genetics
- PC12 Cells
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- JS Zhang
- Neurology Service, VA Medical Center, San Francisco, California, 94121
| | | | | | | | | |
Collapse
|
31
|
Schaapveld R, Wieringa B, Hendriks W. Receptor-like protein tyrosine phosphatases: alike and yet so different. Mol Biol Rep 1997; 24:247-62. [PMID: 9403867 DOI: 10.1023/a:1006870016238] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reversible phosphorylation on tyrosine residues is an extremely rapid and powerful posttranslational modification that is used in signalling pathways for the regulation of cell growth and differentiation. Over the past several years an impressive number of receptor-like protein tyrosine phosphatase (RPTPase) family members have been identified by molecular cloning, and undoubtedly many more will follow. This review provides an overview of the molecular data that are available for the currently identified RPTPases and discusses their possible biological implications.
Collapse
Affiliation(s)
- R Schaapveld
- Department of Cell Biology & Histology, Institute of Cellular Signalling, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
32
|
Yeo TT, Yang T, Massa SM, Zhang JS, Honkaniemi J, Butcher LL, Longo FM. Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervation. J Neurosci Res 1997; 47:348-60. [PMID: 9039657 DOI: 10.1002/(sici)1097-4547(19970201)47:3<348::aid-jnr13>3.0.co;2-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A role in neural development for protein tyrosine phosphatase (PTPase) receptors has been suggested by the finding of aberrant neurite outgrowth in Drosophila mutants lacking functional leukocyte common antigen-related (LAR) PTPase receptors; however, PTPase functions in the mammalian nervous system remain to be established. In transgenic mice containing a gene trap in the LAR gene, only trace expression of full-length LAR transcripts was found. In these mice, the size of basal forebrain cholinergic neurons was significantly reduced and cholinergic innervation of the dentate gyrus was markedly decreased. These findings constitute the first demonstration of an aberrant neuronal phenotype in a mammalian PTPase mutant and support the hypothesis that LAR-type PTPase receptors function to establish and/or maintain neuronal networks.
Collapse
Affiliation(s)
- T T Yeo
- Department of Neurology, UCSF/VA Medical Center, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Shintani T, Maeda N, Nishiwaki T, Noda M. Characterization of rat receptor-like protein tyrosine phosphatase gamma isoforms. Biochem Biophys Res Commun 1997; 230:419-25. [PMID: 9016795 DOI: 10.1006/bbrc.1996.5973] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We identified four isoforms of receptor-like protein tyrosine phosphatase gamma (RPTPgamma) from rat brain by cDNA cloning. We designated these molecules RPTPgamma-A, -B, -C, and -S. RPTPgamma-A was the longest form and had the same structure as human and mouse RPTPgamma. RPTPgamma-B lacked the intracellular juxtamembrane 29 amino acids of RPTPgamma-A. RPTPgamma-C had a single phosphatase domain. RPTPgamma-S is an extracellular variant of RPTPgamma. mRNAs of the four isoforms were expressed in the brain, kidney, lung, and heart. Transfection of RPTPgamma-A and -S expression plasmids into COS7 cells resulted in the expression of membrane-bound 190-kDa proteins and secreted 120-kDa proteins, respectively. These molecules were similar to PTPzeta/RPTPbeta with regard not only to structure but also to the presence of both secretory and transmembrane forms. However, RPTPgamma isoforms were not expressed as proteoglycans.
Collapse
Affiliation(s)
- T Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, The Graduate University for Advanced Studies, Okazaki, Japan
| | | | | | | |
Collapse
|
34
|
Sommer L, Rao M, Anderson DJ. RPTP delta and the novel protein tyrosine phosphatase RPTP psi are expressed in restricted regions of the developing central nervous system. Dev Dyn 1997; 208:48-61. [PMID: 8989520 DOI: 10.1002/(sici)1097-0177(199701)208:1<48::aid-aja5>3.0.co;2-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transmembrane receptor-type protein tyrosine phosphatases (RPTPs) form a novel and potentially important class of cell regulatory proteins. To identify RPTPs expressed during neural development we have characterized RPTPs transcribed in embryonic day (E)13.5 rat neural tube. Nine different phosphatases, one of which was novel, were identified. We examined the expression of the novel phosphatase, called RPTP psi, and of two other phosphatases, RPTP delta and RPTP mu, whose expression in the developing nervous system has not yet been described in detail. The expression of RPTP mu in small blood capillaries in developing neural tissue is consistent with an involvement in angiogenesis. In contrast, the temporally and spatially regulated expression of RPTP psi and RPTP delta in neuroepithelium suggests a role in early neural development. In the spinal cord, early expression of RPTP delta in the roof plate is followed by its expression in differentiating motor neurons. RPTP psi mRNA is also transiently detectable in the roof plate as well as in floor plate cells. In the telencephalon as well as in the hindbrain at E13.5, the reciprocal expression patterns of RPTP delta and RPTP psi are consistent with a sequential function, RPTP psi exerting its activity in undifferentiated progenitor cells and RPTP delta functioning during neuronal differentiation.
Collapse
Affiliation(s)
- L Sommer
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
35
|
Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 1996; 134:1519-29. [PMID: 8830779 PMCID: PMC2121007 DOI: 10.1083/jcb.134.6.1519] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cadherins are calcium-dependent cell adhesion molecules that play fundamental roles in embryonic development, tissue morphogenesis, and cancer. A prerequisite for their function is association with the actin cytoskeleton via the catenins. Tyrosine phosphorylation of beta-catenin, which correlates with a reduction in cadherin-dependent cell adhesion, may provide cells with a mechanism to regulate cadherin activity. Here we report that beta-catenin immune precipitates from PC12 cells contain tyrosine phosphatase activity which dephosphorylates beta-catenin in vitro. In addition, we show that a member of the leukocyte antigen-related protein (LAR)-related transmembrane tyrosine phosphatase family (LAR-PTP) associates with the cadherin-catenin complex. This association required the amino-terminal domain of beta-catenin but does not require the armadillo repeats, which mediate association with cadherins. The interaction also is detected in PC9 cells, which lack alpha-catenin. Thus, the association is not mediated by alpha-catenin or by cadherins. Interestingly, LAR-PTPs are phosphorylated on tyrosine in a TrkA-dependent manner, and their association with the cadherin-catenin complex is reduced in cells treated with NGF. We propose that changes in tyrosine phosphorylation of beta-catenin mediated by TrkA and LAR-PTPs control cadherin adhesive function during processes such as neurite outgrowth.
Collapse
Affiliation(s)
- R M Kypta
- Department of Physiology, University of California, San Francisco 94143-0724, USA
| | | | | |
Collapse
|
36
|
Chiang MK, Flanagan JG. PTP-NP, a new member of the receptor protein tyrosine phosphatase family, implicated in development of nervous system and pancreatic endocrine cells. Development 1996; 122:2239-50. [PMID: 8681804 DOI: 10.1242/dev.122.7.2239] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The regulation of protein tyrosine phosphorylation is an important mechanism for developmental control. We describe here a new member of the protein tyrosine phosphatase (PTP) family, called PTP-NP (for neural and pancreatic). The cDNA sequence indicates a receptor-type transmembrane molecule. At early organogenesis, in situ hybridization with a probe for the PTP-NP extracellular region detects expression confined to the region of the developing pancreas, an organ of medical importance, but poorly understood with regard to molecular mechanisms of developmental control. This localized expression appears early, even before morphological differentiation of the pancreas, and is found in presumptive precursors of the endocrine cells by the earliest times that they can be distinguished. In neural development, an alternate RNA with a different or missing extracellular region is expressed transiently at early stages of neurogenesis and the full-length PTP-NP RNA appears later. To search for a ligand of PTP-NP, a fusion protein probe was made with the extracellular domain fused to an alkaline phosphatase tag. This probe bound strongly to pancreatic islets, providing evidence for a ligand-receptor interaction that could be involved in endocrine cell regulation. The results show PTP-NP is an especially early marker for pancreatic development and suggest it may be a receptor that could control the development of pancreatic endocrine cells.
Collapse
Affiliation(s)
- M K Chiang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Wang YT, Yu XM, Salter MW. Ca(2+)-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase. Proc Natl Acad Sci U S A 1996; 93:1721-5. [PMID: 8643696 PMCID: PMC40009 DOI: 10.1073/pnas.93.4.1721] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and that the decline is not dependent upon Ca2+. A protein tyrosine phosphatase or a peptide inhibitor of protein tyrosine kinase applied intracellularly caused a decrease in NMDA currents even when ATP was included. On the other hand, pretreating the neurons with a membrane-permeant tyrosine kinase inhibitor occluded the decline in NMDA currents when ATP was omitted. In inside-out patches, applying a protein tyrosine phosphatase to the cytoplasmic face of the patch caused a decrease in probability of opening of NMDA channels. Conversely, open probability was increased by a protein tyrosine phosphatase inhibitor. These results indicate that NMDA channel activity is reduced by a protein tyrosine phosphatase associated with the channel complex.
Collapse
Affiliation(s)
- Y T Wang
- Division of Neuroscience, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
38
|
Stoker AW, Gehrig B, Newton MR, Bay BH. Comparative localisation of CRYP alpha, a CAM-like tyrosine phosphatase, and NgCAM in the developing chick visual system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 90:129-40. [PMID: 8719336 DOI: 10.1016/0165-3806(96)83493-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The avian CRYP alpha gene is expressed in the embryonic nervous system and encodes a receptor-like protein tyrosine phosphatase with structural similarity to neural cell adhesion molecules. To gain further insight into the role of the CRYP alpha phosphatase in neural development, this study addresses the protein's cellular distribution in the well characterised embryonic visual system. High levels of CRYP alpha protein localise in retinal axons extending from the eye to the tectum throughout the major growth periods of these nerve processes. In addition, primitive inner plexiform layer processes in the retina, tectobulbar axons, and non-retinal fibres of the tectal stratum opticum, contain large amounts of CRYP alpha. Its presence in non-fasciculated processes suggests that CRYP alpha has a role other than in fasciculation in short range fibres. In contrast to CRYP alpha, NgCAM is confined largely to axon fascicles in the retina and tectum, consistent with its demonstrated role in fasciculation of cultured neurites. In cultured retinal neurons CRYP alpha proteins reside both in neurite processes and in growth cone membranes, implicating both of these as potential functional locations for the protein. Although CRYP alpha continues to be expressed in the later embryo, the strong, early expression suggests a significant developmental role in the initial growth or guidance of nerve processes. This applies both over the longer range in the retinotectal and tectobulbar projections and over the shorter range within plexiform layers.
Collapse
Affiliation(s)
- A W Stoker
- Department of Human Anatomy, University of Oxford, UK.
| | | | | | | |
Collapse
|
39
|
Stoker AW, Gehrig B, Haj F, Bay BH. Axonal localisation of the CAM-like tyrosine phosphatase CRYP alpha: a signalling molecule of embryonic growth cones. Development 1995; 121:1833-44. [PMID: 7600997 DOI: 10.1242/dev.121.6.1833] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Migrating embryonic growth cones require multiple, membrane-associated signalling molecules to monitor and respond to guidance cues. Here we present the first evidence that vertebrate cell adhesion molecule-like protein tyrosine phosphatases are likely to be components of this signalling system. CRYP alpha, the gene for an avian cell adhesion molecule-like phosphatase, is strongly expressed in the embryonic nervous system. In this study we have immunolocalised the protein in the early chick embryo and demonstrated its predominant localisation in axons of the central and peripheral nervous systems. This location suggests that the major, early role of the enzyme is in axonal development. In a study of sensory neurites in culture, we furthermore show that this phosphatase localises in migrating growth cones, within both the lamellipodia and filopodia. The dependence of growth cone migration on both cell adhesion and signalling through phosphotyrosine turnover, places the cell adhesion molecule-like CRYP alpha phosphatase in a position to be a regulator of these processes.
Collapse
Affiliation(s)
- A W Stoker
- Department of Human Anatomy, University of Oxford, UK
| | | | | | | |
Collapse
|