1
|
Yoshino N, Yokoyama T, Sakai H, Sugiyama I, Odagiri T, Kimura M, Hojo W, Saino T, Muraki Y. Suitability of Polymyxin B as a Mucosal Adjuvant for Intranasal Influenza and COVID-19 Vaccines. Vaccines (Basel) 2023; 11:1727. [PMID: 38006059 PMCID: PMC10675063 DOI: 10.3390/vaccines11111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Polymyxin B (PMB) is an antibiotic that exhibits mucosal adjuvanticity for ovalbumin (OVA), which enhances the immune response in the mucosal compartments of mice. Frequent breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants indicate that the IgA antibody levels elicited by the mRNA vaccines in the mucosal tissues were insufficient for the prophylaxis of this infection. It remains unknown whether PMB exhibits mucosal adjuvanticity for antigens other than OVA. This study investigated the adjuvanticity of PMB for the virus proteins, hemagglutinin (HA) of influenza A virus, and the S1 subunit and S protein of SARS-CoV-2. BALB/c mice immunized either intranasally or subcutaneously with these antigens alone or in combination with PMB were examined, and the antigen-specific antibodies were quantified. PMB substantially increased the production of antigen-specific IgA antibodies in mucosal secretions and IgG antibodies in plasma, indicating its adjuvanticity for both HA and S proteins. This study also revealed that the PMB-virus antigen complex diameter is crucial for the induction of mucosal immunity. No detrimental effects were observed on the nasal mucosa or olfactory bulb. These findings highlight the potential of PMB as a safe candidate for intranasal vaccination to induce mucosal IgA antibodies for prophylaxis against mucosally transmitted infections.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Iwate, Japan
| | - Hironori Sakai
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Ikumi Sugiyama
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Science, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Masahiro Kimura
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Wataru Hojo
- R&D, Cellspect Co., Ltd., 2-4-23 Kitaiioka, Morioka 020-0857, Iwate, Japan
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
2
|
Guo T, Gao C, Hao J, Lu X, Xie K, Wang X, Li J, Zhou H, Cui W, Shan Z, Jiang Y, Qiao X, Tang L, Wang L, Li Y. Strategy of Developing Oral Vaccine Candidates Against Co-infection of Porcine Diarrhea Viruses Based on a Lactobacillus Delivery System. Front Microbiol 2022; 13:872550. [PMID: 35444630 PMCID: PMC9014262 DOI: 10.3389/fmicb.2022.872550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
The number of co-infections with multiple porcine diarrhea viruses has increased in recent years. Inducing mucosal immunity through oral immunization is an effective approach for controlling these pathogens. To generate a multi-pathogen vaccine against viral co-infection, we employed the Lactobacillus vector platform, which was previously used to generate potent candidate vaccines against various diseases. Two strategies were used to test the protective efficiency of recombinant Lactobacillus against multiple diarrhea viruses. First, we used a mixture of recombinant Lactobacillus separately expressing antigens of transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine rotavirus (PoRV). Next, we used a recombinant Lactobacillus expressing an antigen fusion protein of the above viruses. Twenty-four newborn piglets were divided into three groups and orally immunized with a mixture of recombinant Lactobacillus, recombinant Lactobacillus expressing the antigen fusion protein, or sterile phosphate-buffered saline daily for seven consecutive days after birth. After immunization, the piglets were randomly selected from each group for oral administration of PEDV, and these piglets were then cohabited with piglets without PEDV infection for 7 days. The protective effect against PEDV was evaluated based on clinical symptoms, viral shedding, and intestinal pathological damage. Piglets immunized with recombinant Lactobacillus showed specific mucosal and humoral immune responses to the three viruses and were protected against severe diarrhea and intestinal pathology. Our results highlight the potential of an oral multi-pathogen vaccine based on Lactobacillus to prevent transmission and limit the severity of viral co-infection.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Zahedipour F, Zamani P, Jamialahmadi K, Jaafari MR, Sahebkar A. Vaccines targeting angiogenesis in melanoma. Eur J Pharmacol 2021; 912:174565. [PMID: 34656608 DOI: 10.1016/j.ejphar.2021.174565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis has a significant role in metastasis and progression of melanoma. Even small tumors may be susceptible to metastasis and hence lead to a worse outcome in patients with melanoma. One of the anti-angiogenic treatment approaches that is undergoing comprehensive study is specific immunotherapy. While tumor cells are challenging targets for immunotherapy due to their genetic instability and heterogeneity, endothelial cells (ECs) are genetically stable. Therefore, vaccines targeting angiogenesis in melanoma are appropriate choices that target both tumor cells and ECs while capable of inducing strong, anti-tumor immune responses with limited toxicity. The main targets of angiogenesis are VEGFs and their receptors but other potential targets have also been investigated, especially in preclinical studies. Various types of vaccines that target angiogenesis in melanoma have been studied including DNA, peptide, protein, dendritic cell-based, and endothelial cell vaccines. This review outlines a number of target antigens that are important for potential progress in developing vaccines for targeting angiogenesis in melanoma. We also discuss different types of vaccines that have been investigated, delivery mechanisms and popular adjuvants, and suggest ways to improve future clinical outcomes.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yoshino N, Kawamura H, Sugiyama I, Sasaki Y, Odagiri T, Sadzuka Y, Muraki Y. A systematic assessment of the relationship between synthetic surfactants and mucosal adjuvanticity. Eur J Pharm Biopharm 2021; 165:113-126. [PMID: 34004335 DOI: 10.1016/j.ejpb.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/24/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Intranasal immunization with surfactants as vaccine adjuvants enhances protective immunity against invasive mucosal pathogens. However, the effects of surfactants and their adjuvanticity on mucosal immune responses remain unclear. Comparison of the mucosal adjuvanticity of 20 water-soluble surfactants from the four classes based upon the polarity composition of the hydrophilic headgroup revealed that the order of mucosal adjuvanticity was as follows: amphoteric > nonionic > cationic > anionic. Within the same class, each surfactant displayed different adjuvanticity values. Analysis of the diameter and ζ-potential of amphoteric surfactant-OVA complexes and their surface physicochemical properties revealed that the diameter was approximately 100 nm, which is considered suitable for immune induction, and that the ζ-potential of the anionic surfactant-OVA complexes was exceedingly negative. The increase in the number of carbon atoms in the hydrophobic tailgroups of the amphoteric surfactant resulted in an increase in the OVA-specific Ab titers. Our findings demonstrate that amphoteric surfactants exhibit potent mucosal adjuvanticity and highlight the importance of the number of carbon atoms in the tailgroups and the diameter and ζ-potential of the complexes when designing mucosal adjuvants.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan.
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Ikumi Sugiyama
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Takashi Odagiri
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Yasuyuki Sadzuka
- Division of Advanced Pharmaceutics, Department of Clinical Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3694, Japan
| |
Collapse
|
5
|
Liang T, Qiu J, Niu X, Ma Q, Zhou C, Chen P, Zhang Q, Chen M, Yang Z, Liu S, Li L. 3-Hydroxyphthalic Anhydride-Modified Chicken Ovalbumin as a Potential Candidate Inhibits SARS-CoV-2 Infection by Disrupting the Interaction of Spike Protein With Host ACE2 Receptor. Front Pharmacol 2021; 11:603830. [PMID: 33519467 PMCID: PMC7840605 DOI: 10.3389/fphar.2020.603830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.
Collapse
Affiliation(s)
- Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayin Qiu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoge Niu
- Department of Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangdong, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Chenliang Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qiao Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Duan K, Hua X, Wang Y, Wang Y, Chen Y, Shi W, Tang L, Li Y, Liu M. Oral immunization with a recombinant Lactobacillus expressing CK6 fused with VP2 protein against IPNV in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2018; 83:223-231. [PMID: 30217507 DOI: 10.1016/j.fsi.2018.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) infects wild and cultured salmonid fish causing high mortality with serious economic losses to salmonid aquaculture. Ideally, the method of oral immunization should prevent the infection of rainbow trout juveniles with IPNV. In the present study, genetically engineered Lactobacillus casei 393 pPG-612-VP2/L. casei 393 and pPG-612-CK6-VP2/L. casei 393 constitutively expressing VP2 protein of IPNV were constructed. The recombinant strains pPG-612-CK6-VP2/L. casei 393 and pPG-612-VP2/L. casei 393 were orally administrated to juvenile rainbow trouts, and significant titers of IgM and IgT of pPG-612-CK6-VP2/L. casei 393 were observed. The results demonstrate that the recombinants could elicit both local mucosal and systemic immune responses. The proliferation of spleen lymphocytes in trouts immunized with pPG-612-CK6-VP2/L. casei 393 showed that the recombinant strain could induce a strong cellular immune response. The IL-1β, IL-8, CK6, MHC-II, Mx, β-defensin, and TNF-1α levels in the spleen and gut suggest that the target molecular chemokine has the ability to attract relevant immune cells to participate in the inflammatory response and enhance the function of the innate immune response. Additionally, the pPG-612-CK6-VP2/L. casei 393 induced the expression of cytokines, which have the effect of promoting inflammation to drive the differentiation of macrophages and clear target cells. After challenging with IPNV, the reduction in viral load caused by pPG-612-CK6-VP2/L. casei 393 was significantly higher than that of the other groups. Thus, the recombinant pPG-612-CK6-VP2/L. casei 393 is a promising candidate for the development of an oral vaccine against IPNV.
Collapse
Affiliation(s)
- Kexin Duan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiaojing Hua
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuting Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yijing Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
7
|
Hijano DR, Siefker DT, Shrestha B, Jaligama S, Vu LD, Tillman H, Finkelstein D, Saravia J, You D, Cormier SA. Type I Interferon Potentiates IgA Immunity to Respiratory Syncytial Virus Infection During Infancy. Sci Rep 2018; 8:11034. [PMID: 30038294 PMCID: PMC6056463 DOI: 10.1038/s41598-018-29456-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in infants and young children worldwide. Although mucosal RSV vaccines can reduce RSV disease burden, little is known about mucosal immune response capabilities in children. Neonatal or adult mice were infected with RSV; a subset of neonatal mice received interferon alpha (IFN-α) (intranasal) prior to RSV infection. B cells, B cell activating factor (BAFF) and IgA were measured by flow cytometry. RSV specific IgA was measured in nasal washes. Nasal associated lymphoid tissue (NALT) and lungs were stained for BAFF and IgA. Herein, we show in a mouse model of RSV infection that IFN-α plays a dual role as an antiviral and immune modulator and age-related differences in IgA production upon RSV infection can be overcome by IFN-α administration. IFN-α administration before RSV infection in neonatal mice increased RSV-specific IgA production in the nasal mucosa and induced expression of the B-cell activating factor BAFF in NALT. These findings are important, as mucosal antibodies at the infection site, and not serum antibodies, have been shown to protect human adults from experimental RSV infection.
Collapse
Affiliation(s)
- Diego R Hijano
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David T Siefker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bishwas Shrestha
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Luan D Vu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jordy Saravia
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
8
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
9
|
Fernando Rodríguez Ferri E, Martínez Martínez S, Bernardo Gutiérrez Martín C. From the first to the latest vaccines in Veterinary Medicine. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Jung M, Shin YJ, Kim J, Cha SB, Lee WJ, Shin MK, Shin SW, Yang MS, Jang YS, Kwon TH, Yoo HS. Induction of immune responses in mice and pigs by oral administration of classical swine fever virus E2 protein expressed in rice calli. Arch Virol 2014; 159:3219-30. [PMID: 25091740 DOI: 10.1007/s00705-014-2182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022]
Abstract
Classical swine fever (CSF), caused by the CSF virus (CSFV), is a highly contagious disease in pigs. In Korea, vaccination using a live-attenuated strain (LOM strain) has been used to control the disease. However, parenteral vaccination using a live-attenuated strain still faces a number of problems related to storage, cost, injection stress, and differentiation of CSFV infected and vaccinated pigs. Therefore, two kinds of new candidates for oral vaccination have been developed based on the translation of the E2 gene of the SW03 strain, which was isolated from an outbreak of CSF in 2002 in Korea, in transgenic rice calli (TRCs) from Oriza sativa L. cv. Dongjin to express a recombinant E2 protein (rE2-TRCs). The expression of the recombinant E2 protein (rE2) in rE2-TRCs was confirmed using Northern blot, SDS-PAGE, and Western blot analysis. Immune responses to the rE2-TRC in mice and pigs were investigated after oral administration. The administration of rE2-TRCs increased E2-specific antibodies titers and antibody-secreting cells when compared to animals receiving the vector alone (p < 0.05 and p < 0.01). In addition, mice receiving rE2-TRCs had a higher level of CD8+ lymphocytes and Th1 cytokine immune responses to purified rE2 (prE2) in vitro than the controls (p < 0.05 and p < 0.01). Pigs receiving rE2-TRCs also showed an increase in IL-8, CCL2, and the CD8+ subpopulation in response to stimulation with prE2. These results suggest that oral administration of rE2-TRCs can induce E2-specific immune responses.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Infectious diseases, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhao LL, Liu M, Ge JW, Qiao XY, Li YJ, Liu DQ. Expression of infectious pancreatic necrosis virus (IPNV) VP2-VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts. Vaccine 2012; 30:1823-9. [PMID: 22234263 DOI: 10.1016/j.vaccine.2011.12.132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/11/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Infectious pancreatic necrosis virus (IPNV) infects wild and cultured salmonids, causing high mortality in juvenile trouts and salmons. IPNV VP2-VP3 fusion gene was constructed by splicing overlap extension (SOE) PCR and inserted into Lactobacillus/Escherichia coli shuttle vectors (pPG1and pPG2) followed by transformation of Lactobacillus casei competent cell to yield two recombinant strains: Lc:PG1-VP2-VP3 (surface-displayed) and Lc:PG2-VP2-VP3 (secretory). Subsequently, juvenile rainbow trouts were inoculated with the recombinant strains via orogastric route. Our results demonstrated that Lactobacillus-derived VP2-VP3 fusion protein could induce production of serum IgM specific for IPNV with neutralizing activity in rainbow trouts. Statistical analyses of IgM levels showed that immunogenicity of Lc:PG1-VP2-VP3 was more powerful than that of Lc:PG2-VP2-VP3 (P<0.001) in rainbow trouts. This result has been confirmed by viral loads reduction analyzed by real-time RT-PCR in orogastrically immunized rainbow trouts after virus challenging. Comparing to trouts received Lactobacillus (control), rainbow trouts orogastrically dosed with Lc:PG1-VP2-VP3 resulted in ∼10-fold reduction in viral loads on day 10 post-virus challenging, and ∼4-fold did by Lc:PG2-VP2-VP3. Taken together, Lc:PG1-VP2-VP3 functions as novel mucosal vaccine against IPNV infection in rainbow trouts, which most likely come true.
Collapse
Affiliation(s)
- Li-Li Zhao
- Veterinary Microbiology Department, Veterinary Medicine College, Northeast Agricultural University, Harbin, China
| | | | | | | | | | | |
Collapse
|
12
|
Péchiné S, Denève C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of hamsters againstClostridium difficileinfection using the Cwp84 protease as an antigen. ACTA ACUST UNITED AC 2011; 63:73-81. [DOI: 10.1111/j.1574-695x.2011.00832.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Tang L, Li Y. Oral immunization of mice with recombinant Lactococcus lactis expressing porcine transmissible gastroenteritis virus spike glycoprotein. Virus Genes 2011; 39:238-45. [PMID: 19629668 PMCID: PMC7089002 DOI: 10.1007/s11262-009-0390-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
Abstract
Lactococcus lactis NZ9000 was selected as an antigen delivery vehicle for mucosal immunization against porcine transmissible gastroenteritis virus (TGEV) infection. An approximately 70 kDa fragment of the N-terminal globular domain of the spike (S) protein (SN protein) from the coronavirus TGEV was used as the transmissible gastroenteritis virus antigen model. Recombinant L. lactis, expressing the SN protein, was constructed with the pNZ8112 plasmid. Expression and localization of the transcribed SN protein from the recombinant LNZ9000-rTGEV-SN were detected via SDS-PAGE, Western blot, and immunofluorescence. BALB/c mice, orally immunized with LNZ9000-rTGEV-SN, produced local mucosal immune responses against TGEV. The induced antibodies demonstrated neutralizing effects on TGEV infection. These data indicated that the recombinant L. lactis could be a valuable tool in the development of future vaccines against TGEV.
Collapse
Affiliation(s)
- Lijie Tang
- Life Science Department, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | | |
Collapse
|
14
|
Wang SH, Thompson AL, Hickey AJ, Staats HF. Dry powder vaccines for mucosal administration: critical factors in manufacture and delivery. Curr Top Microbiol Immunol 2011; 354:121-56. [PMID: 21822816 DOI: 10.1007/82_2011_167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dry powder vaccine formulations have proved effective for induction of systemic and mucosal immune responses. Here we review the use of dry vaccines for immunization in the respiratory tract. We discuss techniques for powder formulation, manufacture, characterization and delivery in addition to methods used for evaluation of stability and safety. We review the immunogenicity and protective efficacy of dry powder vaccines as compared to liquid vaccines delivered by mucosal or parenteral routes. Included is information on mucosal adjuvants and mucoadhesives that can be used to enhance nasal or pulmonary dry vaccines. Mucosal immunization with dry powder vaccines offers the potential to provide a needle-free and cold chain-independent vaccination strategy for the induction of protective immunity against either systemic or mucosal pathogens.
Collapse
Affiliation(s)
- Sheena H Wang
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
15
|
Gwinn WM, Kirwan SM, Wang SH, Ashcraft KA, Sparks NL, Doil CR, Tlusty TG, Casey LS, Hollingshead SK, Briles DE, Dondero RS, Hickey AJ, Foster WM, Staats HF. Effective induction of protective systemic immunity with nasally administered vaccines adjuvanted with IL-1. Vaccine 2010; 28:6901-14. [PMID: 20723629 DOI: 10.1016/j.vaccine.2010.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/23/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
IL-1α and IL-1β were evaluated for their ability to provide adjuvant activity for the induction of serum antibody responses when nasally administered with protein antigens in mice and rabbits. In mice, intranasal (i.n.) immunization with pneumococcal surface protein A (PspA) or tetanus toxoid (TT) combined with IL-1β induced protective immunity that was equivalent to that induced by parenteral immunization. Nasal immunization of awake (i.e., not anesthetized) rabbits with IL-1-adjuvanted vaccines induced highly variable serum antibody responses and was not as effective as parenteral immunization for the induction of antigen-specific serum IgG. However, i.n. immunization of deeply anesthetized rabbits with rPA+IL-1α consistently induced rPA-specific serum IgG ELISA titers that were not significantly different than those induced by intramuscular (IM) immunization with rPA+alum although lethal toxin-neutralizing titers induced by nasal immunization were lower than those induced by IM immunization. Gamma scintigraphy demonstrated that the enhanced immunogenicity of nasal immunization in anesthetized rabbits correlated with an increased nasal retention of i.n. delivered non-permeable radio-labeled colloidal particles. Our results demonstrate that, in mice, IL-1 is an effective adjuvant for nasally administered vaccines for the induction of protective systemic immunity and that in non-rodent species, effective induction of systemic immunity with nasally administered vaccines may require formulations that ensure adequate retention of the vaccine within the nasal cavity.
Collapse
Affiliation(s)
- William M Gwinn
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li L, Qiao P, Yang J, Lu L, Tan S, Lu H, Zhang X, Chen X, Wu S, Jiang S, Liu S. Maleic anhydride-modified chicken ovalbumin as an effective and inexpensive anti-HIV microbicide candidate for prevention of HIV sexual transmission. Retrovirology 2010; 7:37. [PMID: 20420669 PMCID: PMC2888735 DOI: 10.1186/1742-4690-7-37] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 04/26/2010] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have shown that 3-hydroxyphthalic anhydride (HP)-modified bovine milk protein, β-lactoglobulin (β-LG), is a promising microbicide candidate. However, concerns regarding the potential risk of prion contamination in bovine products and carcinogenic potential of phthalate derivatives were raised. Here we sought to replace bovine protein with an animal protein of non-bovine origin and substitute HP with another anhydride for the development of anti-HIV microbicide for preventing HIV sexual transmission. Results Maleic anhydride (ML), succinic anhydride (SU) and HP at different conditions and variable pH values were used for modification of proteins. All the anhydrate-modified globulin-like proteins showed potent anti-HIV activity, which is correlated with the percentage of modified lysine and arginine residues in the modified protein. We selected maleic anhydride-modified ovalbumin (ML-OVA) for further study because OVA is easier to obtain than β-LG, and ML is safer than HP. Furthermore, ML-OVA exhibited broad antiviral activities against HIV-1, HIV-2, SHIV and SIV. This modified protein has no or low in vitro cytotoxicity to human T cells and vaginal epithelial cells. It is resistant to trypsin hydrolysis, possibly because the lysine and arginine residues in OVA are modified by ML. Mechanism studies suggest that ML-OVA inhibits HIV-1 entry by targeting gp120 on HIV-1 virions and also the CD4 receptor on the host cells. Conclusion ML-OVA is a potent HIV fusion/entry inhibitor with the potential to be developed as an effective, safe and inexpensive anti-HIV microbicide.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Caprine herpesvirus-1-specific IgG subclasses in naturally and experimentally infected goats. Vet Microbiol 2009; 138:266-72. [PMID: 19411146 DOI: 10.1016/j.vetmic.2009.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/16/2009] [Accepted: 04/03/2009] [Indexed: 11/23/2022]
|
18
|
Alvarez S, Gobbato N, Bru E, De Ruiz Holgado AP, Perdigón G. Specific immunity Induction at the mucosal level by viablelactobacillus casei:a Perspective for oral vaccine development. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540109809354971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
19
|
Zhang L, Zhang M, Li J, Cao T, Tian X, Zhou F. Enhancement of mucosal immune responses by intranasal co-delivery of Newcastle disease vaccine plus CpG oligonucleotide in SPF chickens in vivo. Res Vet Sci 2008; 85:495-502. [PMID: 18359498 DOI: 10.1016/j.rvsc.2008.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/23/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Immunostimulatory CpG oligodeoxynucleotides (ODN) have been tested as immunoadjuvants for various vaccines in mice and human. Findings from previous reports suggest that CpG ODN can be used to enhance magnitude and balance of an immune response while reducing undesirable side effects of commercial vaccine, when delivered by parenteral route. Recently, it has been showed that CpG ODN is a promising mucosal adjuvant in mice, but data on mucosal immune responses induced by CpG ODN in other animals, especially in chickens, are scarce. Herein, we evaluated intranasal (IN) delivery of CpG ODN with newcastle disease (ND) vaccine (NDV) to determine its potential as a mucosal adjuvant to a commercial vaccine. CpG ODN augmented systemic (IgG in serum, T cell proliferation) and mucosal (IgA in intestinal washings and feces) immune responses against antigen. CpG ODN stimulated effectively both systemic and mucosal immune responses when delivered intranasally. Results from this study indicate that stimulatory CpG ODN is a potential effective mucosal adjuvant for the NDV in SPF chickens and may be applicable to husbandry animals.
Collapse
Affiliation(s)
- Linghua Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, GuangDong 510642, China.
| | | | | | | | | | | |
Collapse
|
20
|
Yigang XU, Yijing LI. Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization. Immunology 2007; 124:68-75. [PMID: 18034821 PMCID: PMC2434381 DOI: 10.1111/j.1365-2567.2007.02738.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus casei ATCC 393 was selected as a bacterial carrier for the development of mucosal vaccine against porcine parvovirus (PPV) infection. The PPV major structural polypeptide VP2 was used as the model parvovirus antigen. Two inducible expression systems, namely pPG611.1 of the cell-surface expression system and pPG612.1 of the secretion expression system based on the xylose operon promoter were used to express the VP2 protein. The immunogenicity of recombinant strains producing VP2 protein in two cellular locations, cell-surface exposed and secreted, was compared to each other by immunizing mice through the intragastric administration. The two types of constructs were able to induce strong specific immune responses against VP2 via intragastric administration and maximum titres of IgA and IgG were attained on days 46 post oral immunization, while the highest antibody levels were obtained with the strain producing the VP2 protein in extracellular milieu. The induced antibodies demonstrated neutralizing effects on PPV infection.
Collapse
Affiliation(s)
- X U Yigang
- Veterinary Department, Northeast Agricultural University, Harbin, 150030, PR China
| | | |
Collapse
|
21
|
Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine 2007; 26:24-31. [PMID: 18054413 PMCID: PMC7115547 DOI: 10.1016/j.vaccine.2007.10.065] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 11/20/2022]
Abstract
In this report, for surface display of viral antigen on lactobacilli, we have developed a surface antigen display system using the poly-gamma-glutamate synthetase A protein (pgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of pgsA and neucleocapsid protein of PEDV were stably expressed in Lactobacillus casei. Surface location of fusion protein was verified by ELISA, immunofluoresence microscopy. Oral and intranasal inoculations of recombinant L. casei into pregnant sow and mice resulted in high levels of serum immunoglobuline G (IgG) and mucosal IgA, as demonstrated by rnELISA(recombinant N protein ELISA) using recombinant N protein. Absorbance of IgG in pregnant sow sera highly increased duration of the experiment. More importantly, the level of IgA in colostrum were increased significantly higher than that of IgG. The IgG levels of the piglets were increased after suckling colostrum secreted from sows previously inoculated recombinant L. casei. These results indicate that mucosal immunization with recombinant L. casei expressing PEDV N protein (neucleoprotein of PEDV) on its surface elicited high levels of mucosal IgA and circulation IgG immune responses against the antigen N of PEDV.
Collapse
|
22
|
In vivo oral administration effects of various oligodeoxynucleotides containing synthetic immunostimulatory motifs in the immune response to pseudorabies attenuated virus vaccine in newborn piglets. Vaccine 2007; 26:224-33. [PMID: 18063448 DOI: 10.1016/j.vaccine.2007.10.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 10/10/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
Abstract
Numerous studies have demonstrated that oligonucleotides containing CpG motifs (CpG ODN) are efficient immunoadjuvants to various antigens administered by parenteral routes to mice. Recently, it has been found that CpG ODNs also is a promising mucosal adjuvant in mice. To date, there have been no studies to screen the optimal CpG sequence and modified ODN backbone to piglets in vivo, when delivered by oral route. We have previously demonstrated that human-specific CpG ODN is a potent adjuvant to pseudorabies live attenuated virus (PRV) vaccine when administered subcutaneously (SC) or ocularly in piglets. In this study, we screened and evaluated the optimal CpG sequences (porcine-specific, human-specific, mouse-specific ODN) and optimal backbone (SOS-backbone consisting of a nuclease-resistant phosphorothioate guanosines at the 5' and the 3'-end and with a phosphodiester (O) in the center and phosphorothioate (S) backbone (S-backbone)) to PRV vaccine delivered orally in piglets. The proliferation of peripheral blood mononuclear cells (PBMCs), IFN-gamma and IL-4 in serum, and the titre of IgG, IgG2/IgG1 isotype in serum and IgA in intestinal washings and feces to PRV vaccine were tested at different time-points. The results suggested that, CpG ODNs augmented systemic (IgG in serum, T-cell proliferation) and mucosal (IgA in intestinal washings and feces) immune responses against antigen. CpG ODNs stimulated both T-helper type1 (Th1) (IgG2) and Th2 (IgA) responses when delivered orally. With the same backbone, the porcine-specific ODN-induced responses were comparable with human-specific ODNs, but stronger than mouse-specific CpG ODNs. SOS-backbone induced a stronger IFN-gamma and proliferative responses than S-backbone, while antibody responses induced by SOS-backbones were slightly less or similar with S-backbone. The in vivo data demonstrate for the first time that porcine-specific and human-specific ODNs both are optimal sequences for mucosal system in piglets.
Collapse
|
23
|
Zhang L, Tian X, Zhou F. Intranasal administration of CpG oligonucleotides induces mucosal and systemic Type 1 immune responses and adjuvant activity to porcine reproductive and respiratory syndrome killed virus vaccine in piglets in vivo. Int Immunopharmacol 2007; 7:1732-40. [PMID: 17996683 DOI: 10.1016/j.intimp.2007.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 09/02/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
Oligonucleotides containing CpG motifs (CpG ODN) are strong adjuvants for immune responses, particularly in mice. Recently, it has been showed that CpG ODN is a promising mucosal adjuvant in mice, but data on mucosal immune responses induced by CpG ODN in piglets are scarce. We have previously demonstrated that CpG ODN is a potent adjuvant to pseudorabies attenuated virus (PRV) vaccine when administered subcutaneously (SC) in newborn piglets. Herein, we evaluated intranasal (IN) delivery of CpG ODN with porcine reproductive and respiratory syndrome (PRRS) killed virus vaccine (PRRSV) to determine its potential as a mucosal adjuvant to a commercial vaccine. CpG ODN augmented systemic (IgG in serum, Peripheral blood mononuclear cells (PBMC) proliferation) and mucosal (IgA in feces, nasal and oral secretions) immune responses against antigen. CpG ODN stimulated both T-helper type1 (Type 1) (IgG2) and Type 2 (IgA) responses when delivered intranasally. Results from this study indicate that stimulatory CpG ODN may be effective as a mucosal adjuvant with commercial vaccine in husbandry animals.
Collapse
Affiliation(s)
- Linghua Zhang
- Microbiological staff room, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe district, Guangzhou, GuangDong, 510642, People's Republic of China.
| | | | | |
Collapse
|
24
|
Garulli B, Meola M, Stillitano MG, Kawaoka Y, Castrucci MR. Efficient vagina-to-lower respiratory tract immune trafficking in a murine model of influenza A virus infection. Virology 2007; 361:274-82. [PMID: 17222437 DOI: 10.1016/j.virol.2006.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/23/2006] [Accepted: 12/01/2006] [Indexed: 11/30/2022]
Abstract
Effective vaccination strategies for infectious diseases take into account the induction, long-term maintenance and recall of memory T-cell populations. To understand the immunological cross-talk within the mucosal compartments, we compared intranasal to vaginal immunization and demonstrated that vaginal infection of BALB/c mice with influenza A virus provides protective mucosal immunity against both homosubtypic and heterosubtypic virus challenge in the respiratory tract. We found that, prior to the viral challenge, in vaginally primed mice, antigen-specific CD8+ T cells were not detected in the lung airways and levels of serum antibodies were lower than those observed in intranasally immunized mice. However, following pulmonary challenge, NP147-specific CD8+ T cells were recruited and amplified in vaginally primed mice to the same extent as those in intranasally primed mice. Thus, the long-term memory immune response elicited by vaginal immunization with influenza virus is efficiently recalled and offers reasonable protection against infection in the respiratory tract.
Collapse
Affiliation(s)
- Bruno Garulli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
25
|
Becker PD, Bertot GM, Souss D, Ebensen T, Guzmán CA, Grinstein S. Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model. Infect Immun 2006; 75:1778-84. [PMID: 17101651 PMCID: PMC1865668 DOI: 10.1128/iai.01081-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis causes acute otitis media in children and lower respiratory tract infections in adults and elderly. In children the presence of antibodies against the highly conserved outer membrane protein CD correlates with protection against infection, suggesting that this protein may be useful as a vaccine antigen. However, native CD is difficult to purify, and it is still unclear if recombinant CD (rCD) is a valid alternative. We performed a side-by-side comparison of the immunogenicities and efficacies of vaccine formulations containing native CD and rCD with adamantylamide dipeptide as the mucosal adjuvant. Intranasal vaccination of mice stimulated the production of high CD-specific antibody titers in sera and of secretory immunoglobulin A in mucosal lavages, which cross-recognized both antigens. While vaccination with native CD increased the number of interleukin-2 (IL-2)- and gamma interferon-producing cells, rCD mainly stimulated IL-4-secreting cells. Nevertheless, efficient bacterial clearance was observed in the lungs of challenged mice receiving native CD and in the lungs of challenged mice receiving rCD (96% and 99%, respectively). Thus, rCD is a promising candidate for incorporation in vaccine formulations for use against M. catarrhalis.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Amantadine/administration & dosage
- Amantadine/analogs & derivatives
- Amantadine/immunology
- Animals
- Antibodies, Bacterial/blood
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Cell Proliferation
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Dipeptides/administration & dosage
- Dipeptides/immunology
- Disease Models, Animal
- Immunoglobulin A, Secretory/analysis
- Interferon-gamma/biosynthesis
- Interleukins/biosynthesis
- Lung/immunology
- Lung/microbiology
- Lymphocytes/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Moraxella catarrhalis/immunology
- Moraxella catarrhalis/isolation & purification
- Moraxellaceae Infections/immunology
- Moraxellaceae Infections/microbiology
- Mucous Membrane/immunology
- Spleen/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Pablo D Becker
- Virology Laboratory, Ricardo Gutiérrez Children's Hospital, Gallo 1330, 1425 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Mazumdar S, Bhattacharyya S, Ghosh S, Majumdar S, Ganguly NK. The role of a heat shock protein from V. cholerae 0139 in the gut immune response. Mol Cell Biochem 2006; 297:9-19. [PMID: 17006619 DOI: 10.1007/s11010-006-9316-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 08/25/2006] [Indexed: 11/28/2022]
Abstract
An immunodominant heat shock protein (Hsp 24) was purified from Vibrio cholerae O139 at 42 degrees C and used as an immunomodulator for studying the gut immune response. T cell clone and T cell line specific for the Hsp 24 were generated from the lymphocytes of lamina propria and intra-epithelial lymphocytes of mice orally infected with V. cholerae O139, respectively. The T cell clone was TCR alphabeta(+), CD4(+) and appeared to play an important role in the functioning of gut B-lymphocytes. The T cell line had heterogenous population of CD8+ and CD4+ cells, most of which were found to be TCR alphabeta(+) and a minor population was TCR gammadelta(+). The lymphokine profile of T cell line showed IFN-gamma to be the most abundant lymphokine followed by IL-2 and IL-4. The possible involvement of alternative pathway of activation for T cell clone was also addressed in this study. The splenocytes showed an up-regulation of their CD2 receptor expression on stimulation with the Hsp-24. The pattern of lymphokines released by splenocytes stimulated with the Hsp-24 showed no particular cell type to be responsible for mounting immune response. Thus, there is involvement of both, mucosal and peripheral arm of the immune system.
Collapse
Affiliation(s)
- Shibnath Mazumdar
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India.
| | | | | | | | | |
Collapse
|
27
|
Nordone SK, Peacock JW, Kirwan SM, Staats HF. Capric acid and hydroxypropylmethylcellulose increase the immunogenicity of nasally administered peptide vaccines. AIDS Res Hum Retroviruses 2006; 22:558-68. [PMID: 16796531 DOI: 10.1089/aid.2006.22.558] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunization by the nasal route is an established method for the induction of mucosal and systemic humoral and cell-mediated antigen-specific responses. However, the effectiveness of nasal immunization is often hampered by the need for increased doses of antigen. Bioadhesives and absorption enhancers were investigated for their ability to enhance immune responses in mice after nasal immunization with model HIV-1 peptide and protein immunogens. Two additives, hydroxypropylmethylcellulose (HPMC) and capric acid, consistently enhanced antigen-specific serum IgG endpoint titers under conditions in which antigen dose was limiting. Nasal immunization of mice with 20 microg of an HIV-1 peptide immunogen plus cholera toxin (CT) as adjuvant induced serum antipeptide IgG titers of 1:9.5log2 after four immunizations while the addition of CA or HPMC to the vaccine formulation increased serum antipeptide IgG titers to 1:15.4log2 and 1:17.6log2, respectively. When 5 microg recombinant HIV-1 gp41 was used as the immunogen, the addition of CA or HPMC to the vaccine formulation increased serum anti-gp41 IgG titers to 1:11.6log2 and 1:8.8log2, respectively, compared to 1:5.2log2 after three nasal immunizations with 5 microg gp41 + CT alone. Thus, HPMC and capric acid may be useful additives that increase the immunogenicity of nasally administered vaccines and permit less antigen to be used with each immunization.
Collapse
Affiliation(s)
- Sushila K Nordone
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
28
|
Li D, O'Leary J, Huang Y, Huner NPA, Jevnikar AM, Ma S. Expression of cholera toxin B subunit and the B chain of human insulin as a fusion protein in transgenic tobacco plants. PLANT CELL REPORTS 2006; 25:417-24. [PMID: 16322994 DOI: 10.1007/s00299-005-0069-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/07/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
A DNA construct containing the cholera toxin B subunit (CTB) gene genetically fused to a nucleotide sequence encoding three copies of tandemly repeated diabetes-associated autoantigen, the B chain of human insulin, was produced and transferred into low-nicotine tobaccos by Agrobacterium. Integration of the fusion gene into the plant genome was confirmed by polymerase chain reaction (PCR). The results of immunoblot analysis verified the synthesis and assembly of the fusion protein into pentamers in transgenic tobacco. GM1-ELISA showed that the plant-derived fusion protein retained GM1-ganglioside receptor binding specificity. The fusion protein accounted for 0.11% of the total leaf protein. The production of transgenic plants expressing CTB-InsB3 offers a new opportunity to test plant-based oral antigen therapy against autoimmune diabetes by inducing oral tolerance.
Collapse
Affiliation(s)
- Dora Li
- Department of Biology, University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | | | | | | | | | | |
Collapse
|
29
|
Ameiss KA, El Attrache J, Barri A, McElroy AP, Caldwell DJ. Influence of orally administered CpG-ODNs on the humoral response to bovine serum albumin (BSA) in chickens. Vet Immunol Immunopathol 2006; 110:257-67. [PMID: 16387368 DOI: 10.1016/j.vetimm.2005.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 10/04/2005] [Accepted: 10/12/2005] [Indexed: 11/16/2022]
Abstract
Synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODNs) have been reported to be effective mucosal adjuvants in mice when given orally. Studies on their effectiveness in chickens are currently very limited. This study investigated whether CpG-ODNs could adjuvant the immune response to BSA when given orally to a commercial line of SCWL chickens. In two experiments, performed over time, chickens were given selected concentrations of CpG-ODNs with BSA followed by 6 consecutive days of ad libitum access to drinking water containing 1.4 mg/ml BSA. Serum responses, and in some cases intestinal specific antibodies, were measured out to 33 days post-immunization. Birds receiving a single dose of CpG-ODN had consistently higher IgG, IgM, and IgA titers in the serum, dependent upon dose, and in specific areas of the intestine when compared to the non-immunized and BSA only groups. These findings suggest that a single oral CpG-ODN administration can accelerate the kinetics of antigen specific antibodies of all three isotypes in commercial-strain chickens immunized via the drinking water using common protein antigen.
Collapse
Affiliation(s)
- K A Ameiss
- Poultry Health Research Laboratory, Texas A&M University, College Station, TX 77843-2472, USA
| | | | | | | | | |
Collapse
|
30
|
Aldwell FE, Cross ML, Fitzpatrick CE, Lambeth MR, de Lisle GW, Buddle BM. Oral delivery of lipid-encapsulated Mycobacterium bovis BCG extends survival of the bacillus in vivo and induces a long-term protective immune response against tuberculosis. Vaccine 2005; 24:2071-8. [PMID: 16332403 DOI: 10.1016/j.vaccine.2005.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 10/17/2005] [Accepted: 11/10/2005] [Indexed: 11/17/2022]
Abstract
The success of oral-route vaccination using Mycobacterium bovis bacille Calmette-Guérin (BCG) relies on delivery of live, actively metabolising bacilli to confer protection. Here, we describe that lipid-microencapsulation can extend the in vivo survival of bacilli when fed to mice, and can induce a long-lasting protective immune response. Feeding mice with lipid-encapsulated BCG (L-BCG) resulted in greater recovery of viable BCG bacilli from the mesenteric lymph nodes (MLN) compared to mice fed non-encapsulated BCG. A time-course study indicated persistence of viable BCG bacilli in MLN up to 30 weeks post-vaccination, similar to the duration of viable BCG recovery from the spleen following subcutaneous vaccination. The persistence of viable bacilli in the MLN of L-BCG mice invoked long-lasting systemic cell-mediated immune reactivity, with responses similar to those observed in subcutaneously-vaccinated mice. Further, L-BCG-vaccinated mice showed a high degree of protection against aerogenic challenge with virulent M. bovis at 30 weeks post-vaccination, with significant reductions in lung and spleen pathogen burdens. This study identifies that lipid-encapsulation of live BCG bacilli can facilitate increased in vivo survival and immunogenicity of the vaccine in orally-vaccinated mice, and highlights protection via this route for up to 7 months post-immunisation.
Collapse
Affiliation(s)
- F E Aldwell
- Department of Microbiology & Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Host defenses against Streptococcus pneumoniae involve opsonophagocytosis mediated by antibodies and complement. Because the pneumococcus is a respiratory pathogen, mucosal immunity may play an important role in the defense against infection. The mechanism for protection in mucosal immunity consists of induction of immunity by the activation of lymphocytes within the mucosal-associated lymphoid tissues, transport of antigen-specific B and T cells from inductive sites through bloodstream and distribute to distant mucosal effector sites. Secretory IgA is primarily involved in protection of mucosal surfaces. Mucosal immunization is an effective way of inducing immune responses at mucosal surfaces. Several mucosal vaccines are in various stages of development. A number of mucosal adjuvants have been proposed. CpG oligodeoxynucleotide (ODN) has been shown to be an effective mucosal adjuvant for various antigens. Mucosal immunity induced by intranasal immunization was studied with a pneumococcal glycoconjugate, using CpG ODN as adjuvant. Mice immunized with type 9V polysaccharide (PS) conjugated to inactivated pneumolysin (Ply) plus CpG produced high levels of 9V PS IgG and IgA antibodies compared to the group that received the conjugate alone. High levels of subclasses of IgGI, IgG2 and IgG3 antibodies were also observed in sera of mice immunized with 9V PS-Ply plus CpG. In addition, high IgG and IgA antibody responses were observed in sera of young mice immunized with 9V PS-Ply plus CpG or the conjugate plus non-CpG compared with the group received the conjugate alone. These results reveal that mucosal immunization with pneumococcal glycoconjugate using CpG as adjuvant can confer protective immunity against pneumococcal infection.
Collapse
Affiliation(s)
- Chi-Jen Lee
- Center for Biologics and Research, Food and Drug Administration, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
32
|
Ho P, Kwang J, Lee Y. Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine 2005; 23:1335-42. [PMID: 15661381 PMCID: PMC7115493 DOI: 10.1016/j.vaccine.2004.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/20/2004] [Indexed: 11/22/2022]
Abstract
Lactobacillus casei strain Shirota was selected as a bacterial carrier for the development of live mucosal vaccines against coronavirus. A 75 kDa fragment of transmissible gastroenteritis coronavirus (TGEV) spike glycoprotein S was used as the model coronavirus antigen. The S glycoprotein was cloned into a Lactobacillus/E. coli shuttle vector (pLP500) where expression and secretion of the glycoprotein S from the recombinant lactobacilli was detected via immunoblotting. Oral immunization of BALB/c mice with recombinant LcS that constitutively expresses the 75 kDa fragment of the glycoprotein S, induced both local mucosal and systemic immune responses against TGEV. Maximum titers of IgG (8.38+/-0.19 ng/ml of serum) and IgA (64.82+/-2.9 ng/ml of intestinal water) were attained 32 days post oral inturbation. The induced antibodies demonstrated neutralizing effects on TGEV infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/blood
- Antibody Formation
- Disease Models, Animal
- Female
- Gastroenteritis, Transmissible, of Swine/prevention & control
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/blood
- Lacticaseibacillus casei/genetics
- Lacticaseibacillus casei/immunology
- Lacticaseibacillus casei/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Spike Glycoprotein, Coronavirus
- Transmissible gastroenteritis virus/genetics
- Transmissible gastroenteritis virus/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/metabolism
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- P.S. Ho
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - J. Kwang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Y.K. Lee
- Department of Microbiology, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
- Corresponding author. Tel.: +65 6874 3284; fax: +65 6776 6872.
| |
Collapse
|
33
|
Kodama S, Hirano T, Suenaga S, Abe N, Suzuki M. Eustachian tube possesses immunological characteristics as a mucosal effector site and responds to P6 outer membrane protein of nontypeable Haemophilus influenzae. Vaccine 2005; 24:1016-27. [PMID: 16242817 DOI: 10.1016/j.vaccine.2005.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 05/27/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The eustachian tube (ET) plays an important role in the pathogenesis of otitis media (OM). To better understand its biology and to develop a nasal vaccine for preventing OM, mucosal lymphocytes in the ET were analyzed, and the ET's immunological function was investigated. Mononuclear cells were isolated from murine ET, and lymphocyte subsets were analyzed by flow cytometry. Antibody-producing cells were determined by enzyme-linked immunospot assay. The expression of cytokine mRNA in ET CD4(+) T cells was determined by RT-PCR. Results in naive mice showed that the ET contained many immunocompetent cells, including a relative large number of IgA-producing cells and Th2 cytokine-expressing T cells. Next, we investigated antigen-specific immune responses in the ET. Mice were immunized intranasally with the P6 outer membrane of nontypeable Haemophilus influenzae (NTHi) and cholera toxin (CT), and P6-specific immune responses in the ET were examined. P6-specific IgA producing cells markedly increased in the ET. Moreover, in vitro stimulation with P6 of purified CD4(+) T cells from immunized mice resulted in the proliferation of CD4(+) T cells that expressed Th2 cytokine mRNA. These results indicate that the ET might be characterized as a mucosal effector site and that antigen-specific IgA and Th2 immune responses could be induced in the ET by intranasal immunization. These findings suggest that the ET might be a key immunological organ in the pathogenesis of OM, and in the development of a nasal vaccine.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, Hazama-machi, Japan
| | | | | | | | | |
Collapse
|
34
|
Marinaro M, Boyaka PN, Kiyono H, McGhee JR. Novel approaches for the induction of T helper 1 (Th1)- or Th2-type mucosal and parenteral immune responses. Expert Opin Investig Drugs 2005; 7:1657-66. [PMID: 15991907 DOI: 10.1517/13543784.7.10.1657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucosal surfaces are constantly challenged by micro-organisms and are protected by an integrated component of the immune system called mucosa-associated lymphoreticular tissue (MALT). The immune responses elicited at the mucosal level are regulated by T-helper (Th) cells and involve secretory IgA (S-IgA) antibodies (Abs) and cytotoxic T-lymphocytes (CTLs). Mucosal immunisation has the advantage over parenteral immunisation, of inducing S-IgA Abs and of conferring protection at both the mucosal and parenteral levels; however, administration of soluble antigens through a mucosal route very seldom results in significant mucosal and systemic immune responses. Therefore, appropriate mucosal adjuvants, recombinant bacterial and viral vectors and delivery systems have been developed to increase the immunogenicity of vaccine antigens and to preferentially induce antigen-specific T-helper (Th)1- or Th2-type responses, which in turn result in polarised effector immune responses. Understanding the mechanisms underlying Th1- and Th2-type developmental pathways and the ability of novel mucosal adjuvants and delivery systems to target the desired Th1- or Th2-type immune response would help to design effective mucosal vaccines, inducing predominant cell-mediated or humoral responses.
Collapse
Affiliation(s)
- M Marinaro
- Immunobiology Vaccine Center, Department of Microbiology, The University of Alabama at Birmingham, Birmingham 35294, USA
| | | | | | | |
Collapse
|
35
|
Decaro N, Pratelli A, Tinelli A, Martella V, Camero M, Buonavoglia D, Tempesta M, Caroli AM, Buonavoglia C. Fecal immunoglobulin A antibodies in dogs infected or vaccinated with canine coronavirus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2004; 11:102-5. [PMID: 14715553 PMCID: PMC321341 DOI: 10.1128/cdli.11.1.102-105.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fecal secretory immunoglobulin A (IgA) antibodies in dogs infected or vaccinated with canine coronavirus (CCV) were evaluated by an enzyme-linked immunosorbent assay. The study was carried out with 32 fecal samples collected just before inoculation and at 28 days postinoculation. Five groups were studied: naturally infected dogs, experimentally infected dogs, dogs inoculated with a modified live (ML) CCV vaccine by the intramuscular route, dogs inoculated with an ML CCV vaccine by the oronasal route, and dogs given an inactivated CCV vaccine. Both the naturally and the experimentally infected dogs developed high levels of fecal IgAs. Interestingly, dogs inoculated with the ML CCV vaccine by the oronasal route developed levels of fecal IgA that were higher than those observed in the dogs inoculated with the same CCV vaccine by the intramuscular route or those observed in dogs inoculated with the inactivated vaccine. A relationship between the level of fecal IgAs to CCV and the degree of protection against CCV infection was observed.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Animal Health and Well-Being, Faculty of Veterinary Medicine, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pneumococcal polysaccharides (PSs), designated as T-cell independent type 2 (TI-2) antigens, induce poor immune responses in young children. Splenic marginal zone B cells, associated with CD21, CD19 and C3d, play an important role in TI-2 antibody responses, and provide host defense against bacterial pathogens. Antibody response, avidity, and opsonophagocytic activity of antisera were examined in mice immunized with type 9V PS conjugated to inactivated pneulmolysin (Ply) or to autolysin (Aly). Compared to mice given 9V PS alone, serum IgG and IgM concentrations against the 9V PS were higher in mice immunized with conjugates. High concentrations of serum antibodies were maintained for over 12 weeks. The relative avidities of IgG and IgM antibodies and opsonophagocytic activity against 9V pneumococci were high in mice immunized with conjugates. Thus, conjugate vaccines can induce high as well as long duration of antibody response and effective functional activity. In another study, mice received intranasal immunization with type 9V conjugate or 9V PS. These animals produced 9V PS IgG and IgA antibodies in their serum, spleen, intestine, lung, Peyer's patch and fecal extract samples. Mice immunized with these glycoconjugates exhibited opsonophagocytic activity and rapid bacterial clearance from blood and provided homologous and cross-protection against challenge with virulent pneumococci. These results indicate that intranasal immunization with glycoconjugate vaccines may serve as an alternative and convenient approach for prevention of pneumococcal infection.
Collapse
Affiliation(s)
- Chi-Jen Lee
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA.
| | | | | |
Collapse
|
37
|
Garulli B, Kawaoka Y, Castrucci MR. Mucosal and systemic immune responses to a human immunodeficiency virus type 1 epitope induced upon vaginal infection with a recombinant influenza A virus. J Virol 2004; 78:1020-5. [PMID: 14694134 PMCID: PMC368805 DOI: 10.1128/jvi.78.2.1020-1025.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.
Collapse
Affiliation(s)
- Bruno Garulli
- Laboratory of Virology, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | |
Collapse
|
38
|
Veiga E, De Lorenzo V, Fernández LA. Neutralization of enteric coronaviruses with Escherichia coli cells expressing single-chain Fv-autotransporter fusions. J Virol 2004; 77:13396-8. [PMID: 14645594 PMCID: PMC296075 DOI: 10.1128/jvi.77.24.13396-13398.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here that fusions of single-chain antibodies (scFvs) to the autotransporter beta domain of the IgA protease of Neisseria gonorrhoeae are instrumental in locating virus-neutralizing activity on the cell surface of Escherichia coli. E. coli cells displaying scFvs against the transmissible gastroenteritis coronavirus on their surface blocked in vivo the access of the infectious agent to cultured epithelial cells. This result raises prospects for antiviral strategies aimed at hindering the entry into target cells by bacteria that naturally colonize the same intestinal niches.
Collapse
Affiliation(s)
- Esteban Veiga
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
39
|
Aldwell FE, Keen DL, Parlane NA, Skinner MA, de Lisle GW, Buddle BM. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in brushtail possums. Vaccine 2003; 22:70-6. [PMID: 14604573 DOI: 10.1016/s0264-410x(03)00539-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method was developed for formulating Mycobacterium bovis bacille Calmette-Guerin (BCG) for oral vaccination against tuberculosis. Selected lipid-based formulations of BCG were tested in the brushtail possum for their ability to elicit immune responses and protection against bovine tuberculosis. Formulation of BCG in lipid matrices maintained bacteria in a dormant but viable state. Oral delivery of 2 x 10(8) colony forming units of formulated BCG to possums induced strong lymphocyte proliferation responses to bovine purified protein derivative (PPD) in peripheral blood lymphocytes. Oral vaccination of possums also reduced the severity of disease following aerosol challenge with virulent M. bovis compared with animals vaccinated with non-formulated BCG. In a second experiment, levels of protection with lipid-formulated oral BCG were similar to those seen with subcutaneous BCG vaccination. Our data shows that formulated oral BCG is an efficient means of inducing protection against bovine tuberculosis in possums and should be a practical means of vaccinating wildlife against tuberculosis.
Collapse
Affiliation(s)
- Frank E Aldwell
- Department of Microbiology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Signaling through lymphotoxin beta receptor (LTbetaR) initiates the unfolding of a host of developmental programs ranging from the organogenesis of lymph nodes and Peyer's patches (PPs) to the coordination of splenic microarchitecture. While investigating an alternative pathway to immunoglobulin A (IgA) production, it was uncovered that LTbetaR signaling in the lamina propria (LP) stroma orchestrates the coordinated expression of key chemokines and adhesion molecules, creation of a cytokine milieu, and stroma development that facilitates robust IgA production independent of secondary lymphoid structures. Simultaneously, this same infrastructure can be commandeered by autoreactive T cells to organize both the acute destruction of the intestinal mucosa and chronic intestinal inflammation via the ligands for LTbetaR. The ability to modulate LTbetaR signaling may alternatively permit the suppression of autoimmune responses and augmentation of gut defenses.
Collapse
Affiliation(s)
- Robert Chin
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
41
|
Guo L, Lu X, Kang SM, Chen C, Compans RW, Yao Q. Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. Virology 2003; 313:502-13. [PMID: 12954217 DOI: 10.1016/s0042-6822(03)00372-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To enhance mucosal immune responses using simian/human immunodeficiency virus-like particles (SHIV VLPs), we have produced novel phenotypically mixed chimeric influenza HA/SHIV VLPs and used them to immunize C57BL/6J mice intranasally. Antibody and cytotoxic T-cell (CTL) responses as well as cytokine production in both systemic and mucosal sites were compared after immunization with SHIV VLPs or chimeric HA/SHIV VLPs. By using enzyme-linked immunosorbent assay (ELISA), the levels of serum IgG and mucosal IgA to the HIV envelope protein (Env) were found to be highest in the group immunized with chimeric HA/SHIV VLPs. Furthermore, the highest titer of serum neutralizing antibody against HIV Env was found with the group immunized with chimeric HA/SHIV VLPs. Analysis of the IgG1/IgG2a ratio indicated that a T(H)1-oriented immune response resulted from these VLP immunizations. HA/SHIV VLP-immunized mice also showed significantly higher CTL responses than those observed in SHIV VLP-immunized mice. Moreover, a MHC class I restricted T-cell activation ELISPOT assay showed a mixed type of T(H)1/T(H)2 cytokines in the HA/SHIV VLP-immunized mice, indicating that the chimeric VLPs can enhance both humoral and cellular immune responses to the HIV Env protein at multiple mucosal and systemic sites. The results indicate that incorporation of influenza HA into heterotypic VLPs may be highly effective for targeting vaccines to mucosal surfaces.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Cell Line
- Cells, Cultured
- Cytokines/analysis
- Dose-Response Relationship, Immunologic
- Female
- Gene Products, gag/biosynthesis
- Gene Products, gag/immunology
- HIV/chemistry
- HIV/immunology
- Hemagglutinins, Viral/biosynthesis
- Hemagglutinins, Viral/immunology
- Humans
- Immunity, Mucosal
- Immunization
- Immunoglobulin G/blood
- Influenza, Human/blood
- Influenza, Human/immunology
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
- Reassortant Viruses/immunology
- Recombinant Proteins/biosynthesis
- Simian Immunodeficiency Virus/chemistry
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Lizheng Guo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
42
|
Marinaro M, Fasano A, De Magistris MT. Zonula occludens toxin acts as an adjuvant through different mucosal routes and induces protective immune responses. Infect Immun 2003; 71:1897-902. [PMID: 12654806 PMCID: PMC152047 DOI: 10.1128/iai.71.4.1897-1902.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zonula occludens toxin (Zot) is produced by Vibrio cholerae and has the ability to increase mucosal permeability by reversibly affecting the structure of tight junctions. Because of this property, Zot is a promising tool for mucosal drug and antigen (Ag) delivery. Here we show that Zot acts as a mucosal adjuvant to induce long-lasting and protective immune responses upon mucosal immunization of mice. Indeed, the intranasal delivery of ovalbumin with two different recombinant forms of Zot in BALB/c mice resulted in high Ag-specific serum immunoglobulin G titers that were maintained over the course of a year. Moreover, His-Zot induced humoral and cell-mediated responses to tetanus toxoid in C57BL/6 mice and protected the mice against a systemic challenge with tetanus toxin. In addition, we found that Zot also acts as an adjuvant through the intrarectal route and that it has very low immunogenicity compared to the adjuvant Escherichia coli heat-labile enterotoxin. Finally, by using an octapeptide representing the putative binding site of Zot and of its endogenous analogue zonulin, we provide evidence that Zot may bind a mucosal receptor on nasal mucosa and may mimic an endogenous regulator of tight junctions to deliver Ags in the submucosa. In conclusion, Zot is a novel and effective mucosal adjuvant that may be useful for the development of mucosal vaccines.
Collapse
Affiliation(s)
- Mariarosaria Marinaro
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | |
Collapse
|
43
|
Ogra PL. Mucosal immunity: some historical perspective on host-pathogen interactions and implications for mucosal vaccines. Immunol Cell Biol 2003; 81:23-33. [PMID: 12534943 DOI: 10.1046/j.0818-9641.2002.01142.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pearay L Ogra
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, State University of New York and Children's Hospital of Buffalo, Buffalo, USA.
| |
Collapse
|
44
|
Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18. [PMID: 12531639 DOI: 10.1016/s0264-410x(02)00472-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attenuated Salmonella enterica serovar Typhi (S. Typhi) strains can serve as safe and effective oral vaccines to prevent typhoid fever and as live vectors to deliver foreign antigens to the immune system, either by the bacteria expressing antigens through prokaryotic expression plasmids or by delivering foreign genes carried on eukaryotic expression systems (DNA vaccines). The practical utility of such live vector vaccines relies on achieving a proper balance between minimizing the vaccine's reactogenicity and maximizing its immunogenicity. To advance to clinical trials, vaccine candidates need to be pre-clinically evaluated in relevant animal models that attempt to predict what their safety and immunogenicity profile will be when administered to humans. Since S. Typhi is a human-restricted pathogen, a major obstacle that has impeded the progress of vaccine development has been the shortcomings of the animal models available to assess vaccine candidates. In this review, we summarize the usefulness of animal models in the assessment of the degree of attenuation and immunogenicity of novel attenuated S. Typhi strains as vaccine candidates for the prevention of typhoid fever and as live vectors in humans.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
45
|
Kang HS, Chin RK, Wang Y, Yu P, Wang J, Newell KA, Fu YX. Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat Immunol 2002; 3:576-82. [PMID: 12006975 DOI: 10.1038/ni795] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peyer's patches (PPs) and/or mesenteric lymph nodes (MLNs) are thought to be essential for immunoglobulin A (IgA) production. We found that the severe IgA deficiency in lymphotoxin-deficient (LT(-/-)) mice could be fully reversed by reconstitution with LT-expressing bone marrow, despite the absence of both LNs and PPs. The number of IgA precursors from LT(-/-) mice was not reduced, and they were able to migrate into the lamina propria (LP) of wild-type mice but not of LTbetaR(-/-) mice. Consistently, lymphoid tissue chemokines and adhesion molecules were reduced within the LP of LTalpha(-/-) and LTbetaR(-/-) mice. IgA deficiency in LTalpha(-/-) mice was reversed by the transplantation of a segment of RAG-1 (recombination-activating gene 1) deficient intestine, which confirmed the dispensability of the MLNs and PPs and the sufficiency of the LT-mediated gut microenvironment for IgA production.
Collapse
Affiliation(s)
- Hyung-Sik Kang
- Department of Pathology and Committee on Immunology, The University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Miyashita M, Joh T, Watanabe K, Todoroki I, Seno K, Ohara H, Nomura T, Miyata M, Kasugai K, Tochikubo K, Itoh M, Nitta M. Immune responses in mice to intranasal and intracutaneous administration of a DNA vaccine encoding Helicobacter pylori-catalase. Vaccine 2002; 20:2336-42. [PMID: 12009289 DOI: 10.1016/s0264-410x(02)00104-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported that the intracutaneous injection of DNA vaccines encoding Helicobacter pylori heat shock proteins elicited specific immune responses, and led to reduced infection in mice. In this study, we constructed DNA vaccine encoding H. pylori-catalase (pcDNA3.1-kat) and investigated the immune responses to intranasal and intracutaneous administration of pcDNA3.1-kat. C57/BL6 mice were immunized intracutaneously with 10 microg of pcDNA3.1-kat or intranasally with 50 microg of pcDNA3.1-kat. Catalase-specific IgG antibody was detected in the sera of intranasal and intracutaneous immunized mice. Both intranasal and intracutaneous immunized mice were significantly protected from colonization by H. pylori and had significantly reduced degrees of gastritis. These results demonstrate that DNA vaccine encoding H. pylori-catalase can induce an immune response against H. pylori, and that intranasal immunization works as well as intracutaneous immunization.
Collapse
Affiliation(s)
- Masayuki Miyashita
- The Second Department of Internal Medicine, Aichi Medical University, 21 Karimata, Yazako, Nagakute-Cho, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
BenMohamed L, Krishnan R, Auge C, Primus JF, Diamond DJ. Intranasal administration of a synthetic lipopeptide without adjuvant induces systemic immune responses. Immunology 2002; 106:113-21. [PMID: 11972639 PMCID: PMC1782698 DOI: 10.1046/j.1365-2567.2002.01396.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parenteral injection of a lipopeptide containing a human leucocyte antigen (HLA)-A*0201-restricted cytotoxic T-lymphocyte (CTL) epitope from the human cytomegalovirus (HCMV) immunodominant matrix protein pp65 efficiently induces systemic CTL responses in HLA-A*0201 transgenic mice. In this study, we demonstrate that intranasal (i.n.) administration of this lipopeptide, covalently linked to a universal T helper (Th) epitope (PADRE), also induces potent systemic CTL responses. Immune responses were substantially reduced when the unlipidated peptide analogue was used (P<0.01). The induced CTL were CD8+, major histocompatibility complex (MHC) class I-restricted and CMV specific. Moreover, i.n. administration of this lipidated peptide elicited both systemic and local mucosal CD4+ T-cell proliferative responses, as well as antigen-specific delayed type hypersensitivity (DTH) immune responses. In contrast, mice receiving the unlipidated peptide analogue developed substantially reduced Th or DTH responses (P<0.05). These results highlight the usefulness and potential of lipopeptides delivered via mucosal routes as painless, safe, and non-invasive vaccines.
Collapse
Affiliation(s)
- Lbachir BenMohamed
- Laboratory of Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
48
|
Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, Letesson JJ. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect Immun 2002; 70:1915-23. [PMID: 11895955 PMCID: PMC127831 DOI: 10.1128/iai.70.4.1915-1923.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella is a facultative intracellular parasite that causes brucellosis in animals and humans. The protective immune response against Brucella involves both humoral and cell-mediated immunity. In previous studies, we demonstrated that the T-dominant Brucella antigens bacterioferritin (BFR) and P39 administered either as CpG adjuvant recombinant proteins or as naked-DNA plasmids induced a specific Th1-biased immune response in mice. In order to improve the protection conferred by the BFR and P39 vaccines and to evaluate the additive role of antilipopolysaccharide (anti-LPS) antibodies, we used live attenuated Yersinia enterocolitica serotypes O:3 and O:9 as delivery vectors for naked-DNA plasmids encoding these BFR and P39 antigens. Following two intragastric immunizations in BALB/c mice, the Yersinia vectors harboring a DNA vaccine encoding BFR or P39 induced antigen-specific serum immunoglobulin and Th1-type responses (both lymphocyte proliferation and gamma interferon production) among splenocytes. Moreover, as expected, antibodies recognizing Brucella abortus 544 lipopolysaccharide were detected in O:9-immunized mice but not in O:3-treated animals. Animals immunized with O:9 organisms carrying pCI or with O:9 organisms alone were found to be significantly resistant to infection by B. abortus 544. Our data demonstrated that pCI plasmids encoding BFR or P39 and delivered with live attenuated strains of Yersinia O:3 or O:9 can trigger Th1-type responses. The fact than only O:9 vectors induced a highly significant protective immunity against B. abortus 544 infection pointed out the crucial role of anti-LPS antibodies in protection. The best protection was conferred by a serotype O:9 strain carrying pCIP39, confirming the importance of the P39 T-cell antigen in this mechanism.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie et de Microbiologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Gagliardi MC, Sallusto F, Marinaro M, Vendetti S, Riccomi A, De Magistris MT. Effects of the adjuvant cholera toxin on dendritic cells: stimulatory and inhibitory signals that result in the amplification of immune responses. Int J Med Microbiol 2002; 291:571-5. [PMID: 11892684 DOI: 10.1078/1438-4221-00169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) is a potent mucosal adjuvant. When administered through the mucosal route CT amplifies B and T lymphocyte responses to co-administered antigens. Since the discovery of CT as a mucosal adjuvant, other bacterial enterotoxins have been found to have this property. These molecules or their detoxified derivatives are all important for the development of mucosal vaccines for human use, and it is thus necessary to understand their mechanism of action. CT has immunomodulatory effects on different cell types, however, the interaction of CT with dendritic cells (DCs), which have a primary role in the priming of immune responses, may be crucial for its adjuvant activity.
Collapse
Affiliation(s)
- M Cristina Gagliardi
- Laboratory of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Shen KF, Crain SM. Cholera toxin-B subunit blocks excitatory opioid receptor-mediated hyperalgesic effects in mice, thereby unmasking potent opioid analgesia and attenuating opioid tolerance/dependence. Brain Res 2001; 919:20-30. [PMID: 11689159 DOI: 10.1016/s0006-8993(01)02990-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a previous study we demonstrated that injection (i.p.) of low doses of GM1 ganglioside in mice rapidly attenuates morphine's analgesic effects. This result is consonant with our electrophysiologic studies in nociceptive types of dorsal root ganglion (DRG) neurons in culture, which showed that exogenous GM1 rapidly increased the efficacy of excitatory (Gs-coupled) opioid receptor functions. By contrast, treatment of DRG neurons with the non-toxic B-subunit of cholera toxin (CTX-B) which binds selectively to GM1, blocked the excitatory, but not inhibitory, effects of morphine and other bimodally-acting opioid agonists, thereby resulting in a net increase in inhibitory opioid potency. The present study provides more direct evidence that endogenous GM1 plays a physiologic role in regulating excitatory opioid receptor functions in vivo by demonstrating that cotreatment with remarkably low doses of CTX-B (10 ng/kg, s.c.) selectively blocks hyperalgesic effects elicited by morphine or by a kappa opioid agonist, thereby unmasking potent opioid analgesia. These results are comparable to the effects of cotreatment of mice with morphine plus an ultra-low dose of the opioid antagonist, naltrexone (NTX) which blocks opioid-induced hyperalgesic effects, unmasking potent opioid analgesia. Low-dose NTX selectively blocks excitatory opioid receptors at their recognition site, whereas CTX-B binds to, and interferes with, a putative allosteric GM1 regulatory site on excitatory opioid receptors. Furthermore, chronic cotreatment of mice with morphine plus CTX-B attenuates development of opioid tolerance and physical dependence, as previously shown to occur during cotreatment with low-dose NTX.
Collapse
Affiliation(s)
- K F Shen
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave. Bronx, NY 10461, USA
| | | |
Collapse
|