1
|
Medaglia S, Otri I, Bernardos A, Marcos MD, Aznar E, Sancenón F, Martínez-Máñez R. Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. Int J Pharm 2024; 654:123947. [PMID: 38408553 DOI: 10.1016/j.ijpharm.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.
Collapse
Affiliation(s)
- Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ismael Otri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
2
|
Kimoto H, Takahashi M, Masuko M, Sato K, Hirahara Y, Iiyama M, Suzuki Y, Hashimoto T, Hayashita T. High-Throughput Analysis of Bacterial Toxic Lipopolysaccharide in Water by Dual-Wavelength Monitoring Using a Ratiometric Fluorescent Chemosensor. Anal Chem 2023; 95:12349-12357. [PMID: 37524054 PMCID: PMC10448884 DOI: 10.1021/acs.analchem.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial toxin that causes fever in humans. Our small-molecule chemosensor named Zn-dpa-C2OPy shows rapid ratiometric fluorescence response to LPS in water with a detection limit of 11 pM, which is lower than that of our previously reported sensor. Spectroscopic measurements (fluorescence, absorbance, 1H NMR, and fluorescence lifetime), dynamic light scattering measurements, and transmission electron microscopy observations revealed that the fluorescence response was induced by the changes in the aggregation state via multi-point recognition of LPS through hydrophobic and electrostatic interactions, in addition to the coordination between the zinc(II)-dipicolylamine moiety of the chemosensor and the phosphate group of LPS. The proposed Zn-dpa-C2OPy chemosensor was applied to an original flow injection analysis (FIA) system with a self-developed dual-wavelength fluorophotometer, and a high throughput of 36 samples per hour was achieved. These results demonstrate the feasibility of this unique methodology combining a ratiometric fluorescent chemosensor and FIA for continuous online monitoring of LPS in water.
Collapse
Affiliation(s)
- Hiroshi Kimoto
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Moeka Takahashi
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Masakage Masuko
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Kai Sato
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Yuya Hirahara
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Masamitsu Iiyama
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Takeshi Hashimoto
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
3
|
Gao X, Li H, Zhao Y, Jie G. Triple-helix molecular switch-based versatile "off-on" electrochemiluminescence and fluorescence biosensing platform for ultrasensitive detection of lipopolysaccharide by multiple-amplification strategy. Biosens Bioelectron 2019; 143:111602. [PMID: 31442756 DOI: 10.1016/j.bios.2019.111602] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023]
Abstract
Herein, a novel biosensing platform for versatile electrochemiluminescence (ECL) "off" and fluorescence (FL) "on" detection of lipopolysaccharide (LPS) with multiple-amplification strategy is proposed. The specific recognition of target to aptamer on the magnetic beads (MB) firstly released abundant DNA sequences of three kinds. The sequences hybridized with multifunctional molecular beacon (MMB) and initiated numerous bidirectional polymerization and shearing reactions, generating a large number of DNA fragments (a1) by multiple cycling amplification. Then a1 was introduced to the triple-helix sensing system, opening the triple-helix structure. In ECL system, the G-rich chains S2 were exposed to form G-quadruplex-hemin complex in the presence of hemin, which could efficiently quench ECL for "off" detection of LPS. In FL system, the fluorophore FAM and quencher BHQ on S1 chain were separated with opening of triple-helix structure, achieving fluorescence "on" signal for LPS assay. So the versatile platform can achieve greatly amplified ECL and FL signal changes for sensitive assay of LPS, showing wide linear ranges (0.1 fg/mL-0.1 ng/mL by ECL and 10 fg/mL-1-1 μg/mL by FL) and low detection limits (0.012 fg/mL by ECL and 1.269 fg/mL by FL). Therefore, the present ECL "Off" and FL "On" dual-signal detection patterns for LPS displayed many advantages over other reported methods, which provided an outlook for future applications in clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoshan Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
4
|
Otri I, El Sayed S, Medaglia S, Martínez-Máñez R, Aznar E, Sancenón F. Simple Endotoxin Detection Using Polymyxin-B-Gated Nanoparticles. Chemistry 2019; 25:3770-3774. [PMID: 30688381 DOI: 10.1002/chem.201806306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 12/28/2022]
Abstract
A nanodevice based on mesoporous silica nanoparticles with rhodamine B in the pore framework, functionalized with carboxylates on the outer surface and capped with the cationic polymyxin B peptide, was used to selectively detect endotoxin in aqueous solutions with a limit of detection in the picomolar range.
Collapse
Affiliation(s)
- Ismael Otri
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sameh El Sayed
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Serena Medaglia
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de, Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
5
|
Li WL, Wu MS, Guo PL, Hu FY, Li LH, Tang XP. Overexpression of A20 inhibits the inflammatory response during dengue fever infection. Future Virol 2018. [DOI: 10.2217/fvl-2017-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Dengue hemorrhagic fever is a devastating disease. This study aimed to investigate the role of A20 in dengue fever infection. Materials & methods: DENV2-infected human umbilical vein endothelial cells were transfected with shRNA-A20/CD14 and A20/CD14-mimics, respectively. The expressions of inflammatory and anti-inflammatory factors, A20 and downstream proteins of the NF-κB signaling pathway were detected. Results: A20 knockdown increased the expression of IL-6, IL-10, IL-8 and CD14 during dengue virus infection, whereas overexpression of A20 had the opposite effect. FACS revealed that A20 negatively regulated the expression of CD14. Conclusion: In DENV2-infected human umbilical vein endothelial cells overexpressing A20, TNF-α stimulation inhibited NF-κB-mediated inflammatory response by negative feedback. Furthermore, A20 could affect the release of inflammatory factors via negative regulation of CD14, thus affecting the entire inflammatory response.
Collapse
Affiliation(s)
- Wen-Li Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mao-Sheng Wu
- Department of Infectious Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Peng-Le Guo
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Feng-Yu Hu
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Ling-Hua Li
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| | - Xiao-Ping Tang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Number Eight People’s Hospital of Guangzhou, Guangzhou, 510060, China
| |
Collapse
|
6
|
Kagan JC. Lipopolysaccharide Detection across the Kingdoms of Life. Trends Immunol 2017; 38:696-704. [PMID: 28551077 PMCID: PMC5624813 DOI: 10.1016/j.it.2017.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
Studies in recent years have uncovered a diverse set of eukaryotic receptors that recognize lipopolysaccharide (LPS), the major outer-membrane component of Gram-negative bacteria. Indeed, Toll-like receptors, G-protein-coupled receptors, integrins, receptor-like kinases, and caspases have emerged as important LPS-interacting proteins. In this review, the mammalian receptors that detect LPS are described. I highlight how no host protein is involved in all LPS responses, but a single lipid (phosphatidylinositol-4,5-bisphosphate) regulates many LPS responses, including endocytosis, phagocytosis, inflammation, and pyroptosis. I further describe LPS response systems that operate specifically in plants, and discuss potentially new LPS response systems that await discovery. This diversity of receptors for a single microbial product underscores the importance of host-microbe interactions in multiple kingdoms of life.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Dinarello CA. Review: Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100040301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the `endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-α (TNF-α), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-α, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE 2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during infection.
Collapse
Affiliation(s)
- Charles A. Dinarello
- Department of Medicine, Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver, Colorado, USA,
| |
Collapse
|
8
|
Braedel-Ruoff S, Faigle M, Hilf N, Neumeister B, Schild H. Legionella pneumophila mediated activation of dendritic cells involves CD14 and TLR2. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we analyzed the activation of bone-marrow derived dendritic cells (BMDCs) from mice lacking the cd14-gene with purified Legionella pneumophila lipopolysaccharide and with viable or formalin-killed L. pneumophila .We found that low concentrations of LPS and doses of L. pneumophila that are relevant to infection are dependent on CD14 to activate BMDCs. Higher concentrations of LPS are able to overcome the lack of CD14 indicating that other receptors are involved. We, therefore, included studies using BMDCs from mice lacking functional TLR2 and/or TLR4 molecules. We found that purified L. pneumophila LPS as well as L. pneumophila either viable or formalin-killed are able to activate BMDCs from TLR4-deficient C3H/HeJ mice but fail to activate BMDCs from TLR2-knockout mice. Our data show that not only purified LPS from L. pneumophila but also the microorganism itself stimulate BMDCs via TLR2 and that this stimulation is dependent on CD14 in this mouse model.
Collapse
Affiliation(s)
- Sibylla Braedel-Ruoff
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany, Institut für Immunologie, Universität Mainz, Mainz, Germany
| | - Marion Faigle
- Abteilung Transfusionsmedizin, AG Infektionsbiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Norbert Hilf
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany
| | - Birgid Neumeister
- Abteilung Transfusionsmedizin, AG Infektionsbiologie, Universitätsklinikum Tübingen, Tübingen, Germany, -tuebingen.de
| | - Hansjörg Schild
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany, Institut für Immunologie, Universität Mainz, Mainz, Germany,
| |
Collapse
|
9
|
Lagrange P, Blanchard H, Felten A. Review: Bacterial endotoxin and the human monoclonal antibody HA-IA: specificity, potential mechanisms of action, and limits to its effectiveness. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199500200508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial endotoxins are lipopolysaccharides present in the outer membrane of all Gram-negative bacteria (GNB). Endotoxins consist of a lipid moiety, lipid A, that is covalently linked to highly variable, serotype O-specific polysaccharide lateral chains. In contrast, the endotoxin core, which includes lipid A, is better conserved and can be recognized by antibodies showing cross-reactivity among various GNB. Such polyclonal and monoclonal antibodies have been developed in an attempt to neutralize the biological and dele. terious effects of endotoxin, thus preventing lipid A from binding to macrophages. In fact, almost all the biological activities of endotoxin are elicited by lipid A, and there is substantial evidence to the effect that the monocyte-macrophage is the principal mediator of endotoxicity. Antiserum against LPS isolated from rough mutants of GNB (expressing virtually only the central core-lipid A), has been shown to counteract the lethal effects of endotoxin in animals and humans. However, such serum or plasma contains antibodies of different specificities and isotypes which represent different effector functions, insofar as LPS is a very complex and highly heterogenous macromolecule. Because of the difficulties encountered in investigating the nature and specificity of the protection afforded by these antisera, and their limited capacity of production for therapeutic use, specific anti-lipid A monoclonal antibodies have been produced in their stead. A variety of mouse and human monoclonal antibodies against LPS have been generated and selected for their ability to cross-react with many GNB species. The most recent clinical trials involving the treatment of septic patients with human HA-IA (Centoxin) or with murine (E5) anti-lipid A monoclonal antibody showed no difference in survival rates, as compared to treatment with a placebo. However, statistical significance was demonstrated in subsets of patients suffering from documented Gram-negative septicemia or Gram-negative sepsis without refractory shock. The usefulness of anti-lipid A antibodies will undoubtedly remain controversial, since they appear to benefit only a minority of all patients treated, and also because no consensus exists regarding their specificity and modes of action. The aim of this review is to describe results which demonstrate the requirements for, difficulties in and limits to, elucidating the ability of certain antibodies to recognize structural elements present in the lipid A domain of LPS. A clear demonstration of antibody cross-reactivity was obtained only when rough LPS bacteria were used, and was markedly enhanced when smooth bacteria had been pretreated with cell wall active antibiotics. Further, new data have recently demonstrated the specific involvement of HA-IA in the immunocytoadherence assay in the presence of human complement and human red blood cells. Such phenomena may form part of the potential role for natural or monoclonal human IgM anti-lipid A antibodies, which will be to remove IgM-lipid A immune complexes through transhepatic clearance via C3b binding to the CR1 present on circulating human erythrocytes. Insofar as immunocytoadherence is a multiparameter phenomenon, various limiting factors probably interfere with its mechanism of clearance. These factors may be absent in various subsets of septic patients under treatment, thus explaining therapeutic failures with HA-IA in humans or preclinical animal studies. Several clinical settings involving defects to CR1 expression, C3b production, LPS recognition and hepatic clearance dysfunction are described. Long term, however, it will impossible to specify the patient subsets suitable for monoclonal therapy without first defining their characteristics. HA-IA may be able to inhibit one of the earliest stages in activation of the cytokine cascade by sequestrating and eliminating biologically active lipid A. The major problem today in terms of using anti-lipid A antibodies is an efficiently early detection of specific pathway defects which detract from or nullify the HA-IA therapeutic effect.
Collapse
Affiliation(s)
- P.H. Lagrange
- Medical Microbiology Laboratory, Saint-Louis Hospital, Paris, France
| | - H.S. Blanchard
- Medical Microbiology Laboratory, Saint-Louis Hospital, Paris, France
| | - A. Felten
- Medical Microbiology Laboratory, Saint-Louis Hospital, Paris, France
| |
Collapse
|
10
|
Haslberger A, Mader H, Schmalnauer M, Kohl G, Szostak M, Messner P, Sleytr U, Wanner G, Fürst-Ladani S, Lubitz W. Bacterial cell envelopes (ghosts) and LPS but not bacterial S-layers induce synthesis of immune-mediators in mouse macrophages involving CD14. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis of inflammatory mediators in human macrophages/monocytes seen after stimulation with lipopolysaccharide (LPS) involves the binding of CD14 to LPS complexed to lipopolysaccharide binding protein (LBP). The binding mechanisms of different LPS domains to LBP and CD14, as well as the interaction of the entire bacterial cell wall and its components with CD14 and LBP, are poorly understood. We, therefore, studied the effects of anti-mouse CD14 antibodies on the synthesis of TNFα and PGE2 in RAW 264.7 mouse macrophages stimulated by bacterial cell envelopes (ghosts) of Escherichia coli 026:B6 and Salmonella typhimurium C5, LPS, lipid A, and crystalline bacterial cell surface layer (S-layer) preparations. Ghosts and S-layers, with distinct activities on the immune-system, are presently under investigation for their use as vaccines. Whereas LPS and E. coli ghosts exhibited a strong endotoxic activity in the Limulus amoebocyte lysate assay, the endotoxic activity of S-layer preparations was several orders of magnitude lower. LPS, ghosts, and bacterial S-layers all induced TNFα and PGE2 synthesis as well as the accumulation of TNFα mRNA. Pre-incubation with anti-mouse CD14 antibodies resulted in a dose-dependent inhibition of TNFα and PGE 2 synthesis after stimulation by LPS, lipid A (30-50%) and ghosts (40-70%). The bacterial S-layer-induced mediator synthesis remained unchanged following the addition of anti-mouse CD14 antibodies. Reproducible differences could be observed for the inhibition of TNFα induced by LPS of different species by anti-CD14. Adding fetal calf serum (FCS) strongly enhanced the release of cell mediators stimulated by low doses of LPS and bacterial ghosts. These effects of the FCS may be due to the presence of LBP in the FCS. The results show that CD14 is highly relevant for the activation of mouse macrophages by bacterial cells, LPS, and lipid A. Specially defined bacterial cell wall constituents such as bacterial S-layers might act through other activation pathways.
Collapse
Affiliation(s)
- A.G. Haslberger
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - H.J. Mader
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - M. Schmalnauer
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - G. Kohl
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - M.P. Szostak
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - P. Messner
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Vienna, Austria
| | - U.B. Sleytr
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Vienna, Austria
| | - G. Wanner
- Institute of Botany, LM University of Munich, Munich, Germany
| | - S. Fürst-Ladani
- Ludwig-Boltzmann Institut für experimentelle und klinische Traumatologie, Lorenz-Böhler Krankenhaus, Vienna, Austria
| | - W. Lubitz
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Heine H, Ulmer A, El-Samalouti V, Lentschat A, Hamann L. Decay-accelerating factor (DAF/CD55) is a functional active element of the LPS receptor complex. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070030601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previously, we identified an 80 kDa membrane protein (LMP80) that is capable of binding to LPS and lipid A in the presence of LBP and sCD14. LMP80 could also be detected after immuno-coprecipitation of cell membranes with LPS and lipid A, indicating a physical contact of LMP80 and LPS/lipid A. Further analysis and peptide sequencing revealed that LMP80 is identical to CD55 (decay accelerating factor, DAF), a regulatory molecule of the complement cascade. Transfection of LPS-hyporesponsive Chinese hamster ovary (CHO) cells with human CD55 resulted in the translocation of NF-κB upon stimulation with LPS or lipid A. Our results demonstrate a new functional role of CD55 as a molecule able to mediate LPS-induced activation of cells that may be part of a multimeric LPS receptor complex.
Collapse
Affiliation(s)
- H. Heine
- Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany
| | - A.J. Ulmer
- Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany,
| | - V.T. El-Samalouti
- Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany
| | - A. Lentschat
- Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany
| | - L. Hamann
- Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany
| |
Collapse
|
12
|
Wu Chaoqun, Wanleng Deng, Ohmori Y, Hamilton TA. Differential mechanisms of LPS-induced NFκB activation in macrophages and fibroblasts. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipopolysaccharide is a prototypic stimulus of inflammatory gene expression which can act on a variety of cell types to produce different patterns of response. In the present report, the ability of LPS to stimulate NFKB activity was investigated in a fibroblast cell line (NIH3T3) and compared to LPS-induced response in a macrophage like cell line (RAW264.7). LPS was a potent stimulus of KB binding activity in both cell types though the protein composition of such binding activity varied. LPS caused nuclear translocation of KB binding activity in RAW 264.7 cells which contained NFKB1 (p50), RelA (p65), and high levels of c-Rel. Nuclei from LPS-stimulated NIH3T3 cells contained only NFKB1 and RelA but little c-Rel. Both cell types contain comparable levels of total c-Rel protein. Using two structurally distinct KB sequence motifs, LPS was shown to produce a different pattern of transacting activity in fibroblasts as compared to macrophages; both KB motifs were sensitive to LPS in RAW264.7 cells while only one of the two was functional in LPS-stimulated NIH3T3 cells. Thus LPS appears to utilize the NFKB family of transcription factors differentially depending upon the cell type being stimulated. Such differential activation of transcription factor family members may be an important determinant of the diverse nature of inflammatory response seen in different tissue settings.
Collapse
Affiliation(s)
- Wu Chaoqun
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wanleng Deng
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yoshihiro Ohmori
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Thomas A. Hamilton
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Dullah EC, Ongkudon CM. Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Crit Rev Biotechnol 2016; 37:251-261. [DOI: 10.3109/07388551.2016.1141393] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Elvina Clarie Dullah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Clarence M. Ongkudon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
14
|
Carlsen TG, Kjærsgaard P, Jørgensen TL, Foldbjerg R, Nielsen ML, Poulsen TBG, Zabieglo K, Christiansen G, Birkelund S. Interleukin-1α activation and localization in lipopolysaccharide-stimulated human monocytes and macrophages. J Immunol Methods 2015; 422:59-71. [PMID: 25870118 DOI: 10.1016/j.jim.2015.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Interleukin-1α (IL-1α) is a proinflammatory cytokine belonging to the IL-1 family. It is synthesized as a 33kDa precursor peptide that is cleaved by a calpain-like protease to a 16 kDa propiece and a 17 kDa mature IL-1α peptide. In contrast to its close relative, IL-1β, the role of IL-1α in inflammation is only partly understood. RESULTS Human monocyte derived macrophages, stimulated with lipopolysaccharide (LPS) were analysed for production and localization of IL-1α by use of a monoclonal antibody (MAb) generated against recombinant precursor IL-1α. We found that the MAb detected IL-1α within the nuclei of the cells 2h (hours) after LPS stimulation and production continued for up to 20 h. At no time could we demonstrate cleavage of the IL-1α precursor. The MAb was conjugated to fluorescein isothiocyanate (FITC) for use in flow cytometry. Based on the flow cytometric analysis CD68 positive cells were positive for IL-1α in agreement with CD68 being a marker for monocytes. CONCLUSIONS Here, we demonstrate, for the first time, a method to visualize and measure the production of IL-1α in both human monocytes and macrophages.
Collapse
Affiliation(s)
- Thomas Gelsing Carlsen
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Pernille Kjærsgaard
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Trine Lykke Jørgensen
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Rasmus Foldbjerg
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | - Mads Lausen Nielsen
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark.
| | | | | | | | - Svend Birkelund
- Department of Health Science and Technology, Fredrik Bajers Vej 3b, 9220 Aalborg Ø, Denmark; Loke Diagnostics, Sindalsvej 17, 8240 Risskov, Denmark.
| |
Collapse
|
15
|
Gao J, Lai Y, Wu C, Zhao Y. Exploring and exploiting the synergy of non-covalent interactions on the surface of gold nanoparticles for fluorescent turn-on sensing of bacterial lipopolysaccharide. NANOSCALE 2013; 5:8242-8248. [PMID: 23884109 DOI: 10.1039/c3nr02490c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The sensing of lipopolysaccharide (LPS) relies on the synergy of multiple electrostatic and hydrophobic interactions between LPS and the sensor. However, how non-covalent interactions are coordinated to impel the recognition process still remains elusive, and the exploration of which would promote the development of LPS sensors with higher specificity and sensitivity. In this work, we hypothesize that Au NPs would provide a straightforward and flexible platform for studying the synergy of non-covalent interactions. The detailed mechanism of interactions between the designed fluorescent probes and Au NPs with two distinct surface properties was systematically explored. We demonstrated that only when the electrostatic attraction and hydrophobic stacking are both present, the binding of fluorescent probes onto Au NPs can be not only highly efficient, but also positively cooperative. After that, hybrid systems that consist of Au NPs and surface-assembled fluorescent probes were exploited for fluorescent turn-on sensing of LPS. The results show that the sensitivity and selectivity to LPS relies strongly on the binding affinity between fluorescent probes and Au NPs. Fluorescent probes assembled Au NPs thus provide an attractive platform for further optimization of the sensitivity/selectivity of LPS sensing.
Collapse
Affiliation(s)
- Jinhong Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen, 361005, PR China
| | | | | | | |
Collapse
|
16
|
Zhao W, Wu J, Liu W, Wang P. 1,4-Diazobicyclo(2,2,2)octane-modified multi-ammonium derivatives as ratiometric fluorescent sensors for lipopolysaccharide. Supramol Chem 2013. [DOI: 10.1080/10610278.2012.732224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
|
18
|
Lan M, Wu J, Liu W, Zhang W, Ge J, Zhang H, Sun J, Zhao W, Wang P. Copolythiophene-Derived Colorimetric and Fluorometric Sensor for Visually Supersensitive Determination of Lipopolysaccharide. J Am Chem Soc 2012; 134:6685-94. [DOI: 10.1021/ja211570a] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Minhuan Lan
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiasheng Wu
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
| | - Weimin Liu
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
| | - Wenjun Zhang
- Center
of Super-Diamond
and Advanced Films (COSDAF) and Department
of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Jiechao Ge
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
| | - Hongyan Zhang
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
| | - Jiayu Sun
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenwen Zhao
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory
of Photochemical
Conversion and Optoelectronic Materials, Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People’s Republic
of China
| |
Collapse
|
19
|
Zeng L, Wu J, Dai Q, Liu W, Wang P, Lee CS. Sensing of Bacterial Endotoxin in Aqueous Solution by Supramolecular Assembly of Pyrene Derivative. Org Lett 2010; 12:4014-7. [DOI: 10.1021/ol1016228] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lintao Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Qing Dai
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Sing Lee
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China, and Center of Super-Diamond and Advanced Film (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
20
|
Del Pozo JL. Primers on molecular pathways: lipopolysaccharide signaling - potential role in pancreatitis and pancreatic cancer. Pancreatology 2010; 10:114-8. [PMID: 20460943 DOI: 10.1159/000299987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system recognizes the presence of bacterial pathogens through the expression of a family of membrane receptors known as Toll-like receptors (TLRs). Lipopolysaccharide (LPS) is specifically recognized by TLR4. Recognition of microbial components by TLRs initiates signal transduction pathways, which triggers expression of genes. These gene products control innate immune responses and further instruct development of antigen-specific acquired immunity. TLR signaling pathways are finely regulated by TIR domain-containing adaptors, such as MyD88, TIRAP/Mal, TRIF and TRAM. LPS can act not only on immune cells but also on some types of epithelial cells including cancer cells and promote its transformed phenotype. Specifically, LPS can activate NF-kappaB signaling in pancreatic cancer cells, thus connecting inflammation with cancer progression. The TLR4 signaling pathway may offer a useful therapeutic target for patients with pancreatitis or pancreatic cancer associated with inflammation.
Collapse
Affiliation(s)
- Jose L Del Pozo
- Division of Infectious Diseases and Clinical Microbiology, Clinica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
21
|
Abstract
Although there has been a great amount of progress in the 25 years since the first reporting of the cDNA for IL-1alpha and IL-1beta, the history of IL-1 goes back to the early 1940s. In fact, the entire field of inflammatory cytokines, TLR and the innate immune response can be found in the story of IL-1. This Viewpoint follows the steps from the identification of the fever-inducing activities of "soluble factors" produced by endotoxin-stimulated leukocytes through to the discovery of cryopyrin and the caspase-1 inflammasome and on to the clinical benefits of anti-IL-1beta-based therapeutics. It also discusses some of the current controversies regarding the activation of the inflammasome. The future of novel anti-inflammatory agents to combat chronic inflammation is based, in part, on the diseases that are uniquely responsive to anti-IL-1beta, which is surely a reason to celebrate the 25th anniversary of the cloning of IL-1alpha and IL-1beta.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Berbée JFP, Coomans CP, Westerterp M, Romijn JA, Havekes LM, Rensen PCN. Apolipoprotein CI enhances the biological response to LPS via the CD14/TLR4 pathway by LPS-binding elements in both its N- and C-terminal helix. J Lipid Res 2010; 51:1943-52. [PMID: 20335569 DOI: 10.1194/jlr.m006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timely sensing of lipopolysaccharide (LPS) is critical for the host to fight invading Gram-negative bacteria. We recently showed that apolipoprotein CI (apoCI) (apoCI1-57) avidly binds to LPS, involving an LPS-binding motif (apoCI48-54), and thereby enhances the LPS-induced inflammatory response. Our current aim was to further elucidate the structure and function relationship of apoCI with respect to its LPS-modulating characteristics and to unravel the mechanism by which apoCI enhances the biological activity of LPS. We designed and generated N- and C-terminal apoCI-derived peptides containing varying numbers of alternating cationic/hydrophobic motifs. ApoCI1-38, apoCI1-30, and apoCI35-57 were able to bind LPS, whereas apoCI1-23 and apoCI46-57 did not bind LPS. In line with their LPS-binding characteristics, apoCI1-38, apoCI1-30, and apoCI35-57 prolonged the serum residence of 125I-LPS by reducing its association with the liver. Accordingly, both apoCI1-30 and apoCI35-57 enhanced the LPS-induced TNFalpha response in vitro (RAW 264.7 macrophages) and in vivo (C57Bl/6 mice). Additional in vitro studies showed that the stimulating effect of apoCI on the LPS response resembles that of LPS-binding protein (LBP) and depends on CD14/ Toll-like receptor 4 signaling. We conclude that apoCI contains structural elements in both its N-terminal and C-terminal helix to bind LPS and to enhance the proinflammatory response toward LPS via a mechanism similar to LBP.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Jin S, Cheng Y, Reid S, Li M, Wang B. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev 2010; 30:171-257. [PMID: 19291708 PMCID: PMC2829346 DOI: 10.1002/med.20155] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of "binders" capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and "binders/receptors," and their applications. The focus is on discoveries during the last 5 years.
Collapse
Affiliation(s)
- Shan Jin
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Yunfeng Cheng
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Suazette Reid
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Minyong Li
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Binghe Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-4098, USA
| |
Collapse
|
24
|
Wang L, Chen WZ, Wu MP. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index. Cytokine 2009; 49:194-200. [PMID: 19819722 DOI: 10.1016/j.cyto.2009.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/10/2009] [Accepted: 08/25/2009] [Indexed: 12/01/2022]
Abstract
The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 200032, China
| | | | | |
Collapse
|
25
|
Lin M, Zhang C, Gibson K, Rikihisa Y. Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever. Nucleic Acids Res 2009; 37:6076-91. [PMID: 19661282 PMCID: PMC2764437 DOI: 10.1093/nar/gkp642] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neorickettsia risticii is an obligate intracellular bacterium of the trematodes and mammals. Horses develop Potomac horse fever (PHF) when they ingest aquatic insects containing encysted N. risticii-infected trematodes. The complete genome sequence of N. risticii Illinois consists of a single circular chromosome of 879 977 bp and encodes 38 RNA species and 898 proteins. Although N. risticii has limited ability to synthesize amino acids and lacks many metabolic pathways, it is capable of making major vitamins, cofactors and nucleotides. Comparison with its closely related human pathogen N. sennetsu showed that 758 (88.2%) of protein-coding genes are conserved between N. risticii and N. sennetsu. Four-way comparison of genes among N. risticii and other Anaplasmataceae showed that most genes are either shared among Anaplasmataceae (525 orthologs that generally associated with housekeeping functions), or specific to each genome (>200 genes that are mostly hypothetical proteins). Genes potentially involved in the pathogenesis of N. risticii were identified, including those encoding putative outer membrane proteins, two-component systems and a type IV secretion system (T4SS). The bipolar localization of T4SS pilus protein VirB2 on the bacterial surface was demonstrated for the first time in obligate intracellular bacteria. These data provide insights toward genomic potential of N. risticii and intracellular parasitism, and facilitate our understanding of PHF pathogenesis.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
26
|
Ganesh V, Bodewits K, Bartholdson S, Natale D, Campopiano D, Mareque-Rivas J. Effective Binding and Sensing of Lipopolysaccharide: Combining Complementary Pattern Recognition Receptors. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Ganesh V, Bodewits K, Bartholdson S, Natale D, Campopiano D, Mareque-Rivas J. Effective Binding and Sensing of Lipopolysaccharide: Combining Complementary Pattern Recognition Receptors. Angew Chem Int Ed Engl 2009; 48:356-60. [DOI: 10.1002/anie.200804168] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zhao B, Sun L, Haas M, Denenberg AG, Wong HR, Shanley TP. PP2A REGULATES UPSTREAM MEMBERS OF THE C-JUN N-TERMINAL KINASE MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING PATHWAY. Shock 2008; 29:181-8. [PMID: 17693927 DOI: 10.1097/shk.0b013e318070c840] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that inhibition of the serine-threonine phosphatase PP2A resulted in increased c-jun N-terminal kinase (JNK) activity, and that the regulatory subunit, A/alpha of PP2A, was physically associated with the JNK. Because there exists additional examples of phosphatases serving as negative regulators of multiple members of mitogen-activated protein kinase (MAPK) pathways in Drosophila and yeast, we hypothesized that PP2A may serve a homologous function in mammalian cells affording the regulation of additional upstream kinases in the JNK pathway. In human monocytes, activation of JNK by LPS proceeds through the MAPK kinase kinase MEKK-1 and, subsequently, the MAPK kinases MKK4 and/or MKK7. Using the human monocyte cell line THP-1, we show that pharmacological manipulation of the activity of PP2A seemed to regulate not only JNK but also the upstream kinases MKK4 and MEKK-1. Using coimmunoprecipitation, overexpression of tagged recombinant JNK, and bacterial two-hybrid strategies, evidence for physical interactions between the structural subunit, PP2A-A/alpha and MEKK-1, MKK4, and JNK was observed. These studies suggest that the target of regulation by PP2A includes upstream kinases in the JNK MAPK pathway. Furthermore, PP2A-A/alpha seems to serve as a structural protein to foster protein-protein interactions affording specificity of the regulation among members of this MAP kinase pathway.
Collapse
Affiliation(s)
- Bin Zhao
- Division of Pediatric Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Bucholtz KM, Gareiss PC, Tajc SG, Miller BL. Synthesis and evaluation of the first cis-cyclobutane-containing receptor for lipid A. Org Biomol Chem 2006; 4:3973-9. [PMID: 17047878 DOI: 10.1039/b610727c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a designed receptor containing a cis-1,3-disubstituted cyclobutane ring has been synthesized. This molecule binds diphosphoryl lipid A (a conserved portion of the Gram-(-) bacterial cell membrane, and the causative agent of septic shock) with an affinity comparable to previously described ter-cycloalkane based lipid A-binding compounds.
Collapse
Affiliation(s)
- Kevin M Bucholtz
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
31
|
Kohara J, Tsuneyoshi N, Gauchat JF, Kimoto M, Fukudome K. Preparation and characterization of truncated human lipopolysaccharide-binding protein in Escherichia coli. Protein Expr Purif 2006; 49:276-83. [PMID: 16839777 DOI: 10.1016/j.pep.2006.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.
Collapse
Affiliation(s)
- Jun Kohara
- Department of Immunology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
32
|
Martinez FD. Gene-environment interactions in asthma and allergies: a new paradigm to understand disease causation. Immunol Allergy Clin North Am 2006; 25:709-21. [PMID: 16257634 DOI: 10.1016/j.iac.2005.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The example of complex interactions between environmental exposures and polymorphisms in the CD14 gene in predisposing for allergy-related conditions offers a good indication of the complexity of the mechanisms that determine susceptibility to these conditions. Contrary to what has been the rule for monogenic diseases, the association between genetic variations and polygenic conditions such as asthma and allergies may not always be unidirectional; that is, not always will the same alleles be associated with the conditions under study. Concepts of penetrance of genetic variations that ignore these nonlinear influences (which may affect gene-gene and gene-environment interactions) may hinder a better understanding of mechanisms of disease involved, and therefore may delay the development of preventive strategies for these common conditions. Discrepancies between well-designed genetic studies of asthma and allergies, therefore, may be suggesting something fundamental about how these diseases develop and how it will be possible to abolish them in the future.
Collapse
Affiliation(s)
- Fernando D Martinez
- Arizona Respiratory Center, College of Medicine, The University of Arizona, 1501 N. Campbell Avenue, 2349, Tucson, AZ 85724-5030, USA.
| |
Collapse
|
33
|
Noubir S, Lee JS, Reiner NE. Pleiotropic Effects of Phosphatidylinositol 3‐Kinase in Monocyte Cell Regulation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:51-95. [PMID: 16891169 DOI: 10.1016/s0079-6603(06)81002-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sanaâ Noubir
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Faculties of Medicine and Science, Vancouver, Coastal Health Research Institute (VCHRI), Vancouver, British Columbia, Canada V5Z 3J5
| | | | | |
Collapse
|
34
|
Miwa K, Fukuyama M, Matsuno N, Masuda S, Oyama Y, Ikeda K, Ikeda T. Superantigen-induced multiple organ dysfunction in a toxin-concentration-controlled and sequential parameter-monitored swine sepsis model. Int J Infect Dis 2006; 10:14-24. [PMID: 16263316 DOI: 10.1016/j.ijid.2005.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 01/05/2005] [Accepted: 01/12/2005] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE In order to examine the biological activity of low-dose and continuously infused superantigen, and to establish a superantigen-induced multiple organ dysfunction animal model, several pathophysiological parameters were sequentially monitored in a toxin-concentration-controlled pig model. METHODS Anesthetized, mechanically ventilated and Swan-Ganz thermodilution catheter-inserted pigs were treated with toxic shock syndrome toxin-1 (TSST-1) by infusion at 2 microg/kg/h for 5 h. Monitoring was performed for both the infusion period and a subsequent 1-h post-infusion period. RESULTS The serum concentration of TSST-1 was controlled so as to elevate it to a level over 1000 pg/mL within 1 h of initiation of infusion, and then gradually increased further and reached a plateau of about 2500 pg/mL at 4h after initiation. The animals showed a significant increase in cardiac output, the intrapulmonary arteriovenous shunt ratio, and infiltration of white blood cells into the lung. Although the observed increase in pulmonary vascular resistance was not statistically significant, it did correlate with the reduction in white blood cell counts. CONCLUSION The superantigen TSST-1 plays an important role in the pathogenesis of Gram-positive bacterial sepsis by inducing multiple organ dysfunction. Thus, this model provides the first tool to allow the simultaneous examination of the serum toxin levels and other organ parameters in a time-course manner.
Collapse
Affiliation(s)
- Keishi Miwa
- Specialty Material Research Laboratories, Toray Industries, Inc., 2-1 Sonoyama 3-chome, Otsu, Shiga 520-0842, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Luo SF, Lin WN, Yang CM, Lee CW, Liao CH, Leu YL, Hsiao LD. Induction of cytosolic phospholipase A2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of MAPKs and NF-kappaB pathways. Cell Signal 2005; 18:1201-11. [PMID: 16278065 DOI: 10.1016/j.cellsig.2005.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 09/17/2005] [Accepted: 09/19/2005] [Indexed: 12/22/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.
Collapse
Affiliation(s)
- Shue-Fen Luo
- Department of Internal Medicine, College of Medicine, Chang Gung University, Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-San, Tao-Yuan, Taiwan. lsf@
| | | | | | | | | | | | | |
Collapse
|
36
|
Jin L, Ren L, Leung WK, Darveau RP. The in vivo expression of membrane-bound CD14 in periodontal health and disease. J Periodontol 2004; 75:578-85. [PMID: 15152823 DOI: 10.1902/jop.2004.75.4.578] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Membrane-bound CD14 (mCD14) is a myeloid differentiation antigen expressed on monocytes/macrophages and neutrophils. It is a key molecule responsible for the innate recognition of bacteria by host cells and functions as an important receptor for bacterial lipopolysaccharide. This study investigated the in vivo expression profile and levels of mCD14 in healthy and diseased gingival tissues. METHODS Gingival biopsies were obtained from 24 patients with chronic periodontitis, including 22 periodontal pocket tissues, 13 clinically healthy tissues, and 18 inflamed connective tissues (i.e., granulation tissues). Gingival biopsies from seven periodontally healthy subjects were used as controls. mCD14 was detected by immunohistochemistry. RESULTS mCD14 was detected in 21 of 22 periodontal pocket tissues and all other categories of tissues. The mCD14-positive cells were mainly confined to the gingival epithelium-connective tissue interface. The expression levels in periodontally healthy subjects were significantly higher than in the patients. Within the patients, clinically healthy tissues showed greater levels of mCD14 than periodontal pocket tissues and granulation tissues. CONCLUSIONS mCD14 was commonly expressed in both healthy and diseased gingival tissues and was predominantly confined to the epithelium-connective tissue interface. The positive relationship observed between mCD14 expression levels and periodontal health may imply that mCD14 is associated with favorable host responses to bacterial challenge and contributes to maintaining periodontal homeostasis.
Collapse
Affiliation(s)
- Lijian Jin
- Faculty of Dentistry, Periodontology, The University of Hong Kong, Hong Kong.
| | | | | | | |
Collapse
|
37
|
Tomlinson JE, Blikslager AT. Interactions between lipopolysaccharide and the intestinal epithelium. J Am Vet Med Assoc 2004; 224:1446-52. [PMID: 15124884 DOI: 10.2460/javma.2004.224.1446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julia E Tomlinson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
38
|
Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 2003. [PMID: 14507981 DOI: 10.1523/jneurosci.23-25-08808.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems. They also initiate and control the body's response to pathogenic agents and regulate immune responses to both foreign and self-antigens. Here we show that post-injury injection of bone marrow-derived DCs pulsed with encephalitogenic or nonencephalitogenic peptides derived from myelin basic protein, when administered (either systemically or locally by injection into the lesion site) up to 12 d after the injury, led to significant and pronounced recovery from severe incomplete SCI. No significant protection was seen in DC recipients deprived of mature T-cells. Flow cytometry, RT-PCR, and proliferation assays indicated that the DCs prepared and used here were mature and immunogenic. Taken together, the results suggest that the DC-mediated neuroprotection was achieved via the induction of a systemic T-cell-dependent immune response. Better preservation of neural tissue and diminished formation of cysts and scar tissue accompanied the improved functional recovery in DC-treated rats. The use of antigen-specific DCs may represent an effective way to obtain, via transient induction of an autoimmune response, the maximal benefit of immune-mediated repair and maintenance as well as protection against self-destructive compounds.
Collapse
|
39
|
Metheniti A, Giannakas N, Katsoulas HL, Soldatos AN, Tsakas S, Lambropoulou M. Evidence for a LPS-binding protein in medfly hemocyte surface: mediation in LPS internalization but not in LPS signaling. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 54:25-36. [PMID: 12942513 DOI: 10.1002/arch.10096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A doublet of medfly hemocyte proteins with a molecular mass of about 55 and 50 kDa were precipitated with LPS. Antibodies raised against human CD14 recognize the same doublet of proteins. These results support that mammalian CD14 and the doublet of protein bands in medfly hemocytes share common epitopes. This doublet of protein bands is released from hemocytes upon LPS triggering. A portion of the released protein is clustered on the surface of a distinct hemocyte type and the other remains soluble. The membrane-bound LPS-binding protein is involved in LPS internalization and Escherichia coli phagocytosis but not in LPS signaling.
Collapse
|
40
|
Lin M, Rikihisa Y. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 2003; 71:5324-31. [PMID: 12933880 PMCID: PMC187327 DOI: 10.1128/iai.71.9.5324-5331.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are agents of human monocytic and granulocytic ehrlichioses, respectively. They are extremely sensitive to mechanical stress and are pleomorphic gram-negative bacteria. Membrane incorporation of cholesterol from the eukaryotic host is known to be essential for other fragile and pleomorphic bacteria and mycoplasmas that lack a cell wall. Thus, we tested whether cholesterol is required for E. chaffeensis and A. phagocytophilum. Using a freeze fracture technique and biochemical analysis, these bacteria were found to contain significant levels of membrane cholesterol. These bacteria lack genes for cholesterol biosynthesis or modification. However, host cell-free bacteria had the ability to take up directly exogenous cholesterol or NBD-cholesterol, a fluorescent cholesterol derivative. Treatment of the bacteria with cholesterol extraction reagent methyl-beta-cyclodextrin caused their ultrastructural changes. Furthermore, pretreatment of the bacteria with methyl-beta-cyclodextrin or NBD-cholesterol deprived these bacteria of the ability to infect leukocytes, thus killing these obligate intracellular bacteria. Analysis of E. chaffeensis and A. phagocytophilum genome sequences revealed that these bacteria lack all genes for the biosynthesis of lipid A and most genes for the biosynthesis of peptidoglycan, which confer structural strength to gram-negative bacteria. Taken together, these results suggest that human ehrlichiosis agents became cholesterol dependent due to the loss of these genes. As the first report of gram-negative bacteria incorporating cholesterol for survival, these findings offer insight into the unique nature of their parasitism and imply that cholesterol is important in the control of human ehrlichioses.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
41
|
Rawat SS, Viard M, Gallo SA, Rein A, Blumenthal R, Puri A. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol Membr Biol 2003; 20:243-54. [PMID: 12893532 DOI: 10.1080/0968768031000104944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- Laboratory of Experimental and Computational Biology, Center for Cancer Research NCI-Frederick, NIH, PO Box B, Bldg. 469, Rm. 211, Miller Drive Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
Maintenance of membrane lipid asymmetry is a dynamic process that influences many events over the lifespan of the cell. With few exceptions, most cells restrict the bulk of the aminophospholipids to the inner membrane leaflet by means of specific transporters. Working in concert with each other, these proteins correct for sporadic incursions of the aminophospholipids to the outer membrane leaflet as a result of bilayer imbalances created by various cellular events. A shift in the relative contribution in each of these activities can result in sustained exposure of the aminophospholipids at the cell surface, which allows capture of the cells by phagocytes before the integrity of the plasma membrane is compromised. The absence of an efficient recognition and elimination mechanism can result in uncontrolled and persistent presentation of self-antigens to the immune system, with development of autoimmune syndromes. To prevent this, phagocytes have developed a diverse array of distinct and redundant receptor systems that drive the postphagocytic events along pathways that facilitate cross-talk between the homeostatic and the immune systems. In this work, we review the basis for the proposed mechanism(s) by which apoptotic ligands appear on the target cell surface and the phagocyte receptors that recognize these moieties.
Collapse
|
44
|
Luo SF, Wang CC, Chien CS, Hsiao LD, Yang CM. Induction of cyclooxygenase-2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappaB pathways. Cell Signal 2003; 15:497-509. [PMID: 12639713 DOI: 10.1016/s0898-6568(02)00135-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipopolysaccharide (LPS) was found to induce inflammatory responses in the airways and exerted as a potent stimulus for PG synthesis. This study was to determine the mechanisms of LPS-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). LPS markedly increased the expression of COX-2 and release of PGE(2) in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Both the expression of COX-2 and the generation of PGE(2) in response to LPS were attenuated by a tyrosine kinase inhibitor genistein, a phosphatidylcholine-phospholipase C inhibitor D609, a phosphatidylinositol-phospholipase C inhibitor U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. Furthermore, LPS-induced NF-kappaB activation correlated with the degradation of IkappaB-alpha, COX-2 expression, and PGE(2) synthesis, was inhibited by transfection with dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. LPS-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK inhibitor), but these two inhibitors had no effect on LPS-induced NF-kappaB activation, indicating that NF-kappaB is activated by LPS independently of activation of p42/p44 MAPK and p38 MAPK pathways in TSMCs. Taken together, these findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from LPS-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways. LPS-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.
Collapse
Affiliation(s)
- Shue-Fen Luo
- Department of Internal Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
45
|
Nomura SI, Inamori KI, Muta T, Yamazaki S, Sunakawa Y, Iwanaga S, Takeshige K. Purification and characterization of human soluble CD14 expressed in Pichia pastoris. Protein Expr Purif 2003; 28:310-20. [PMID: 12699696 DOI: 10.1016/s1046-5928(02)00705-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD14 is a protein that mediates lipopolysaccharide (LPS)-induced biological responses such as activation of a transcriptional factor, nuclear factor (NF)-kappaB. It exists as a soluble form (sCD14) in serum and mediates LPS responses of epithelial and endothelial cells as well as a membrane-bound form (mCD14) on monocytes and macrophages. To obtain sCD14 in large quantity for its structural and functional characterization, we expressed the full-length form of human recombinant sCD14 (rsCD14) in a methylotrophic yeast, Pichia pastoris. The recombinant protein was expressed as a major protein in the culture supernatant and purified by ammonium sulfate precipitation, followed by three steps of ion exchange chromatographies. Finally, 1.6 mg of the protein was obtained in high purity from 2L of the supernatant and its identity to sCD14 was confirmed by NH(2)-terminal amino acid sequence analysis. The purified protein was found to have N-linked sugars by an analysis of enzymatic deglycosylation. A native PAGE analysis revealed that the protein was able to form complexes with LPS. In addition, the rsCD14 protein could mediate the LPS-mediated activation of NF-kappaB in human embryonic kidney 293 cells transfected with Toll-like receptor 4 and MD-2, indicating that the purified protein is biologically active. Thus, the rsCD14 protein expressed in P. pastoris and highly purified in a large amount is useful for its structural and functional studies.
Collapse
Affiliation(s)
- Shin-ichi Nomura
- Department of Molecular and Cellular Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Schröder HC, Brümmer F, Fattorusso E, Aiello A, Menna M, de Rosa S, Batel R, Müller WEG. Sustainable production of bioactive compounds from sponges: primmorphs as bioreactors. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 37:163-97. [PMID: 15825644 DOI: 10.1007/978-3-642-55519-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sponges [phylum Porifera] are a rich source for the isolation of biologically active and pharmacologically valuable compounds with a high potential to become effective drugs for therapeutic use. However, until now, only one compound has been introduced into clinics because of the limited amounts of starting material available for extraction. To overcome this serious problem in line with the rules for a sustainable use of marine resources, the following routes can be pursued; first, chemical synthesis, second, cultivation of sponges in the sea (mariculture), third, growth of sponge specimens in a bioreactor, and fourth, cultivation of sponge cells in vitro in a bioreactor. The main efforts to follow the latter strategy have been undertaken with the marine sponge Suberites domuncula. This species produces compounds that affect neuronal cells, such as quinolinic acid, a well-known neurotoxin, and phospholipids. A sponge cell culture was established after finding that single sponge cells require cell-cell contact in order to retain their telomerase activity, one prerequisite for continuous cell proliferation. The sponge cell culture system, the primmorphs, comprises proliferating cells that have the potency to differentiate. While improving the medium it was found that, besides growth factors, certain ions (e.g. silicate and iron) are essential. In the presence of silicate several genes required for the formation of the extracellular matrix are expressed (silicatein, collagen and myotrophin). Fe3+ is essential for the synthesis of the spicules, and causes an increased expression of the ferritin-, septin- and scavenger receptor genes. Furthermore, high water current is required for growth and canal formation in the primmorphs. The primmorph system has already been successfully used for the production of pharmacologically useful, bioactive compounds, such as avarol or (2'-5')oligoadenylates. Future strategies to improve the sponge cell culture are discussed; these include the elucidation of those genes which control the proliferation phase and the morphogenesis phase, two developmental phases which the cells in primmorphs undergo. In addition, immortalization of sponge cells by transfection with genomic DNA appears to be a promising way, since recent studies underscore the applicability of this technique for sponges.
Collapse
Affiliation(s)
- H C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yun PLW, DeCarlo AA, Collyer C, Hunter N. Modulation of an interleukin-12 and gamma interferon synergistic feedback regulatory cycle of T-cell and monocyte cocultures by Porphyromonas gingivalis lipopolysaccharide in the absence or presence of cysteine proteinases. Infect Immun 2002; 70:5695-705. [PMID: 12228299 PMCID: PMC128344 DOI: 10.1128/iai.70.10.5695-5705.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin 12 (IL-12) is an efficient inducer and enhancer of gamma interferon (IFN-gamma) production by both resting and activated T cells. There is evidence that human monocytes exposed to IFN-gamma have enhanced ability to produce IL-12 when stimulated with lipopolysaccharide (LPS). In this study, it was demonstrated that LPS from the oral periodontal pathogen Porphyromonas gingivalis stimulated monocytes primed with IFN-gamma to release IL-12, thereby enhancing IFN-gamma accumulation in T-cell populations. P. gingivalis LPS was shown to enhance IL-12 induction of IFN-gamma in T cells in a manner independent from TNF-alpha contribution. The levels of T-cell IL-12 receptors were not affected by P. gingivalis LPS and played only a minor role in the magnitude of the IFN-gamma response. These data suggest that LPS from P. gingivalis establishes an activation loop with IL-12 and IFN-gamma with potential to augment the production of inflammatory cytokines in relation to the immunopathology of periodontitis. We previously reported that the major cysteine proteinases (gingipains) copurifying with LPS in this organism were responsible for reduced IFN-gamma accumulation in the presence of IL-12. However, the addition of the gingipains in the presence of LPS resulted in partial restoration of the IFN-gamma levels. In the destructive periodontitis lesion, release of gingipains from the outer membrane (OM) of P. gingivalis could lead to the downregulation of Th1 responses, while gingipain associated with LPS in the OM or in OM vesicles released from the organism could have net stimulatory effects.
Collapse
Affiliation(s)
- Peter L W Yun
- Institute of Dental Research, Centre for Oral Health, Westmead Hospital, Wentworthville, Sydney, New South Wales 2145, Australia.
| | | | | | | |
Collapse
|
48
|
Abstract
The innate immune system initiates host defence against invasive microbial pathogens using specific recognition mechanisms. Here we review the current concepts and the molecular basis of innate immune responses to bacterial infections, focusing our attention on the actors involved in the response to Gram-negative bacteria. Lipopolysaccharide (LPS) is the major virulence factor of Gram-negative bacteria. During the past decade, enormous progress has been obtained in the elucidation of LPS recognition and signalling in mammalian phagocytes. According to the current model, recognition of LPS is initialized by the cooperative interplay between the LPS-binding protein (LBP), the membrane-bound or soluble forms of CD14 and the recently identified Toll-like receptor 4 (TLR4)-MD-2 complex. Recognition of LPS leads to the rapid activation of an intracellular signalling pathway, highly homologous to the signalling pathway of interleukin-1, which results in the release of pro-inflammatory mediators. In vivo models in which animals are challenged with LPS or Gram-negative bacteria have highlighted opposite roles for LBP, CD14 and TLRs. Regarding LPS challenge, there is a large body of evidence in favour of a detrimental role played by LBP, CD14 and TLRs. These molecules sensitize the host to a LPS-induced uncontrolled acute inflammatory response that results in animal death. However, when the host is in the presence of virulent Gram-negative bacteria, the invading pathogens must be held in check by the innate immune system until a specific immune response is mounted. Under these conditions, LBP, CD14 and TLRs are required to trigger a pro-inflammatory response which is crucial for keeping infection under control. Therefore, caution should be the rule about the development of therapeutic approaches aimed at blocking the pro-inflammatory response during Gram-negative infections.
Collapse
Affiliation(s)
- Didier Heumann
- Department of Internal Medicine, Division of Infectious Diseases, BH19-111, Centre Hospitalier Universitaire Vaudois, rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| | | |
Collapse
|
49
|
Yan W, Zhao K, Jiang Y, Huang Q, Wang J, Kan W, Wang S. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide. Shock 2002; 17:433-8. [PMID: 12022767 DOI: 10.1097/00024382-200205000-00016] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS) stimulation of endothelial cells induces the expression of intercellular adhesion molecule-1 (ICAM-1), a critical adhesion molecule involved in the adhesive interaction between leukocytes and endothelial cells in shock and inflammation. Although there is little literature about role of p38 mitogen-activated protein kinase (MAPK) in ICAM-1 protein expression of LPS-induced endothelial cells, it is still not defined whether gene transcription is regulated by p38 MAPK in ICAM-1 expression of LPS-induced endothelial cells. In this study, the potential role of p38 MAPK in ICAM-1 expression of LPS-induced endothelial cells was studied in vitro and in vivo. In vitro studies, the results showed that compared with basic expression of ICAM-1 protein on cultured human umbilical vein endothelial cells (HUVECs), the ICAM-1 expression was increased initially at 2 h after LPS stimulation, reached peak value at 24 h, and descended at 36 h obviously. A dose-dependent relationship existed between LPS concentration and ICAM-1 expression. The abundance of ICAM-1 mRNA in cytoplasma of endothelial cells was upregulated significantly by LPS stimulation at 2 h and was maintained at a high level from 4 to 36 h. The upregulation of ICAM-1 protein and mRNA expression of LPS-induced HUVECs was markedly inhibited by SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)imidazole], a highly specific inhibitor of p38 MAPK. Activity of p38 MAPK in HUVECs was increased at 15 min after LPS stimulation and reached the maximum at 60 min, then descended significantly. Activity of p38 MAPK was inhibited significantly by SB203580 in vitro. In vivo studies, administration of SB203580 (12.5 or 25 mg/kg, per ora) markedly reduced LPS-induced expression of ICAM-1 protein and mRNA of lung tissues of male BALB/c mice. These data highlight that the upregulation of ICAM-1 expression of LPS-induced endothelial cells in vitro and in vivo is mediated by p38 MAPK pathway at the level of gene transcription. The ICAM-1 expression of LPS-induced endothelial cells is characteristic of time dependence and dose dependence, and tolerates to chronic LPS stimulation. Inhibition of the p38 MAPK signal pathway may be used as an approach to attenuate ICAM-1 production in the treatment of septic shock.
Collapse
Affiliation(s)
- Wensheng Yan
- Department of Pathophysiology, The First Military Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277:15028-34. [PMID: 11836257 DOI: 10.1074/jbc.m200497200] [Citation(s) in RCA: 1105] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
Collapse
Affiliation(s)
- Alexzander Asea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|