1
|
Tatter SB, Galpern WR, Isacson O. Neurotrophic Factor Protection against Excitotoxic Neuronal Death. Neuroscientist 2016. [DOI: 10.1177/107385849500100506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurotrophic factors are polypeptides capable of promoting neuronal survival in both the developing and the adult brain. In addition to the neurotrophins, NGF, brain-derived neurotropic factor, and NT-3 to -6, other neurotrophic factors include ciliary neurotrophic factor, fibroblast growth factors, insulin-like growth factors, members of the transforming growth factor superfamily, members of the epidermal growth factor family, and other cytokines such as leukemia inhibitory factor, oncostatin M, and interleukins-6 and -11. One condition under which these factors promote survival is the challenge of neurons with analogs of excitatory amino acid transmitters. Such analogs, including quinolinic acid, kainic acid, and ibotenic acid, are frequently employed as models of neurological diseases such as Huntington's disease, Parkinson's disease, Alzheimer's disease, epilepsy, cerebellar degenerations, and amyotrophic lateral sclerosis. Excitotoxicity also plays a role in neu ronal death caused by focal ischemia, hypoglycemia, or trauma. Although much has been learned about the mechanisms of both the action of neurotrophic factors and of cell death in response to excitotoxins, the mechanism of protection by these factors remains uncertain. This review explores the biochemical and phys iological changes mediated by neurotrophic factors that may underlie their ability to protect against excito toxic cell death. Second messenger pathways used degenerately by both excitotoxins and neurotrophic factors are discussed as a potential site of interaction mediating the protective effects of neurotrophic factors. Particular attention is also paid to the importance of the route of neurotrophic factor delivery in conferring neuroprotection in particular excitotoxic models. The Neuroscientist 1:286-297, 1995
Collapse
Affiliation(s)
- Stephen B. Tatter
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Wendy R. Galpern
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| | - Ole Isacson
- Departments of Neurosurgery and Neurology Massachusetts
General Hospital Boston, Massachusetts, Neuroregeneration Laboratory McLean Hospital Belmont,
Massachusetts
| |
Collapse
|
2
|
Gadd45β ameliorates L-DOPA-induced dyskinesia in a Parkinson's disease mouse model. Neurobiol Dis 2016; 89:169-79. [PMID: 26875664 DOI: 10.1016/j.nbd.2016.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022] Open
Abstract
The dopamine precursor 3,4-dihydroxyphenyl-l-alanine (L-DOPA) is currently the most efficacious pharmacotherapy for Parkinson's disease (PD). However, long-term L-DOPA treatment leads to the development of abnormal involuntary movements (AIMs) in patients and animal models of PD. Recently, involvement of growth arrest and DNA damage-inducible 45β (Gadd45β) was reported in neurological and neurobehavioral dysfunctions. However, little is known about the role of Gadd45β in the dopaminergic nigrostriatal pathway or L-DOPA-induced dyskinesia (LID). To address this issue, we prepared an animal model of PD using unilateral 6-hydroxydopamine (6-OHDA) lesions in the substantia nigra of Gadd45β(+/+) and Gadd45β(-/-) mice. Dyskinetic symptoms were triggered by repetitive administration of L-DOPA in these 6-OHDA-lesioned mice. Whereas dopamine denervation in the dorsal striatum decreased Gadd45β mRNA, chronic L-DOPA treatment significantly increased Gadd45β mRNA expression in the 6-OHDA-lesioned striatum of wild-type mice. Using unilaterally 6-OHDA-lesioned Gadd45β(+/+) and Gadd45β(-/-) mice, we found that mice lacking Gadd45β exhibited long-lasting increases in AIMs following repeated administration of L-DOPA. By contrast, adeno-associated virus-mediated expression of Gadd45β in the striatum reduced AIMs in Gadd45β knockout mice. The deficiency of Gadd45β in LID increased expression of ΔFosB and c-Fos in the lesioned striatum 90 min after the last administration of L-DOPA following 11days of daily L-DOPA treatments. These data suggest that the increased expression of Gadd45β induced by repeated administration of L-DOPA may be beneficial in patients with PD.
Collapse
|
3
|
The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease. PLoS One 2015; 10:e0117391. [PMID: 25693197 PMCID: PMC4332861 DOI: 10.1371/journal.pone.0117391] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/21/2014] [Indexed: 01/28/2023] Open
Abstract
The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson's disease.
Collapse
|
4
|
Iwakura Y, Wang R, Abe Y, Piao YS, Shishido Y, Higashiyama S, Takei N, Nawa H. Dopamine-dependent ectodomain shedding and release of epidermal growth factor in developing striatum: target-derived neurotrophic signaling (Part 2). J Neurochem 2011; 118:57-68. [PMID: 21534959 DOI: 10.1111/j.1471-4159.2011.07295.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epidermal growth factor (EGF) and structurally related peptides promote neuronal survival and the development of midbrain dopaminergic neurons; however, the regulation of their production has not been fully elucidated. In this study, we found that the treatment of striatal cells with dopamine agonists enhances EGF release both in vivo and in vitro. We prepared neuron-enriched and non-neuronal cell-enriched cultures from the striatum of rat embryos and challenged those with various neurotransmitters or dopamine receptor agonists. Dopamine and a dopamine D(1) -like receptor agonist (SKF38393) triggered EGF release from neuron-enriched cultures in a dose-dependent manner. A D(2) -like agonist (quinpirole) increased EGF release only from non-neuronal cell-enriched cultures. The EGF release from striatal neurons and non-neuronal cells was concomitant with ErbB1 phosphorylation and/or with the activation of a disintegrin and metalloproteinase and matrix metalloproteinase. The EGF release from neurons was attenuated by an a disintegrin and metalloproteinase/matrix metalloproteinase inhibitor, GM6001, and a calcium ion chelator, BAPTA/AM. Transfection of cultured striatal neurons with alkaline phosphatase-tagged EGF precursor cDNA confirmed that dopamine D(1) -like receptor stimulation promoted both ectodomain shedding of the precursor and EGF release. Therefore, the activation of striatal dopamine receptors induces shedding and release of EGF to provide a retrograde neurotrophic signal to midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kizawa-Ueda M, Ueda A, Kawamura N, Ishikawa T, Mutoh E, Fukuda Y, Shiroki R, Hoshinaga K, Ito S, Asakura K, Mutoh T. Neurotrophin levels in cerebrospinal fluid of adult patients with meningitis and encephalitis. Eur Neurol 2011; 65:138-43. [PMID: 21358203 DOI: 10.1159/000324327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND The data on cerebrospinal fluid (CSF) levels of neurotrophins (NTs) in patients with meningoencephalitis are scarce, especially in adult patients. METHODS We measured CSF levels of NTs such as nerve growth factor (NGF), brain-derived neurotrophic factor, and neurotrophin-3 (NT-3) in adult patients with various meningitis (n = 10) and encephalitis (n = 10) in both acute phase and recovery phase and adult control subjects (n = 21) by the enzyme-linked immunosorbent assay for NTs. RESULTS Data show that NGF and NT-3 CSF levels were markedly elevated in the patient group in the acute phase compared with non-neurological controls (p < 0.001 and p < 0.05, respectively) and later returned to the levels of controls. Most intriguingly, we only recognized a significant correlation between NGF and NT-3 CSF levels in the patients in the acute phase. CONCLUSION Such strong correlation of NGF and NT-3 CSF levels strongly suggests that in adult patients, some common regulatory mechanism(s) might be present among various kinds of NTs to cope with central nervous system infection.
Collapse
Affiliation(s)
- Madoka Kizawa-Ueda
- Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dickerson JW, Hemmerle AM, Numan S, Lundgren KH, Seroogy KB. Decreased expression of ErbB4 and tyrosine hydroxylase mRNA and protein in the ventral midbrain of aged rats. Neuroscience 2009; 163:482-9. [PMID: 19505538 DOI: 10.1016/j.neuroscience.2009.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Decreased availability or efficacy of neurotrophic factors may underlie an increased susceptibility of mesencephalic dopaminergic cells to age-related degeneration. Neuregulins (NRGs) are pleotrophic growth factors for many cell types, including mesencephalic dopamine cells in culture and in vivo. The functional NRG receptor ErbB4 is expressed by virtually all midbrain dopamine neurons. To determine if levels of the NRG receptor are maintained during aging in the dopaminergic ventral mesencephalon, expression of ErbB4 mRNA and protein was examined in young (3 months), middle-aged (18 months), and old (24-25 months) Brown Norway/Fischer 344 F1 rats. ErbB4 mRNA levels in the substantia nigra pars compacta (SNpc), but not the adjacent ventral tegmental area (VTA) or subtantia nigra pars lateralis (SNl), were significantly reduced in the middle-aged and old animals when compared to young rats. Protein expression of ErbB4 in the ventral midbrain was significantly decreased in the old rats when compared to the young rats. Expression of tyrosine hydroxylase (TH) mRNA levels was significantly reduced in the old rats when compared to young animals in the SNpc, but not in the VTA or SNI. TH protein levels in the ventral midbrain were also decreased in the old animals when compared to the young animals. These data demonstrate a progressive decline of ErbB4 expression, coinciding with a loss of the dopamine-synthesizing enzyme TH, in the ventral midbrain of aged rats, particularly in the SNpc. These findings may implicate a role for diminished NRG/ErbB4 trophic support in dopamine-related neurodegenerative disorders of aging such as Parkinson's disease.
Collapse
Affiliation(s)
- J W Dickerson
- Department of Neurology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
7
|
von Bohlen O, Unsicker K. Neurotrophic Support of Midbrain Dopaminergic Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:73-80. [DOI: 10.1007/978-1-4419-0322-8_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Tong M, Dong M, de la Monte SM. Brain insulin-like growth factor and neurotrophin resistance in Parkinson's disease and dementia with Lewy bodies: potential role of manganese neurotoxicity. J Alzheimers Dis 2009; 16:585-99. [PMID: 19276553 PMCID: PMC2852260 DOI: 10.3233/jad-2009-0995] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) frequently overlap with Alzheimer's disease, which is linked to brain impairments in insulin, insulin-like growth factor (IGF), and neurotrophin signaling. We explored whether similar abnormalities occur in PD or DLB, and examined the role of manganese toxicity in PD/DLB pathogenesis. Quantitative RT-PCR demonstrated reduced expression of insulin, IGF-II, and insulin, IGF-I, and IGF-II receptors (R) in PD and/or DLB frontal white matter and amygdala, and reduced IGF-IR and IGF-IIR mRNA in DLB frontal cortex. IGF-I and IGF-II resistance was present in DLB but not PD frontal cortex, and associated with reduced expression of Hu, nerve growth factor, and Trk neurotrophin receptors, and increased levels of glial fibrillary acidic protein, alpha-synuclein, dopamine-beta-hydroxylase, 4-hydroxy-2-nonenal (HNE), and ubiquitin immunoreactivity. MnCl2 treatment reduced survival, ATP, and insulin, IGF-I and IGF-II receptor expression, and increased alpha-synuclein, HNE, and ubiquitin immunoreactivity in cultured neurons. The results suggest that: 1) IGF-I, IGF-II, and neurotrophin signaling are more impaired in DLB than PD, corresponding with DLB's more pronounced neurodegeneration, oxidative stress, and alpha-synuclein accumulation; 2) MnCl2 exposure causes PD/DLB associated abnormalities in central nervous system neurons, and therefore may contribute to their molecular pathogenesis; and 3) molecular abnormalities in PD/DLB overlap with but are distinguishable from Alzheimer's disease.
Collapse
Affiliation(s)
- Ming Tong
- Departments of Pathology, Clinical Neuroscience, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew Dong
- Departments of Pathology, Clinical Neuroscience, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Departments of Pathology, Clinical Neuroscience, and Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Küppers E, Krust A, Chambon P, Beyer C. Functional alterations of the nigrostriatal dopamine system in estrogen receptor-alpha knockout (ERKO) mice. Psychoneuroendocrinology 2008; 33:832-8. [PMID: 18472350 DOI: 10.1016/j.psyneuen.2008.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
Estrogen represents an important factor for the development and function of the nigrostriatal dopamine system. Estrogen also controls sex-specific differentiation and activity of the nigrostriatal dopaminergic system. We used an estrogen receptor-alpha knockout (-/-) model (ERKO) to study the influence of this particular receptor subtype on the regulation of functional characteristics of the male and female nigrostriatal dopamine system. On the striatal level, we found a sex-specific regulation of dopamine D1 receptors (D1) and dopamine receptor-interacting protein 78 (Drip78). In female (-/-) mice D1 receptor expression levels were increased compared to wild type (wt) animals, whereas in male (-/-) mice Drip78 mRNA levels were decreased compared to wt. In the midbrain, expression of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) was reduced in (-/-) mice of both sexes. Glial cell line-derived neurotrophic factor (GDNF) expression was not affected. These data demonstrate that the integrity of estrogen receptor-alpha (ERalpha) signalling is necessary for the regulation of gene expression of proteins known to be important for the function of the nigrostriatal system at the postsynaptic striatal and presynaptic midbrain level.
Collapse
Affiliation(s)
- Eva Küppers
- Institute of Anatomy, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
10
|
Stem cells: implications in experimental ischaemic stroke therapy. ACTA ACUST UNITED AC 2008; 4:227-33. [PMID: 18516704 DOI: 10.1007/s12015-008-9025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2008] [Indexed: 12/19/2022]
Abstract
Ischaemic stroke is a syndrome characterized by rapid onset of neurological injury due to interruption of blood flow to the brain. Widespread neuronal damage throughout the CNS has been shown to cause marked and multifarious functional impairments in the ischaemic brain. Recent advances as enumerated above have propelled acute ischaemic stroke management into a therapeutic era. However, once the damage from a stroke event has maximized, little can be done to recover premorbid function. Experimental animal data suggests that stem cell therapy may be an effective alternate to the conventional disease management strategies of ischaemic stroke. Therefore, the present review focuses on detailing the scope of stem cell therapy in the treatment of ischaemic stroke.
Collapse
|
11
|
Emerging restorative treatments for Parkinson's disease. Prog Neurobiol 2008; 85:407-32. [PMID: 18586376 DOI: 10.1016/j.pneurobio.2008.05.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 04/03/2008] [Accepted: 05/06/2008] [Indexed: 01/18/2023]
Abstract
Several exciting approaches for restorative therapy in Parkinson's disease have emerged over the past two decades. This review initially describes experimental and clinical data regarding growth factor administration. We focus on glial cell line-derived neurotrophic factor (GDNF), particularly its role in neuroprotection and in regeneration in Parkinson's disease. Thereafter, we discuss the challenges currently facing cell transplantation in Parkinson's disease and briefly consider the possibility to continue testing intrastriatal transplantation of fetal dopaminergic progenitors clinically. We also give a more detailed overview of the developmental biology of dopaminergic neurons and the potential of certain stem cells, i.e. neural and embryonic stem cells, to differentiate into dopaminergic neurons. Finally, we discuss adult neurogenesis as a potential tool for restoring lost dopamine neurons in patients suffering from Parkinson's disease.
Collapse
|
12
|
Unsicker K, Suter-Crazzalora C, Krieglstein K. Growth factor function in the development and maintenance of midbrain dopaminergic neurons: concepts, facts and prospects for TGF-beta. CIBA FOUNDATION SYMPOSIUM 2007; 196:70-80; discussion 80-4. [PMID: 8866128 DOI: 10.1002/9780470514863.ch6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopaminergic neurons of the nigrostriatal system are important in the control of motor performance and degenerate in Parkinson's disease. Therefore, in order to design novel strategies for the treatment of Parkinson's disease, it is important for us to understand their development, function, trophic factor requirements, plasticity and susceptibility to toxic influences. A large and still increasing number of growth factors have been implicated in the regulation of the survival and differentiation of dopaminergic neurons. These factors may also protect against a variety of toxic influences. On the basis of their localization, putative sources and mechanisms of actions, such growth factors fall into several categories: (i) local factors within the midbrain influencing proliferation, transmitter phenotype, migration, positioning and neurite growth of stem cells and early neurons; (ii) factors acting retrogradely from the striatum, which are responsible for intrastriatal sprouting and navigation of newly arrived axons as well as life-long maintenance of the dopaminergic nigrostriatal connection; (iii) factors coming into play when the system is toxically impaired; (iv) factors directly acting on dopaminergic neurons; and (v) factors provided by cytokinestimulated astroglia, microglia and neurons affecting dopaminergic neurons anterogradely. This article reviews actions of growth factors on dopaminergic neurons in vitro and in vivo, with a focus on members of the transforming growth factor (TGF)-beta superfamily. TGF-beta s may be particularly relevant to dopaminergic neurons, since they are expressed in the nigrostriatal system from early embryonic stages to adulthood and are significantly up-regulated in response to lesions.
Collapse
Affiliation(s)
- K Unsicker
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Mogi M, Kondo T, Mizuno Y, Nagatsu T. p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neurosci Lett 2007; 414:94-7. [PMID: 17196747 DOI: 10.1016/j.neulet.2006.12.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/21/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
We and other workers found markedly increased levels of proinflammatory cytokines and apoptosis-related proteins in parkinsonian brain. Although the pathogenesis of Parkinson's disease (PD) remains enigmatic, apoptosis might be involved in the degeneration of dopaminergic neurons in PD. To investigate the possible presence of other inflammatory cytokines and/or apoptosis-related protein, the levels of p53 protein, interferon-gamma, and NF-kappaB were measured for the first time in the brain (substantia nigra, caudate nucleus, putamen, cerebellum, and frontal cortex) from control and parkinsonian patients by a highly sensitive sandwich enzyme-linked immunosorbent assay. The p53 protein level in the caudate nucleus was significantly higher in parkinsonian patients than in controls (P<0.05), whereas this protein in the substantia nigra, putamen, and cerebral cortex showed no significant difference between parkinsonian and control subjects. The interferon-gamma level was significantly higher in the nigrostriatal dopaminergic regions (substantia nigra, caudate nucleus, and putamen) in parkinsonian patients than in the controls (P<0.05), but was not significantly different in the cerebellum or frontal cortex between the two groups. In accordance with previous immunohistochemical analysis, the NF-kappaB level in the nigrostriatal dopaminergic regions was significantly higher in parkinsonian patients than in the controls (P<0.05). These data suggest that the significant increase in the levels of p53 protein, interferon-gamma, and NF-kappaB reflect apoptosis and the inflammatory state in the parkinsonian brain and that their elevation is involved in the degeneration of the nigrostriatal dopaminergic neurons.
Collapse
Affiliation(s)
- Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| | | | | | | |
Collapse
|
14
|
Iwakura Y, Piao YS, Mizuno M, Takei N, Kakita A, Takahashi H, Nawa H. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 2005; 93:974-83. [PMID: 15857400 DOI: 10.1111/j.1471-4159.2005.03073.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidermal growth factor (EGF) is a member of a structurally related family containing heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor alpha (TGFalpha) that exerts neurotrophic activity on midbrain dopaminergic neurons. To examine neurotrophic abnormality in Parkinson's disease (PD), we measured the protein content of EGF, TGFalpha, and HB-EGF in post-mortem brains of patients with Parkinson's disease and age-matched control subjects. Protein levels of EGF and tyrosine hydroxylase were decreased in the prefrontal cortex and the striatum of patients. In contrast, HB-EGF and TGFalpha levels were not significantly altered in either region. The expression of EGF receptors (ErbB1 and ErbB2, but not ErbB3 or ErbB4) was down-regulated significantly in the same forebrain regions. The same phenomenon was mimicked in rats by dopaminergic lesions induced by nigral 6-hydroxydopamine infusion. EGF and ErbB1 levels in the striatum of the PD model were markedly reduced on the lesioned side, compared with the control hemisphere. Subchronic supplement of EGF in the striatum of the PD model locally prevented the dopaminergic neurodegeration as measured by tyrosine hydroxylase immunoreactivity. These findings suggest that the neurotrophic activity of EGF is maintained by afferent signals of midbrain dopaminergic neurons and is impaired in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Molecular Neurobiology, Brain Research Institute, Niigata University, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Esper RM, Loeb JA. Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J Neurosci 2004; 24:6218-27. [PMID: 15240814 PMCID: PMC6729661 DOI: 10.1523/jneurosci.1692-04.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/27/2004] [Accepted: 05/28/2004] [Indexed: 12/30/2022] Open
Abstract
During peripheral nervous system development, Schwann cells are precisely matched to the axons that they support. This is mediated by axonal neuregulins that are essential for Schwann cell survival and differentiation. Here, we show that sensory and motor axons rapidly release heparin-binding forms of neuregulin in response to Schwann cell-derived neurotrophic factors in a dose-dependent manner. Neuregulin release occurs within minutes, is saturable, and occurs from axons that were isolated using a newly designed chamber slide apparatus. Although NGF and glial cell line-derived neurotrophic factor (GDNF) were the most potent neurotrophic factors to release neuregulin from sensory neurons, GDNF and BDNF were most potent for motor neurons and were the predominant neuregulin-releasing neurotrophic factors produced by cultured Schwann cells. Comparable levels of neuregulin could be released at a similar rate from neurons after protein kinase C activation with the phorbol ester, phorbol 12-myristate 13-acetate, which has also been shown to promote the cleavage and release of neuregulin from its transmembrane precursor. The rapid release of neuregulin from axons in response to Schwann cell-derived neurotrophic factors may be part of a spatially restricted system of communication at the axoglial interface important for proper peripheral nerve development, function, and repair.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/physiology
- Cells, Cultured
- Chick Embryo
- Culture Media, Conditioned/pharmacology
- Diffusion Chambers, Culture
- Dose-Response Relationship, Drug
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Heparin/metabolism
- Motor Neurons/cytology
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Nerve Growth Factors/biosynthesis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/pharmacology
- Neuregulin-1/metabolism
- Neuregulin-1/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Schwann Cells/cytology
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Sciatic Nerve/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Raymond M Esper
- Department of Neurology, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
16
|
Rusnak M, House SB, Gainer H. Long-term effects of ciliary neurotrophic factor on the survival of vasopressin magnocellular neurones in the rat supraoptic nucleus in vitro. J Neuroendocrinol 2003; 15:933-9. [PMID: 12969237 DOI: 10.1046/j.1365-2826.2003.01080.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of hypothalamic organotypic cultures for the long-term study of mechanisms in magnocellular neurones (MCNs) of the hypothalamic-neurohypophysial system has been limited by the relatively poor maintenance of the vasopressin MCNs in vitro. Recent studies have shown that addition of ciliary neurotrophic factor (CNTF) to the media significantly reduced the apoptosis of both oxytocin and vasopressin MCNs. Here, we studied various temporal factors in the CNTF treatment that can influence the efficacy of MCN survival. Immunohistochemistry was used to identify and count surviving vasopressin and oxytocin MCNs in the supraoptic nucleus (SON) in hypothalamic slices cultured in the presence of CNTF (10 ng/ml media) for various time intervals, and in situ hybridization for vasopressin mRNA was used to evaluate the vasopressin mRNA gene expression in the SON under the same conditions. The presence of CNTF in the medium for 10 days produced a maximal increase in the survival of vasopressin MCNs (by 11-fold) and in the survival of oxytocin-MCNs (by approximately four-fold) over controls. These effects persisted for an additional 7-10 days even in the absence of CNTF. The ability of CNTF to increase survival of the MCNs or increase vasopressin mRNA levels in the SON required that the CNTF be present during the initial 7-10 days of culture. CNTF failed to rescue vasopressin or oxytocin MCNs when added to the media only for the last 7 days of a total of 14 days in vitro. Similar results were observed when SON vasopressin mRNA levels were measured. These results indicate that the presence of CNTF is required at the outset to rescue the vasopressin and oxytocin MCN from axotomy induced apoptosis, and that, after 10 days in CNTF, the MCNs no longer require the CNTF for survival.
Collapse
Affiliation(s)
- M Rusnak
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Lara J, Kusano K, House S, Gainer H. Interactions of cyclic adenosine monophosphate, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor treatment on the survival and growth of postnatal mesencephalic dopamine neurons in vitro. Exp Neurol 2003; 180:32-45. [PMID: 12668147 DOI: 10.1016/s0014-4886(02)00028-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The survival of rat postnatal mesencephalic dopamine (DA) neurons in dissociated cell cultures was studied by examining the combinatorial effects of dibutyryl cyclic adenosine monophosphate (db-cAMP), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), as well as selective inhibitors of protein kinase A (PKA), and mitogen-activated protein kinase (MAPK). Postnatal DA neurons were maintained for 14 days in vitro, and were identified by immunohistochemistry using tyrosine hydroxylase antibody. The survival and growth of DA neurons was significantly increased by the inclusion of either >100 microM db-cAMP or 10 microM Forskolin plus 100 microM IBMX in the culture medium. Neither 10-50 ng/ml GDNF nor 50 ng/ml BDNF alone significantly increased DA neuron survival in vitro. However, the combined use of GDNF and BDNF did increase DA neuron survival, and the addition of either db-cAMP or IBMX/Forskolin to media containing these neurotrophins markedly increased DA neuron survival and growth. The cAMP inhibitor Rp-cAMP, the cAMP-dependent protein kinase A inhibitor H89, and the MAP kinase (MAPK) pathway inhibitor PD98059 significantly reduced the survival of DA neurons when applied alone in the absence of added growth factors. Application of GDNF plus BDNF, or db-cAMP significantly protected the DA neurons from the deleterious effects on survival of either 20 microM H89 or 20 microM PD 98059. The results suggest that BDNF, GDNF, and cAMP produce convergent signals to activate PKA and MAPK pathways which are involved in the survival of postnatal mesencephalic DA neurons in vitro.
Collapse
Affiliation(s)
- Jesus Lara
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4120, USA
| | | | | | | |
Collapse
|
18
|
Rusnak M, House SB, Arima H, Gainer H. Ciliary neurotrophic factor increases the survival of magnocellular vasopressin and oxytocin neurons in rat supraoptic nucleus in organotypic cultures. Microsc Res Tech 2002; 56:101-12. [PMID: 11810713 DOI: 10.1002/jemt.10015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Organotypic cultures of the rat hypothalamus are very useful models for the long-term study of parvocellular vasopressin (VP) neurons in the paraventricular (PVN) and suprachiasmatic (SCN) nuclei. However, they do not preserve significant numbers of VP magnocellular neurons (VP-MCNs) in either the PVN or the supraoptic nucleus (SON). Vutskits et al. [(1998) Neuroscience 87:571-582] reported that ciliary neurotrophic factor (CNTF) was a selective survival factor for rat VP-MCNs in organotypic cultures of the rat hypothalamic paraventricular nucleus (PVN). We examined the effects of CNTF on the survival of these neurons in rat and mouse SONs. CNTF (10 ng/ml) in the culture media increased the survival of VP-MCNs by 6-fold and OT-MCNs by 3-fold. In the mouse, both OT- and VP-MCNs survive very well in organotypic cultures under standard culture conditions and the addition of CNTF had no further effect. Consistent with these results, in situ hybridization showed substantially higher levels of VP- and OT-mRNA in rat PVNs and SONs in the presence of CNTF, but produced no changes in these nuclei in the mouse. The optimum period for the survival effect of CNTF on MCNs in the rat hypothalamic cultures was in the first 7-10 days of culture and this effect is maintained for at least 5 additional days if CNTF is then removed from the medium. Therefore, using CNTF in the culture media can provide an opportunity for long-term studies of rat VP- and OT-MCNs in SONs in organotypic cultures.
Collapse
Affiliation(s)
- Milan Rusnak
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
19
|
Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery 2001. [DOI: 10.1097/00006123-200111000-00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells. Neurosurgery 2001. [DOI: 10.1227/00006123-200111000-00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
21
|
Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001; 189:49-57. [PMID: 11535233 DOI: 10.1016/s0022-510x(01)00557-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We tested the hypothesis that bone marrow stromal cells (MSCs) transplanted into the ischemic boundary zone, survive, differentiate and improve functional recovery after middle cerebral artery occlusion (MCAo). MSCs were harvested from adult rats and cultured with or without nerve growth factor (NGF). For cellular identification, MSCs were prelabeled with bromodeoxyuridine (BrdU). Rats (n=24) were subjected to 2 h of MCAo, received grafts at 24 h and were euthanized at 14 days after MCAo. Test groups consisted of: (1) control-MCAo alone (n=8); (2) intracerebral transplantation of MSCs (n=8); (3) intracerebral transplantation of MSCs cultured with NGF (n=8). Immunohistochemistry was used to identify cells from MSCs. Behavioral tests (rotarod, adhesive-removal and modified neurological severity score [NSS]) were performed before and after MCAo. The data demonstrate that MSCs survive, migrate and differentiate into phenotypic neural cells. Significant recovery of somatosensory behavior (p<0.05) and NSS (p<0.05) were found in animals transplanted with MSCs compared with control animals. Animals that received MSCs cultured with NGF displayed significant recovery in motor (p<0.05), somatosensory (p<0.05) and NSS (p<0.05) behavioral tests compared with control animals. Our data suggest that intracerebral transplantation of MSCs may provide a powerful autoplastic therapy for stroke.
Collapse
Affiliation(s)
- J Chen
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
22
|
SiuYi Leung D, Unsicker K, Reuss B. Gap junctions modulate survival-promoting effects of fibroblast growth factor-2 on cultured midbrain dopaminergic neurons. Mol Cell Neurosci 2001; 18:44-55. [PMID: 11461152 DOI: 10.1006/mcne.2001.1002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor 2 (FGF-2) and glial cell line-derived neurotrophic factor (GDNF) support survival of dopaminergic midbrain neurons. Neurons are coupled by gap junctions, propagating metabolites and intracellular second messengers possibly mediating growth factor effects. We asked, therefore, whether gap junctions influence the survival-promoting effects of FGF-2 and GDNF. RT-PCR, Western blotting, and immunocytochemistry demonstrate that FGF-2 but not GDNF upregulates cx43 mRNA and immunoreactivity in rat embryonic day 14 midbrain cultures, whereas cx26, cx32, and cx45 were unchanged. In addition, functional coupling as assayed by the spread of neurobiotin was increased by FGF-2. Furthermore, the gap junction blocker oleamide abolished survival-promoting effects of FGF-2 on dopaminergic midbrain neurons. Together, these results support a direct role of gap junction communication for survival-promoting effects of FGF-2 on dopaminergic midbrain neurons, making gap junction communication a substantial parameter for neuron survival.
Collapse
Affiliation(s)
- D SiuYi Leung
- Neuroanatomy and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
23
|
Weicker H, Kinscherf R, Diserens K, Deigner HP, Strüder H. Physiology and pathophysiology of basalganglia: Impact on motor system function. Eur J Sport Sci 2001. [DOI: 10.1080/17461390100071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson's disease brain. J Chem Neuroanat 2001; 21:277-88. [PMID: 11429269 DOI: 10.1016/s0891-0618(01)00115-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) in substantia nigra pars compacta (SNc) of Parkinson's disease (PD) brains was investigated by immunofluorescence. Cases studied included four 69-77 year old neurologically normal male controls and four 72-79 year old male PD patients. Integrated optical densities (IODs) of immunofluorescence over individual neuromelanin-containing neurons and in areas of neuropil and the number of neurons on H & E stained adjacent sections were quantitated with the use of the BioQuant Image Analyzer. Data were statistically analyzed by ANOVA, including the unpaired two-tailed Student t-test and the Mann-Whitney test. The results showed 55.8% (P<0.0001) dropout of SNc neurons in PD brains compared to age-matched controls. Despite considerable neuronal dropout, immunofluorescent NTFs in the PD brains showed differential reductions that were consistent within the group as compared to age-matched controls: reductions were GDNF, 19.4%/neuron (P<0.0001), 20.2%/neuropil (P<0.0001); CNTF, 11.1%/neuron (P<0.0001), 9.4%/neuropil (P<0.0001); BDNF, 8.6%/neuron (P<0.0001), 2.5%/neuropil. NGF, NT-3 and NT-4 showed no significant differences within surviving neurons or neuropil. Since the depletion of GDNF both within surviving neurons and neuropil was twice as great as that of CNTF and BDNF and since the other NTFs showed no changes, GDNF, of the tested NTFs, is probably the most susceptible and the earliest to decrease in the surviving neurons of SNc. These observations suggest a role for decreased availability of GDNF in the process of SNc neurodegeneration in PD.
Collapse
Affiliation(s)
- N B Chauhan
- Research and Development Service, Edward Hines, Jr., Veterans Affairs Hospital, Hines, IL 60141, USA
| | | | | |
Collapse
|
25
|
Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32:1005-11. [PMID: 11283404 DOI: 10.1161/01.str.32.4.1005] [Citation(s) in RCA: 1326] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that intravenous infusion of bone marrow derived-marrow stromal cells (MSCs) enter the brain and reduce neurological functional deficits after stroke in rats. METHODS Rats (n=32) were subjected to 2 hours of middle cerebral artery occlusion (MCAO). Test groups consisted of MCAO alone (group 1, n=6); intravenous infusion of 1x10(6) MSCs at 24 hours after MCAO (group 2, n=6); or infusion of 3x10(6) MSCs (group 3, n=7). Rats in groups 1 to 3 were euthanized at 14 days after MCAO. Group 4 consisted of MCAO alone (n=6) and group 5, intravenous infusion of 3x10(6) MSCs at 7 days after MCAO (n=7). Rats in groups 4 and 5 were euthanized at 35 days after MCAO. For cellular identification, MSCs were prelabeled with bromodeoxyuridine. Behavioral tests (rotarod, adhesive-removal, and modified Neurological Severity Score [NSS]) were performed before and at 1, 7, 14, 21, 28, and 35 days after MCAO. Immunohistochemistry was used to identify MSCs or cells derived from MSCs in brain and other organs. RESULTS Significant recovery of somatosensory behavior and Neurological Severity Score (P<0.05) were found in animals infused with 3x10(6) MSCs at 1 day or 7 days compared with control animals. MSCs survive and are localized to the ipsilateral ischemic hemisphere, and a few cells express protein marker phenotypic neural cells. CONCLUSIONS MSCs delivered to ischemic brain tissue through an intravenous route provide therapeutic benefit after stroke. MSCs may provide a powerful autoplastic therapy for stroke.
Collapse
Affiliation(s)
- J Chen
- Henry Ford Health Sciences Center, Department of Neurology, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mogi M, Togari A, Kondo T, Mizuno Y, Kogure O, Kuno S, Ichinose H, Nagatsu T. Glial cell line-derived neurotrophic factor in the substantia nigra from control and parkinsonian brains. Neurosci Lett 2001; 300:179-81. [PMID: 11226640 DOI: 10.1016/s0304-3940(01)01577-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was measured for the first time in the brain (substantia nigra, caudate nucleus, putamen, cerebellum, and frontal cortex) from control and parkinsonian patients by highly sensitive sandwich enzyme-linked immunosorbent assay. In both groups, the levels of GDNF in the various brain regions were lower (pg/mg protein) than those of brain-derived growth factor (ng/mg order), and were significantly higher in the nigro-striatal dopaminergic regions (substantia nigra, caudate nucleus, putamen) than in the cerebellum and frontal cortex (P < 0.05). However, the content of GDNF in the dopaminergic regions showed no significant difference between parkinsonian and control patients.
Collapse
Affiliation(s)
- M Mogi
- Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 464-8650, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Costa S, Iravani MM, Pearce RK, Jenner P. Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur J Pharmacol 2001; 412:45-50. [PMID: 11166735 DOI: 10.1016/s0014-2999(00)00933-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has previously reduced motor deficits and preserved nigral dopamine neurones in rhesus monkeys with a unilateral MPTP-induced lesion of substantia nigra. We now report on the ability of GDNF to reverse motor deficits induced by parenteral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets resulting in bilateral degeneration of the nigrostriatal pathway. Prior to GDNF administration, all MPTP-treated animals showed akinesia or bradykinesia, rigidity, postural instability and tremor. Intraventricular injection of GDNF (10, 100 or 500 microg) at 9 and 13 weeks post MPTP treatment resulted in a concentration dependent improvement in locomotor activity and motor disability which became significant after administration of 100 and 500 microg of GDNF. The most prominent improvements were in alertness, checking movements, and posture. It is concluded that intraventricular GDNF administration improves bilateral Parkinsonian motor disability following MPTP treatment and this may reflect an action of GDNF on remaining nigral dopaminergic neurones.
Collapse
Affiliation(s)
- S Costa
- Neurodegenerative Disease Research Centre, Hodgkin Building, GKT School of Biomedical Sciences, King's College London, Guy's Campus, SE1 1UL, London, UK
| | | | | | | |
Collapse
|
28
|
Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 2000; 20:1311-9. [PMID: 10994853 DOI: 10.1097/00004647-200009000-00006] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The authors transplanted adult bone marrow nonhematopoietic cells into the striatum after embolic middle cerebral artery occlusion (MCAO). Mice (n = 23; C57BL/6J) were divided into four groups: (1) mice (n = 5) were subjected to MCAO and transplanted with bone marrow nonhematopoietic cells (prelabeled by bromodeoxyuridine, BrdU) into the ischemic striatum, (2) MCAO alone (n = 8), (3) MCAO with injection of phosphate buffered saline (n = 5), and (4) bone marrow nonhematopoietic cells injected into the normal striatum (n = 5). Mice were killed at 28 days after stroke. BrdU reactive cells survived and migrated a distance of approximately 2.2 mm from the grafting areas toward the ischemic areas. BrdU reactive cells expressed the neuronal specific protein NeuN in 1% of BrdU stained cells and the astrocytic specific protein glial fibrillary acidic protein (GFAP) in 8% of the BrdU stained cells. Functional recovery from a rotarod test (P < 0.05) and modified neurologic severity score tests (including motor, sensory, and reflex; P < 0.05) were significantly improved in the mice receiving bone marrow nonhematopoietic cells compared with MCAO alone. The current findings suggest that the intrastriatal transplanted bone marrow nonhematopoietic cells survived in the ischemic brain and improved functional recovery of adult mice even though infarct volumes did not change significantly. Bone marrow nonhematopoietic cells may provide a new avenue to promote recovery of injured brain.
Collapse
Affiliation(s)
- Y Li
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lingor P, Unsicker K, Krieglstein K. GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol 2000; 163:55-62. [PMID: 10785444 DOI: 10.1006/exnr.2000.7339] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free radical formation is considered to be a major cause of dopaminergic (DAergic) cell death in the substantia nigra leading to Parkinson's disease (PD). In this study we employed several radical donors including iron and sodium nitroprusside to induce toxic effects on DAergic neurons cultured from the embryonic rat midbrain floor. Overall cell survival was assessed by assaying LDH, and DAergic neuron survival was monitored by counting tyrosine hydroxylase-positive cells. Our data suggest that the DAergic neuron population is about fourfold more susceptible to free-radical-mediated damage than the total population of midbrain neurons. Application of the neurotrophic factors GDNF and NT-4, for which DAergic neurons have specific receptors, prior to toxin administration protected these neurons from toxin-mediated death, which, fully or in part, occurs under the signs of apoptosis. These findings underscore the importance of GDNF and NT-4 in designing future therapeutical concepts for PD.
Collapse
Affiliation(s)
- P Lingor
- Neuroanatomy, University of Heidelberg, INF 307, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
30
|
Deigner HP, Haberkorn U, Kinscherf R. Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opin Investig Drugs 2000; 9:747-64. [PMID: 11060707 DOI: 10.1517/13543784.9.4.747] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apoptosis is a prerequisite to model the developing nervous system. However, an increased rate of cell death in the adult nervous system underlies neurodegenerative disease and is a hallmark of multiple sclerosis (MS) Alzheimer's- (AD), Parkinson- (PD), or Huntington's disease (HD). Cell surface receptors (e.g., CD95/APO-1/Fas; TNF receptor) and their ligands (CD95-L; TNF) as well as evolutionarily conserved mechanisms involving proteases, mitochondrial factors (e.g. , Bcl-2-related proteins, reactive oxygen species, mitochondrial membrane potential, opening of the permeability transition pore) or p53 participate in the modulation and execution of cell death. Effectors comprise oxidative stress, inflammatory processes, calcium toxicity and survival factor deficiency. Therapeutic agents are being developed to interfere with these events, thus conferring the potential to be neuroprotective. In this context, drugs with anti-oxidative properties, e.g., flupirtine, N-acetylcysteine, idebenone, melatonin, but also novel dopamine agonists (ropinirole and pramipexole) have been shown to protect neuronal cells from apoptosis and thus have been suggested for treating neurodegenerative disorders like AD or PD. Other agents like non-steroidal anti-inflammatory drugs (NSAIDs) partly inhibit cyclooxygenase (COX) expression, as well as having a positive influence on the clinical expression of AD. Distinct cytokines, growth factors and related drug candidates, e.g., nerve growth factor (NGF), or members of the transforming growth factor-beta (TGF-beta ) superfamily, like growth and differentiation factor 5 (GDF-5), are shown to protect tyrosine hydroxylase or dopaminergic neurones from apoptosis. Furthermore, peptidergic cerebrolysin has been found to support the survival of neurones in vitro and in vivo. Treatment with protease inhibitors are suggested as potential targets to prevent DNA fragmentation in dopaminergic neurones of PD patients. Finally, CRIB (cellular replacement by immunoisolatory biocapsule) is an auspicious gene therapeutical approach for human NGF secretion, which has been shown to protect cholinergic neurones from cell death when implanted in the brain. This review summarises and evaluates novel aspects of anti-apoptotic concepts and pharmacological intervention including gene therapeutical approaches currently being proposed or utilised to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- H P Deigner
- Anatomy and Cell Biology III University of Heidelberg, Germany
| | | | | |
Collapse
|
31
|
Gene therapy for Parkinson's disease: review and update. Expert Opin Investig Drugs 1999; 8:1551-1564. [PMID: 11139810 DOI: 10.1517/13543784.8.10.1551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene transfer technology is under exploration to find therapies for the treatment of Parkinson's disease (PD) and other neurodegenerative disorders. The technology of genetic transfer can also be used as a neurobiological tool to understand the role of various genes in animal models of neurodegeneration. We describe the general approaches to gene therapy for neurodegeneration, with specific attention to commonly used methodologies. Current gene therapy models for PD are then described in two parts: genetic transfer of the biosynthetic enzymes for dopamine synthesis, and genetic transfer of the genes encoding neurotrophic factors protective for dopaminergic neurones. Future strategies for the genetic treatment of PD, such as the introduction of genes to prevent apoptosis or to detoxify free radical species are also discussed. Limitations of current approaches, such as the length and regulation of transgene expression, as well as strategies to overcome those limitations, are emphasised where possible. Gene therapy remains a promising but as yet theoretical approach to the treatment of PD in humans. However, current results in animal models predict eventual therapeutic applications.
Collapse
|
32
|
Galter D, Unsicker K. Regulation of the transmitter phenotype of rostral and caudal groups of cultured serotonergic raphe neurons. Neuroscience 1999; 88:549-59. [PMID: 10197774 DOI: 10.1016/s0306-4522(98)00224-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the regulation of survival and serotonergic markers by neurotrophins and several trophically active cytokines in neurons cultured from the embryonic rat raphe region under defined conditions. At embryonic day 14, saturating concentrations of brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4 and basic fibroblast growth factor elicited a two- to 2.5-fold increase in numbers of tryptophan hydroxylase- and serotonin-immunoreactive neurons over a four-day culture period. Transforming growth factor beta-1 and glial cell line-derived neurotrophic factor were less potent, while fibroblast growth factor-5 was only marginally effective. Distinct responses to different factors were noted depending on embryonic age and regional origin of serotonergic neurons. Thus, brain-derived neurotrophic factor augmented numbers of tryptophan hydroxylase-positive neurons at embryonic day 16 by a factor of seven, but only 1.5- to two-fold when cultures were established from day 13 or 14 embryos. In cultures of rostral serotonergic groups (B4-B9), numbers of tryptophan hydroxylase-positive neurons decreased in the absence of factors, whereas numbers of tryptophan hydroxylase-immunoreactive neurons in cultures from caudal serotonergic groups (B1-B3) increased during a 12-day culture period. There was no evidence that serotonergic neurons undergo apoptosis (as visualized by terminal deoxynucleotidyl transferase dUTP nick end labeling) or proliferate (as visualized by 5-bromodeoxyuridine incorporation) in culture. Numbers of serotonergic neurons also increased when cultures were treated with a brief 24-h pulse of brain-derived neurotrophic factor, supporting the notion that changes in numbers of serotonergic neurons reflected alterations of phenotype rather than cell death or proliferation. The ability of cells to specifically take up the serotonin analog 5,7-dihydroxytryptamine was also up-regulated by brain-derived neurotrophic factor in both rostral and caudal raphe cultures. Lability of the serotonergic phenotype was further suggested by the observation that ciliary neurotrophic factor fully prevented the brain-derived neurotrophic factor-mediated increase in tryptophan hydroxylase-positive neurons. The effect of ciliary neurotrophic factor was dependent on the presence of astrocytes. We conclude that serotonergic neurons show spatially and temporally distinct responses to neurotrophic factors, which seem to have a profound influence of the transmitter phenotype rather than on survival.
Collapse
Affiliation(s)
- D Galter
- Department of Anatomy and Cell Biology, The University of Heidelberg, Germany
| | | |
Collapse
|
33
|
Bürvenich S, Unsicker K, Krieglstein K. Calcitonin gene-related peptide promotes differentiation, but not survival, of rat mesencephalic dopaminergic neurons in vitro. Neuroscience 1998; 86:1165-72. [PMID: 9697123 DOI: 10.1016/s0306-4522(98)00038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study was to investigate putative effects of calcitonin gene-related peptide on developing dopaminergic neurons in the ventral mesencephalon. To determine a time-point for a physiological role of calcitonin gene-related peptide in the development of this system, we first investigated calcitonin gene-related peptide messenger RNA expression in the ventral mesencephalon of Wistar rats at embryonic days (E) 11-19. Calcitonin gene-related peptide messenger RNA was not detectable at E11, i.e. prior to the appearance of dopaminergic neurons in this area. From E14 to E19, calcitonin gene-related peptide messenger RNA was expressed in increasing amounts. We therefore investigated the effects of calcitonin gene-related peptide on serum-free cell cultures established from the E14 midbrain floor. Addition of calcitonin gene-related peptide (200 ng/ml) every other day significantly increased neuronal differentiation, including longer tyrosine hydroxylase-positive neurites, enhanced immunoreactivity for growth-associated protein-43 and increased dopaminergic uptake per neuron. These effects were maximal after seven to eight days. Calcitonin gene-related peptide acted synergistically with fibroblast growth factor-2 on these parameters. In contrast to fibroblast growth factor-2, however, calcitonin gene-related peptide did not promote survival of tyrosine hydroxylase-immunoreactive neurons. Lack of calcitonin gene-related peptide expression in the mesencephalon at E11 was paralleled by a lack of effect of calcitonin gene-related peptide on early presumptive dopaminergic neurons in terms of eliciting this phenotype. Our data suggest that calcitonin gene-related peptide may act physiologically as a differentiation-promoting factor for phenotypically defined dopaminergic neurons during a time period when dopaminergic neurons assemble in the ventral mesencephalon and grow axons towards their targets.
Collapse
Affiliation(s)
- S Bürvenich
- Department of Anatomy & Cell Biology-Neuroanatomy, University of Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Björklund L, Vidal N, Strömberg I. Lazaroid-enhanced survival of grafted dopamine neurons does not increase target innervation. Neuroreport 1998; 9:2815-9. [PMID: 9760126 DOI: 10.1097/00001756-199808240-00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lazaroid U-74006F enhances survival of grafted ventral mesencephalic neurons. In this study the intraocular grafting model was used and survival and outgrowth from fetal ventral mesencephalic grafts treated with U-74006F was evaluated in nigrostriatal co-grafts. Fetal lateral ganglionic eminence was implanted into the anterior eye chamber and left to mature. Fetal ventral mesencephalon was then implanted and the eyes were treated with U-74006F. The lazaroid treatment enhanced survival of tyrosine hydroxylase (TH)-positive neurons, but did not enhance TH-positive nerve fiber growth into the striatal portions of the co-grafts. However, a marked increase in nerve fiber formation was found within the ventral mesencephalic grafts. In conclusion, increased cell survival enhanced nerve fiber formation within the ventral mesencephalic portion of the co-graft and not, as expected, in the striatal part.
Collapse
Affiliation(s)
- L Björklund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
35
|
Legutko B, Staufenbiel M, Krieglstein K. Amyloid beta peptide is not a candidate for the neurotrophic activities released from chromaffin cells. Int J Dev Neurosci 1998; 16:347-52. [PMID: 9829171 DOI: 10.1016/s0736-5748(98)00037-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
We have previously shown that chromaffin cells, the neuron-like cells of the adrenal medulla, release proteins, which promote in vitro survival of a large number of peripheral and central nervous system neurons (cf. Lachmund, A., Gehrke, D., Krieglstein, K. and Unsicker, K, Trophic factors from chromaffin granules promote survival of peripheral and central nervous system neurons. Neuroscience, 1994, 62, 361-370). In a search for the active molecules we are testing compounds that are known to be synthesized and released by chromaffin cells. Amyloid precursor protein (beta APP) is one of these factors (Bieger, S., Klafki, H.-W. and Unsicker, K., Synthesis and release of the beta-amyloid precursor protein by bovine chromaffin cells. Neurosci. Lett., 1993, 162, 173-175). In the present study we have investigated the possibility that amyloid beta peptide (A beta P) generated from beta APP may have survival supporting effects for neurons from embryonic chick ciliary (CG) and dorsal root ganglia (DRG). Embryonic rat hippocampal neurons, for which promotion of short-term survival by A beta P has been reported (Whitson, J. S., Selkoe, D. J. and Cotman, C. W., Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science, 1989, 243, 1488-1490), were employed as a reference. A beta P fragment 1-40, administered over a wide range of concentrations (1.5-100 micrograms/ml) did not promote the survival of CG and DRG neurons isolated from embryonic day (E) 8 chick embryos. The peptide also failed to toxically suppress survival of these neuron populations in the presence of survival promoting factors. In confirmation of previous reports, the 1-40 peptide, in comparison to the reverse 40-1 peptide, significantly enhanced survival of hippocampal neurons. These results suggest that A beta P is not a trophic factor for the peripheral neuron populations tested and most likely, not a neurotrophic component among the neurotrophic factors released by chromaffin cells.
Collapse
Affiliation(s)
- B Legutko
- Department of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|
36
|
Johnson IP, Duberley RM. Motoneuron survival and expression of neuropeptides and neurotrophic factor receptors following axotomy in adult and ageing rats. Neuroscience 1998; 84:141-50. [PMID: 9522369 DOI: 10.1016/s0306-4522(97)00500-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three months after facial nerve transection, total numbers of motoneurons in the facial nucleus of six month (adult) Fischer 344 and Wistar rats were reduced to 83% and 75% of contralateral values, respectively (P < 0.05). This procedure in 22-26 month (ageing) Fischer 344 rats and Wistar rats resulted in a reduction of motoneuron numbers to 77% and 60% of the respective contralateral values (P < 0.05). Compared to adults, contralateral facial nuclei of aging Fischer 344 rats contained 10% fewer motoneurons (non-significant), while ageing Wistar rats had 22% fewer (P < 0.05). No significant changes were found in the proportion of surviving motoneurons expressing calcitonin gene-related peptide, galanin, receptor tyrosine kinase-C or the alpha subunit of the ciliary neurotrophic factor receptor. We conclude that ageing reduces facial motoneuron number and increases their vulnerability to axotomy in Wistar rats, but not in Fischer 344 rats. In neither strain, however, does the proportion of surviving motoneurons expressing the above neuropeptides or neurotrophic factor receptors change. This information may be relevant to those hypotheses of age-related neuronal degenerations which assume that decreased neurotrophic support renders ageing neurons more vulnerable to injury.
Collapse
Affiliation(s)
- I P Johnson
- Department of Anatomy and Development Biology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
37
|
Hagg T. Neurotrophins prevent death and differentially affect tyrosine hydroxylase of adult rat nigrostriatal neurons in vivo. Exp Neurol 1998; 149:183-92. [PMID: 9454627 DOI: 10.1006/exnr.1997.6684] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) promote survival of mesencephalic dopaminergic neurons in vitro and affect normal and damaged ones in vivo. Here, these neurotrophins had markedly different potencies to prevent the death of axotomized nigrostriatal dopaminergic neurons when infused close to the rostral end of the nigral nucleus of adult rats (NT-4 > BDNF > NT-3; nerve growth factor or NGF without effect). With a high dose of BDNF (30 micrograms/day) complete protection was achieved in the rostral but not caudal nigral regions, consistent with its poor diffusion characteristics in brain tissue. Measurements of tyrosine hydroxylase immunoreactivity suggest that BDNF and NT-4 (presumably through their TrkB receptor) reduce the synthesis of this rate-limiting enzyme for dopamine synthesis in rescued as well as in normal neurons. In sharp contrast, survival-promoting doses of NT-3 (presumably through its TrkC receptor) maintained normal levels of tyrosine hydroxylase immunoreactivity in the rescued nigrostriatal neurons. These results suggest that for these adult central nervous system neurons, some neurotrophic factors are predominantly involved in facilitating cell survival, whereas others are more involved in regulating neurotransmitter function.
Collapse
Affiliation(s)
- T Hagg
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
38
|
Lu X, Hagg T. Glial cell line-derived neurotrophic factor prevents death, but not reductions in tyrosine hydroxylase, of injured nigrostriatal neurons in adult rats. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971124)388:3<484::aid-cne10>3.0.co;2-m] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Björklund A, Rosenblad C, Winkler C, Kirik D. Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease. Neurobiol Dis 1997; 4:186-200. [PMID: 9361295 DOI: 10.1006/nbdi.1997.0151] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intrastriatal 6-hydroxydopamine injections in rats induce partial lesions of the nigrostriatal dopamine (DA) system which are accompanied by a delayed and protracted degeneration of DA neurons within the substantia nigra. By careful selection of the dose and placement of the toxin it is possible to obtain reproducible and regionally defined partial lesions which are well correlated with stable functional deficits, not only in drug-induced behaviors but also in spontaneous motoric and sensorimotoric function, which are analogous to the symptoms seen in patients during early stages of Parkinson's disease. The intrastriatal partial lesion model has proved to be particularly useful for studies on the mechanisms of action of neurotrophic factors since it offers opportunities to investigate both protection of degenerating DA neurons during the acute phases after the lesion and stimulation of regeneration and functional recovery during the chronic phase of the postlesion period when a subset of the spared nigral DA neurons persist in an atrophic and dysfunctional state. In the in vivo experiments performed in this model glial cell line-derived neurotrophic factor (GDNF) has been shown to exert neurotrophic effects both at the level of the cell bodies in the substantia nigra and at the level of the axon terminals in the striatum. Intrastriatal administration of GDNF appears to be a particularly effective site for induction of axonal sprouting and regeneration accompanied by recovery of spontaneous sensorimotor behaviors in the chronically lesioned nigrostriatal dopamine system.
Collapse
Affiliation(s)
- A Björklund
- Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | | | |
Collapse
|
40
|
|
41
|
Rufer M, Wirth SB, Hofer A, Dermietzel R, Pastor A, Kettenmann H, Unsicker K. Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice. J Neurosci Res 1996; 46:606-17. [PMID: 8951672 DOI: 10.1002/(sici)1097-4547(19961201)46:5<606::aid-jnr9>3.0.co;2-n] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Basic fibroblast growth factor (bFGF; FGF-2) has potent trophic effects on developing and toxically impaired midbrain dopaminergic (DAergic) neurons which are crucially affected in Parkinson's disease. The trophic effects of FGF-2 are largely indirect, both in vitro and in vivo, and possibly involve intermediate actions of astrocytes and other glial cells. To further investigate the cellular and molecular mechanisms underlying the restorative actions of FGF-2, and to analyse in more detail the changes within astroglial cells in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned striatum, we have studied striatal expression and regulation of connexin-43 (cx43), the principal gap junction protein of astroglial cells, along with the expression of glial fibrillary acidic protein (GFAP), FGF-2, and functional coupling. Our results show an immediate, yet transient increase in cx43 mRNA, and a sustained increase in FGF-2 mRNA, GFAP-positive cells, and cx43-immunoreactive punctata following the MPTP lesion, without any induction of functional coupling between astrocytes and other glial cells as revealed by dye coupling of patched cells. Unilateral administration of FGF-2 in a piece of gelfoam caused a further increase in cx43-positive punctata immediately adjacent to the implant, which was more pronounced than after application of a gelfoam containing the nontrophic control protein cytochrome C. These changes were parallelled by a small increase in cx43 protein determined by Western blot, but not by alterations in the coupling state of cells in the vicinity of the gelfoam implant. Although our data indicate that MPTP and exogenous FGF-2 may alter expression and protein levels of cx43, they do not support the notion that increases in cellular coupling may underly the trophic and widespread actions of FGF-2 in the MPTP-model of Parkinson's disease.
Collapse
Affiliation(s)
- M Rufer
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Takahashi M, Yamada T, Tooyama I, Moroo I, Kimura H, Yamamoto T, Okada H. Insulin receptor mRNA in the substantia nigra in Parkinson's disease. Neurosci Lett 1996; 204:201-4. [PMID: 8938265 DOI: 10.1016/0304-3940(96)12357-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurotrophic effects resulting from the insulin/insulin receptor system have been recognized as important in determining the etiological basis of neurodegenerative disorders. In Parkinson's disease, selective neuronal loss in the substantia nigra is accompanied by decreased immunoreactivity of the insulin receptor as determined using immunohistochemical studies. We performed semiquantitative mRNA analysis by reverse transcription-polymerase chain reaction (RT-PCR) using specific primers for human insulin receptor exon 22, which encodes a region of the beta subunit of the receptor serving as a tyrosine kinase domain. The relative levels of mRNA in the substantia nigra from Parkinson's brain tissues showed a marked depression compared with those of normal controls. Further investigations are needed to decide whether this is a primary, disease-specific alteration of gene expression or merely a secondary process.
Collapse
Affiliation(s)
- M Takahashi
- Choju Medical Institute, Noyori Fukushi-mura Hospital, Toyohashi-shi, Aichi-keu, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Krieglstein K, Maysinger D, Unsicker K. The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-beta superfamily and characterization of the serum-free culture system. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1996; 47:247-58. [PMID: 8841970 DOI: 10.1007/978-3-7091-6892-9_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4), are established survival promoting molecules for dopaminergic (DAergic) neurons cultured from the fetal rat midbrain floor. We have cultured and compared the survival of embryonic day (E) 14 mesencephalic cells in fully defined, serum-free medium, with serum-primed cultures (one hour during dissociation). Cultures were characterized using antibodies against neuron-specific enolase (NSE), tyrosine hydroxylase (TH), vimentin, glial fibrillary acidic protein (GFAP), and the antigen A2B5. The absolute absence of serum did not reduce the survival of TH-positive DAergic neurons nor alter the percentages of cells staining for the above markers. Transforming growth factor-beta 3 (TGF-beta 3) and glial cell line-derived neurotrophic factor (GDNF), two members of the TGF-beta superfamily, both promoted the survival of TH-positive cells (TGF-beta 3: 2-fold; GDNF: 1.6-fold) over the 8-day culture period. Survival mediated by TGF-beta 3 and GDNF was independent of whether or not the cells had been initially exposed to serum. In contrast, the survival promoting effects of BDNF and NT-4 were crucially dependent on serum priming. RT-PCR for the full-length trkB high affinity neurotrophin receptor revealed its presence in both culture systems. We conclude that priming with serum is important to make DAergic neurons fully responsive to BDNF and NT-4. Underlying mechanisms might be sought at the level or distal of trkB receptor expression, without excluding the possiblity that serum elicits production of growth factors that synergistically act with neurotrophins in these cultures.
Collapse
Affiliation(s)
- K Krieglstein
- Department of Anatomy, University of Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Hunot S, Bernard V, Faucheux B, Boissière F, Leguern E, Brana C, Gautris PP, Guérin J, Bloch B, Agid Y, Hirsch EC. Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson's disease. J Neural Transm (Vienna) 1996; 103:1043-52. [PMID: 9013392 DOI: 10.1007/bf01291789] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for dopaminergic neurons. Since dopaminergic neurons degenerate in Parkinson's disease, this factor is a potential therapeutical tool that may save dopaminergic neurons during the pathological process. Moreover, a reduced GDNF expression may be involved in the pathophysiology of the disease. In this study, we tested whether altered GDNF production may participate in the mechanism of cell death in this disease. GDNF gene expression was analyzed by in situ hybridization using riboprobes corresponding to a sequence of the exon 2 human GDNF gene. Experiments were performed on tissue sections of the mesencephalon and the striatum from 8 patients with Parkinson's disease and 6 control subjects matched for age at death and for post mortem delay. No labelling was observed in either group of patients. This absence of detectable expression could not be attributed to methodological problems as a positive staining was observed using the same probes for sections of astroglioma biopsies from human adults and for sections of a newborn infant brain obtained at post-mortem. These data suggest that GDNF is probably expressed at a very low level in the adult human brain and its involvement in the pathophysiology of Parkinson's disease remains to be demonstrated. GDNF may represent a powerful new therapeutic agent for Parkinson's disease, however.
Collapse
Affiliation(s)
- S Hunot
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Krieglstein K, Suter-Crazzolara C, Hötten G, Pohl J, Unsicker K. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42:724-32. [PMID: 8600306 DOI: 10.1002/jnr.490420516] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth/differentiation factor 5 (GDF5) is a novel member of the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. We show here that GDF5 is expresed in the developing CNS including the mesencephalon and acts as a neurotrophic, survival promoting molecule for rat dopaminergic midbrain neurons, which degenerate in Parkinson's disease. Recombinant human GDF5 supports dopaminergic neurons, dissected at embryonic day (E) 14 and cultured for 8 days under serum-free conditions, to almost the same extent as TGF-beta 3, and is as effective as glial cell line-derived neurotrophic factor (GDNF), two established trophic factors for midbrain dopaminergic neurons. In contrast to TGF-beta and GDNF, GDF5 augments numbers of astroglial cells in the cultures, suggesting that it may act indirectly and through pathways different from those triggered by TGF-beta and GDNF. GDF5 also protects dopaminergic neurons against the toxicity of N-methylpyridinium ion (MPP+), which selectively damages dopaminergic neurons through mechanisms currently debated in the etiology of Parkinson's disease (PD). GDF5 may therefore now be tested in animal models of PD and might become useful in the treatment of PD.
Collapse
Affiliation(s)
- K Krieglstein
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
Mendoza-Ramírez JL, Beltrán-Parrazal L, Verdugo-Díaz L, Morgado-Valle C, Drucker-Colín R. Delay in manifestations of aging by grafting NGF cultured chromaffin cells in adulthood. Neurobiol Aging 1995; 16:907-16. [PMID: 8622781 DOI: 10.1016/0197-4580(95)02008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine agonists or grafts compensate impaired motor functions in aged rats. However, there is no evidence showing whether grafting in adulthood retard aging manifestations. Motor performance of 13-month-old rats was tested on 2 meter-long wooden beams which had a 15 degree inclination and whose thickness varied from 3, 6, 12, 18, to 24 mm. Rats at 14 months were randomly assigned to 3 groups: sham graft (Group 1); intrastriatal graft of chromaffin cells cultured with NGF (Group 2); intrastriatal graft of chromaffin cells (Group 3). Motor performance was tested at monthly intervals up until rats were 26 months old. Two more groups were included: 26-month-old naive rats (Group 4); and 3- to 5-month-old naive rats (Group 5) both evaluated only once. At 26 months, the basal activity of ventral mesencephalic dopaminergic neurons was recorded. Results showed in Group 2 delay of motor detriments seen in aged rats, maintenance of basal firing rates of nigral cells compared to those of younger rats, and greater survival of substantia nigra cells. It is suggested that NGF cultured chromaffin cells produce a delay of motor detriments in aged rats, as a result of inducing survival and firing rates of nigral cells comparable to those seen in young rats.
Collapse
Affiliation(s)
- J L Mendoza-Ramírez
- Depto. de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México, D.F. México
| | | | | | | | | |
Collapse
|
47
|
von Coelln R, Unsicker K, Krieglstein K. Screening of interleukins for survival-promoting effects on cultured mesencephalic dopaminergic neurons from embryonic rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:150-4. [PMID: 8575089 DOI: 10.1016/0165-3806(95)00123-u] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to evaluate the neurotrophic potential that interleukins may have for nigrostriatal dopaminergic neurons, we have applied the interleukins 1 alpha, 1 beta, and 2 through 12 to cultures of E14 rat midbrain floor cells enriched for dopaminergic neurons. IL-6 and -7 were the only interleukins that modestly (130%, as compared to controls, 100%) promoted survival of dopaminergic neurons visualized by their immunoreactivity for tyrosine hydroxylase over an 8-day culture period. The effect was not mediated by astroglial cells. We conclude that most interleukins per se may not act as neurotrophic factors for dopaminergic neurons, although several of them occur in the embryonic and adult CNS.
Collapse
Affiliation(s)
- R von Coelln
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Krieglstein K, Rufer M, Suter-Crazzolara C, Unsicker K. Neural functions of the transforming growth factors beta. Int J Dev Neurosci 1995; 13:301-15. [PMID: 7572283 DOI: 10.1016/0736-5748(94)00062-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- K Krieglstein
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | |
Collapse
|
49
|
Humpel C, Johansson M, Marksteiner J, Saria A, Strömberg I. Mesencephalic grafts increase preprotachykinin-A mRNA expression in striatal grafts in an in oculo co-graft model. REGULATORY PEPTIDES 1995; 56:9-17. [PMID: 7770637 DOI: 10.1016/0167-0115(95)00122-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In oculo transplantation provides a powerful tool to study development and gene expression of isolated brain regions. In this study we grafted striatal and mesencephalic brain tissue to the anterior eye chamber and allowed it to survive for 2 and 6 weeks. Striatal or mesencephalic pieces were either grafted alone (single grafts) or together in close connection (co-grafts). As a control normal adult untreated rats were analyzed at the striatal and hippocampal level. Using non-radioactive in situ hybridization with digoxigenin-labeled riboprobes we detected preprotachykinin-A mRNA, a neuropeptide marker for striatal neurons. We report that adult normal rats show a strong expression of preprotachykinin-A mRNA in the striatum, medial habenula and piriform cortex, verifying the specificity of the method. Mesencephalic in oculo grafts did not reveal any staining for preprotachykinin-A mRNA. In single striatal grafts only a very weak expression of preprotachykinin-A mRNA was found at both time points investigated. Co-grafts grown for 2 weeks were not different from single striatal grafts, however, when striatum was grown together with ventral mesencephalon for 6 weeks the level of preprotachykinin-A mRNA was strong and near normal adult levels. We conclude that the mesencephalic dopaminergic innervation to the striatum might be a potent stimulus to neurons expressing preprotachykinin-A mRNA.
Collapse
Affiliation(s)
- C Humpel
- Neurochemistry Unit, Department of Psychiatry, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
50
|
Krieglstein K, Suter-Crazzolara C, Fischer WH, Unsicker K. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 1995; 14:736-42. [PMID: 7882977 PMCID: PMC398139 DOI: 10.1002/j.1460-2075.1995.tb07052.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The superfamily of transforming growth factors-beta (TGF-beta) comprises an expanding list of multifunctional proteins serving as regulators of cell proliferation and differentiation. Prominent members of this family include the TGF-beta s 1-5, activins, bone morphogenetic proteins and a recently discovered glial cell line-derived neurotrophic factor (GDNF). In the present study we demonstrate and compare the survival promoting and neuroprotective effects of TGF-beta 1, -2 and -3, activin A and GDNF for midbrain dopaminergic neurons in vitro. All proteins increase the survival of tyrosine hydroxylase-immunoreactive dopaminergic neurons isolated from the embryonic day (E) 14 rat mesencephalon floor to varying extents (TGF-beta s 2.5-fold, activin A and GDNF 1.6-fold). TGF-beta s, activin A and GDNF did not augment numbers of very rarely observed astroglial cells visualized by using antibodies to glial fibrillary acidic protein and had no effect on cell proliferation monitored by incorporation of BrdU. TGF-beta 1 and activin A protected dopaminergic neurons against N-methyl-4-phenylpiridinium ion toxicity. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that TGF-beta 2 mRNA, but not GDNF mRNA, is expressed in the E14 rat midbrain floor and in mesencephalic cultures. We conclude that TGF-beta s 1-3, activin A and GDNF share a neurotrophic capacity for developing dopaminergic neurons, which is not mediated by astroglial cells and not accompanied by an increase in cell proliferation.
Collapse
Affiliation(s)
- K Krieglstein
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | |
Collapse
|