1
|
Abd-ElMoemen N, Menshawy A, Negida A, Alaa El-Din M, Kamel A, Farouk AE. Ebola Outbreak in West Africa; Is Selenium Involved? Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9491-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Wong TY, Schwartzbach SD. Protein Mis-Termination Initiates Genetic Diseases, Cancers, and Restricts Bacterial Genome Expansion. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:255-285. [PMID: 26087060 DOI: 10.1080/10590501.2015.1053461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein termination is an important cellular process. Protein termination relies on the stop-codons in the mRNA interacting properly with the releasing factors on the ribosome. One third of inherited diseases, including cancers, are associated with the mutation of the stop-codons. Many pathogens and viruses are able to manipulate their stop-codons to express their virulence. The influence of stop-codons is not limited to the primary reading frame of the genes. Stop-codons in the second and third reading frames are referred as premature stop signals (PSC). Stop-codons and PSCs together are collectively referred as stop-signals. The ratios of the stop-signals (referred as translation stop-signals ratio or TSSR) of genetically related bacteria, despite their great differences in gene contents, are much alike. This nearly identical Genomic-TSSR value of genetically related bacteria may suggest that bacterial genome expansion is limited by their unique stop-signals bias. We review the protein termination process and the different types of stop-codon mutation in plants, animals, microbes, and viruses, with special emphasis on the role of PSCs in directing bacterial evolution in their natural environments. Knowing the limit of genomic boundary could facilitate the formulation of new strategies in controlling the spread of diseases and combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Tit-Yee Wong
- a Department of Biological Sciences , University of Memphis , Memphis , Tennessee , USA
| | | |
Collapse
|
3
|
Jeudy S, Abergel C, Claverie JM, Legendre M. Translation in giant viruses: a unique mixture of bacterial and eukaryotic termination schemes. PLoS Genet 2012; 8:e1003122. [PMID: 23271980 PMCID: PMC3521657 DOI: 10.1371/journal.pgen.1003122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/12/2012] [Indexed: 12/04/2022] Open
Abstract
Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses. Giant viruses, such as Mimivirus and Megavirus, have huge near-micron-sized particles and possess more genes than several cellular organisms. Furthermore their genomes encode functions not supposed to be in a virus, such as components of the protein translation apparatus. Since Lwoff in 1957, viruses are defined as ultimate obligate intracellular parasites from their need to hijack the peptide synthesis machinery of their host to replicate. We looked at the Mimivirus and Megavirus proteins that recognize the stop codons, the translation termination factors. We found that these genes contain two internal stop codons, meaning that their translation bypasses two distinct stop codons to produce a functional translation termination factor. These types of autoregulatory mechanisms are found in bacterial termination factors, although it involves only a single internal stop codon and not two, and are absent from their eukaryotic and archaeal homologs. Despite these bacterial-like features, giant viruses' termination factors have sequences that do not resemble bacterial genes but are clearly related to the eukaryotic and archaeal termination factors. Thus, giant viruses' termination factors surprisingly combine elements from eukaryotes/archaea and bacteria.
Collapse
Affiliation(s)
- Sandra Jeudy
- CNRS, Aix-Marseille Université, IGS UMR7256, Marseille, France
| | | | | | | |
Collapse
|
4
|
Masson P, Hulo C, De Castro E, Bitter H, Gruenbaum L, Essioux L, Bougueleret L, Xenarios I, Le Mercier P. ViralZone: recent updates to the virus knowledge resource. Nucleic Acids Res 2012. [PMID: 23193299 PMCID: PMC3531065 DOI: 10.1093/nar/gks1220] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
ViralZone (http://viralzone.expasy.org) is a knowledge repository that allows users to learn about viruses including their virion structure, replication cycle and host-virus interactions. The information is divided into viral fact sheets that describe virion shape, molecular biology and epidemiology for each viral genus, with links to the corresponding annotated proteomes of UniProtKB. Each viral genus page contains detailed illustrations, text and PubMed references. This new update provides a linked view of viral molecular biology through 133 new viral ontology pages that describe common steps of viral replication cycles shared by several viral genera. This viral cell-cycle ontology is also represented in UniProtKB in the form of annotated keywords. In this way, users can navigate from the description of a replication-cycle event, to the viral genus concerned, and the associated UniProtKB protein records.
Collapse
Affiliation(s)
- Patrick Masson
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
In an alternate reading frame overlapping the viral envelope gene, HIV-1 has been shown to encoded a truncated glutathione peroxidase (GPx) module. Essential active site residues of the catalytic core regions of mammalian GPx sequences are conserved in the putative viral GPx (vGPx, encoded by the env-fs gene). Cells transfected with an HIV-1 env-fs construct show up to a 100% increase in GPx enzyme activity, and are protected against the loss of mitochondrial transmembrane potential and subsequent cell death induced by exogenous oxidants or mitochondrial reactive oxygen species. An intact vGPx gene was observed to be more common in HIV-1-infected long-term non-progressors, as compared to HIV-1 isolates from patients developing AIDS. An antioxidant/antiapoptotic protective role of the vGPx is also consistent with the observation that -1 frameshifting induced by the HIV-1 env-fs sequence AAAAAGA (which contains a potential "hungry" arginine codon, AGA) increases during arginine deficiency, which has been associated with increased oxidative stress. Under arginine-limited conditions, nitric oxide synthase generates superoxide, which rapidly combines with NO to form peroxynitrite, which can cause activated T-cells to undergo apoptosis. Thus, biosynthesis of the HIV-1 GPx as an adaptive response to low arginine conditions might delay oxidant-induced apoptotic cell death, providing an enhanced opportunity for viral replication.
Collapse
Affiliation(s)
- Lijun Zhao
- Office of Research and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, PO Box 26170, Greensboro, NC 27402-6170, USA
| | | | | |
Collapse
|
6
|
Koyama M, Katayama S, Kaji M, Taniguchi Y, Matsushita O, Minami J, Morita S, Okabe A. A Clostridium perfringens hem gene cluster contains a cysG(B) homologue that is involved in cobalamin biosynthesis. Microbiol Immunol 2000; 43:947-57. [PMID: 10585141 DOI: 10.1111/j.1348-0421.1999.tb03355.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hem gene cluster, which consists of hemA, cysG(B), hemC, hemD, hemB, and hemL genes, and encodes enzymes involved in the biosynthetic pathway from glutamyl-tRNA to uroporphyrinogen III, has been identified by the cloning and sequencing of two overlapping DNA fragments from Clostridium perfringens NCTC8237. The deduced amino acid sequence of the N-terminal region of C. perfringens HemD is homologous to those reported for the C-terminal region of Salmonella typhimurium CysG and Clostridium josui HemD. C. perfringens CysG(B) is a predicted 220-residue protein which shows homology to the N-terminal region of S. typhimurium CysG. Disruption of the cysG(B) gene in C. perfringens strain 13 by homologous recombination reduced cobalamin (vitamin B12) levels by a factor of 200. When grown in vitamin B12-deficient medium, the mutant strain showed a four-fold increase in its doubling time compared with that of the wild-type strain, and this effect was counteracted by supplementing the medium with vitamin B12. These results suggest that C. perfringens CysG(B) is involved in the chelation of cobalt to precorrin II as suggested for the CysG(B) domain of S. typhimurium CysG, enabling the synthesis of cobalamin.
Collapse
Affiliation(s)
- M Koyama
- Department of Pharmacy, Kagawa Medical University, Kita-gun, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cárcamo J, Ravera MW, Brissette R, Dedova O, Beasley JR, Alam-Moghé A, Wan C, Blume A, Mandecki W. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library. Proc Natl Acad Sci U S A 1998; 95:11146-51. [PMID: 9736704 PMCID: PMC21610 DOI: 10.1073/pnas.95.19.11146] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 07/27/1998] [Indexed: 11/18/2022] Open
Abstract
A library of long peptides displayed on the pIII protein of filamentous phage was used in biopanning experiments against several protein targets. We find that a large percentage of phage clones that bind specifically to a target contain peptide-encoding genes that do not have an ORF. Instead, the reading frame is either interrupted by one or more nonsuppressed stop codons, or a post-transcriptional frameshift is needed to account for the expression of the minor phage coat protein pIII. The percentage of frameshifted clones varies depending on the target. It can be as high as 90% for clones specific for soluble forms of certain cytokine receptors. Conversely, biopanning against four mAbs did not yield any frameshifted clones. Our studies focused on one clone that binds specifically to rat growth hormone binding protein (GHBP) yet does not have an ORF. A secondary peptide library containing random mutations of this sequence was constructed and panned against GHBP to optimize and correct the reading frame. In the last round (round two) of panning with this library, none of the phage clones that bound to GHBP had an ORF. However, careful analysis of these clones allowed us to design a synthetic peptide capable of binding to GHBP. The results of this study indicate that ORFs are not required to obtain gene expression of the minor coat protein of filamentous phage and suggest that some ORF- clones may have a selective advantage over the clones having ORFs.
Collapse
Affiliation(s)
- J Cárcamo
- DGI BioTechnologies, 40 Talmadge Road, P.O. Box 424, Edison, NJ 08818, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burke SA, Lo SL, Krzycki JA. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J Bacteriol 1998; 180:3432-40. [PMID: 9642198 PMCID: PMC107300 DOI: 10.1128/jb.180.13.3432-3440.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.
Collapse
Affiliation(s)
- S A Burke
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
9
|
Sánchez-Beato AR, García E, López R, García JL. Identification and characterization of IS1381, a new insertion sequence in Streptococcus pneumoniae. J Bacteriol 1997; 179:2459-63. [PMID: 9079939 PMCID: PMC178990 DOI: 10.1128/jb.179.7.2459-2463.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new insertion sequence (IS1381) was identified in the genome of Streptococcus pneumoniae R6 as an 846-bp segment containing 20-bp terminal inverted repeats and flanked by 7-bp direct repeats. The three sequenced copies of this element have two overlapping open reading frame (ORF) genes named orfA and orfB. However, significant variations between individual copies were found, suggesting that inactivating mutations have occurred in an original single ORF. Accordingly, the consensus IS1381 element derived from the comparison of the three available copies should contain a single ORF sufficient to encode a basic protein of 267 amino acids which exhibited high similarity to the putative transposases of ISL2 from Lactobacillus helveticus and of IS702 from the cyanobacterium Calothrix sp. strain PCC 7601. A minimum of five to seven copies were detected by hybridization experiments in the R6 genome. In remarkable contrast with the two previously reported pneumococcal insertion sequences, several copies of IS1381 have been detected in all of the clinical isolates tested so far. Interestingly, Streptococcus oralis NCTC 11427 (type strain), a close relative of pneumococcus, does not contain this element, but its occurrence in the type strain of Streptococcus mitis (NCTC 12261) suggests that this species has exchanged DNA with S. pneumoniae directly or through an intermediate species.
Collapse
Affiliation(s)
- A R Sánchez-Beato
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Lawrence SD, Cline K, Moore GA. Chromoplast development in ripening tomato fruit: identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. PLANT MOLECULAR BIOLOGY 1997; 33:483-92. [PMID: 9049268 DOI: 10.1023/a:1005785321165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During tomato fruit ripening, photosynthetically competent thylakoid membranes are broken down and replaced by membranous deposits of carotenoids. Few of the proteins involved in this transition have been identified. We have used chloroplast protein import assays as a means to identify two cDNAs that encode proteins destined for the developing chromoplast. One of the cDNAs had unexpected properties and its biological function has not been determined. However, the other cDNA encodes a plastid-localized low-MW heat shock protein (hsp). The steady-state level of RNA corresponding to this cDNA increased several-fold during tomato ripening, and the amount of RNA induced by heat stress increased dramatically during this process. These observations suggest a new role for this stress protein in protecting the plastid during the dismantling of the thylakoid membranes or during the buildup of carotenoids.
Collapse
Affiliation(s)
- S D Lawrence
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
11
|
Taylor EW, Nadimpalli RG, Ramanathan CS. Genomic structures of viral agents in relation to the biosynthesis of selenoproteins. Biol Trace Elem Res 1997; 56:63-91. [PMID: 9152512 DOI: 10.1007/bf02778984] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genomes of both bacteria and eukaryotic organisms are known to encode selenoproteins, using the UGA codon for seleno-cysteine (SeC), and a complex cotranslational mechanism for SeC incorporation into polypeptide chains, involving RNA stem-loop structures. These common features and similar codon usage strongly suggest that this is an ancient evolutionary development. However, the possibility that some viruses might also encode selenoproteins remained unexplored until recently. Based on an analysis of the genomic structure of the human immunodeficiency virus HIV-1, we demonstrated that several regions overlapping known HIV genes have the potential to encode selenoproteins (Taylor et al. [31], J. Med. Chem. 37, 2637-2654 [1994]). This is provocative in the light of overwhelming evidence of a role for oxidative stress in AIDS pathogenesis, and the fact that a number of viral diseases have been linked to selenium (Se) deficiency, either in humans or by in vitro and animal studies. These include HIV-AIDS, hepatitis B linked to liver disease and cancer, Coxsackie virus B3, Keshan disease, and the mouse mammary tumor virus (MMTV), against which Se is a potent chemoprotective agent. There are also established biochemical mechanisms whereby extreme Se deficiency can induce a proclotting or hemorrhagic effect, suggesting that hemorrhagic fever viruses should also be examined for potential virally encoded selenoproteins. In addition to the RNA stem-loop structures required for SeC insertion at UGA codons, genomic structural features that may be required for selenoprotein synthesis can also include ribosomal frameshift sites and RNA pseudoknots if the potential selenoprotein module overlaps with another gene, which may prove to be the rule rather than the exception in viruses. One such pseudoknot that we predicted in HIV-1 has now been verified experimentally; a similar structure can be demonstrated in precisely the same location in the reverse transcriptase coding region of hepatitis B virus. Significant new findings reported here include the existence of highly distinctive glutathione peroxidase (GSH-Px)-related sequences in Coxsackie B viruses, new theoretical data related to a previously proposed potential selenoprotein gene overlapping the HIV protease coding region, and further evidence in support of a novel frameshift site in the HIV nef gene associated with a well-conserved UGA codon in the 1-reading frame.
Collapse
Affiliation(s)
- E W Taylor
- Computational Center for Molecular Structure and Design, University of Georgia, Athens 30601-2352, USA.
| | | | | |
Collapse
|
12
|
Incardona JP, Rosenberry TL. Construction and characterization of secreted and chimeric transmembrane forms of Drosophila acetylcholinesterase: a large truncation of the C-terminal signal peptide does not eliminate glycoinositol phospholipid anchoring. Mol Biol Cell 1996; 7:595-611. [PMID: 8730102 PMCID: PMC275912 DOI: 10.1091/mbc.7.4.595] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite advances in understanding the cell biology of glycoinositol phospholipid (GPI)-anchored proteins in cultured cells, the in vivo functions of GPI anchors have remained elusive. We have focused on Drosophila acetylcholinesterase (AChE) as a model GPI-anchored protein that can be manipulated in vivo with sophisticated genetic techniques. In Drosophila, AChE is found only as a GPI-anchored G2 form encoded by the Ace locus on the third chromosome. To pursue our goal of replacing wild-type GPI-anchored AChE with forms that have alternative anchor structures in transgenic files, we report the construction of two secreted forms of Drosophila AChE (SEC1 and SEC2) and a chimeric form (TM-AChE) anchored by the transmembrane and cytoplasmic domains of herpes simplex virus type 1 glycoprotein C. To confirm that the biochemical properties of these AChEs were unchanged from GPI-AChE except as predicted, we made stably transfected Drosophila Schneider Line 2(S2) cells expressing each of the four forms. TM-AChE, SEC1, and SEC2 had the same catalytic activity and quaternary structure as wild type. TM-AChE was expressed as an amphiphilic membrane-bound protein resistant to an enzyme that cleaves GPI-AChE (phosphatidylinositol-specific phospholipase C), and the same percentage of TM-AChE and GPI-AChE was on the cell surface according to immunofluorescence and pharmacological data. SEC1 and SEC2 were constructed by truncating the C-terminal signal peptide initially present in GPI-AChE: in SEC1 the last 25 residues of this 34-residue peptide were deleted while in SEC2 the last 29 were deleted. Both SEC1 and SEC2 were efficiently secreted and are very stable in culture medium; with one cloned SEC1-expressing line, AChE accumulated to as high as 100 mg/liter. Surprisingly, 5-10% of SEC1 was attached to a GPI anchor, but SEC2 showed no GPI anchoring. Since no differences in catalytic activity were observed among the four AChEs, and since the same percentage of GPI-AChE and TM-AChE were on the cell surface, we contend that in vivo experiments in which GPI-AChE is replaced can be interpreted solely on the basis of the altered anchoring domain.
Collapse
Affiliation(s)
- J P Incardona
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
13
|
Pantopoulos K, Johansson HE, Hentze MW. The role of the 5' untranslated region of eukaryotic messenger RNAs in translation and its investigation using antisense technologies. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:181-238. [PMID: 7938549 PMCID: PMC7133200 DOI: 10.1016/s0079-6603(08)60856-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter discusses the recent advances in the field of translational control and the possibility of applying the powerful antisense technology to investigate some of the unanswered questions, especially those pertaining to the role of the 5’untranslated region ( UTR) on translation initiation. Translational regulation is predominantly exerted during the initiation phase that is considered to be the rate-limiting step. Two types of translational regulation can be distinguished: global, in which the initiation rate of (nearly) all cellular messenger RNA (mRNA) is controlled and selective, in which the translation rate of specific mRNAs varies in response to the biological stimuli. In most cases of global regulation, control is exerted via the phosphorylation state of certain initiation factors, whereas only a few examples of selective regulation have been characterized well enough to define the underlying molecular events. Interestingly, cis-acting regulatory sequences, affecting translation initiation, have been found not only in the 5’UTRs of selectively regulated mRNAs, but also in the 3’UTRs. Thus, in addition to the protein encoding open reading frames, both the 5’ and 3’UTRs of mRNAs must be considered for their effect on translation.
Collapse
Key Words
- alas, 5-aminolevulinate synthase
- bfgf, basic fibroblast growth factor
- bip, immunoglobulin-binding protein
- cat, chloramphenicol acetyltransferase
- dai, double-stranded rna-activated inhibitor
- ealas, erythroid-specific form of alas
- frp, ferritin repressor protein
- gcd, general control derepressible
- gcn, general control nonderepressible
- gef, guanine-nucleotide exchange factor
- grp, glucose-regulated protein
- hgh, human growth hormone
- icam, intracellular adhesion molecule
- ire, iron-responsive element
- ire-bp, iron-responsive element-binding protein
- ires, internal ribosomal entry site
- irf, iron regulatory factor
- irp, iron regulatory protein
- la, lupus erythematosus antigen
- lap, liver-enriched activating protein
- lip, liver-enriched inhibitory protein
- mep, methyl phosphonate
- pa, phosphoramidate
- pdgf, platelet-derived growth factor
- pest, phosphotriester
- pll, poly(1-lysine)
- po, phosphodiester
- ps, phosphorothioate
- ps2, phosphorodithioate
- ssl, suppressor of stem-loop
- tce, translational control element
- tgf, transforming growth factor
Collapse
Affiliation(s)
- K Pantopoulos
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
14
|
Abstract
Hepatitis B virus (HBV) is the causative agent of B-type hepatitis in humans and the prototypic member of the hepadnaviruses. It is a small enveloped DNA virus that replicates via reverse transcription. Although hepadnaviruses are similar to retroviruses in basic life cycle and genome organization, recent studies have revealed several unique hepadnaviral strategies that optimize exploitation of their extremely small circular DNA genomes.
Collapse
Affiliation(s)
- M Nassal
- Zentrum für Molekulare Biologie, Universität Heidelberg, Germany
| | | |
Collapse
|
15
|
Vickers TA, Ecker DJ. Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region. Nucleic Acids Res 1992; 20:3945-53. [PMID: 1508680 PMCID: PMC334071 DOI: 10.1093/nar/20.15.3945] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pol gene of all retroviruses is expressed as a gag-pol fusion protein which is proteolytically processed to produce all viral enzymes. In the human immunodeficiency virus (HIV), the gag and pol genes overlap by 241 nucleotides with pol in the -1 phase with respect to gag. The gag-pol fusion is produced via a -1 ribosomal frameshifting event that brings the overlapping, out-of-phase gag and pol genes into translational phase. Frameshifting occurs at a so called 'shift site' 8-10 nucleotides upstream of a hairpin loop which may play a role in the regulation of frameshifting. We have fused this region of HIV-1 to the 5' end of the firefly luciferase reporter gene in order to quantitatively measure ribosomal frameshifting both in cells and by in vitro translation. A series of 2'-O-methyl oligonucleotides was designed to specifically bind the sequences which flank the gag-pol hairpin. Ribosomal frameshifting is enhanced up to 6 fold by those oligonucleotides which bind the area just 3 to the stem. Oligonucleotides which bind 5' to the stem have no effect on frameshift efficiency. In addition, we have constructed a series of fusion genes which mimic the effect of the bound oligonucleotides with intramolecular hairpins. The results suggest that increasing RNA secondary structure downstream of the shift site increases the frequency of ribosomal frameshifting, and that this effect can be mimicked by antisense oligonucleotides.
Collapse
|