1
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Edri R, Fisher S, Menor-Salvan C, Williams LD, Frenkel-Pinter M. Assembly-driven protection from hydrolysis as key selective force during chemical evolution. FEBS Lett 2023; 597:2879-2896. [PMID: 37884438 DOI: 10.1002/1873-3468.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization. We focus on the influence of molecular assembly on hydrolysis rates in aqueous media and suggest that assembly was crucial for biopolymer selection. In this model, incremental enrichment of some molecular species during chemical evolution was partially driven by the interplay of kinetics of synthesis and hydrolysis. We document a general attenuation of hydrolysis by assembly (i.e., recalcitrance) for all universal biopolymers and highlight the likely role of assembly in the survival of the 'fittest' molecules during chemical evolution.
Collapse
Affiliation(s)
- Rotem Edri
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Sarah Fisher
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
| | - Cesar Menor-Salvan
- Department of Biología de Sistemas, Universidad de Alcalá, Madrid, Spain
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Moran Frenkel-Pinter
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Israel
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
A Review on Recent Approaches on Molecular Docking Studies of Novel Compounds Targeting Acetylcholinesterase in Alzheimer Disease. Molecules 2023; 28:molecules28031084. [PMID: 36770750 PMCID: PMC9921523 DOI: 10.3390/molecules28031084] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative brain disorder that affects millions of people worldwide, is characterized by memory loss and cognitive decline. Low levels of acetylcholine and abnormal levels of beta-amyloid, T protein aggregation, inflammation, and oxidative stress, have been associated with AD, and therefore, research has been oriented towards the cholinergic system and primarily on acetylcholinesterase (AChE) inhibitors. In this review, we are focusing on the discovery of AChE inhibitors using computer-based modeling and simulation techniques, covering the recent literature from 2018-2022. More specifically, the review discusses the structures of novel, potent acetylcholinesterase inhibitors and their binding mode to AChE, as well as the physicochemical requirements for the design of potential AChE inhibitors.
Collapse
|
4
|
Nascimento LA, Nascimento ÉCM, Martins JBL. In silico study of tacrine and acetylcholine binding profile with human acetylcholinesterase: docking and electronic structure. J Mol Model 2022; 28:252. [PMID: 35947248 DOI: 10.1007/s00894-022-05252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative process, one of the most common and incident dementia in the population over 60 years. AD manifests the presence of complex biochemical processes involved in neuronal degeneration, such as the formation of senile plaques containing amyloid-β peptides, the development of intracellular neurofibrillary tangles, and the suppression of the acetylcholine neurotransmitter. In this way, we performed a set of theoretical tests of tacrine ligand and acetylcholine neurotransmitter against the human acetylcholinesterase enzyme. Molecular docking was used to understand the most important interactions of these molecules with the enzyme. Computational chemistry calculation was carried out using MP2, DFT, and semi-empirical methods, starting from molecular docking structures. We have also performed studies regarding the non-covalent interactions, electron localization function, molecular electrostatic potential and explicit water molecule influence. For Trp86 residue, we show two main interactions in accordance to the results of the literature for TcAChE. First, intermolecular interactions of the cation-π and sigma-π type were found. Second, close stacking interactions were stablished between THA+ and Trp86 residue on one side and with Tyr337 residue on the other side.
Collapse
Affiliation(s)
- Letícia A Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
5
|
Estévez J, Terol M, Sogorb MÁ, Vilanova E. Interactions of human acetylcholinesterase with phenyl valerate and acetylthiocholine: Thiocholine as an enhancer of phenyl valerate esterase activity. Chem Biol Interact 2022; 351:109764. [PMID: 34875277 DOI: 10.1016/j.cbi.2021.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 11/03/2022]
Abstract
Phenyl valerate (PV) is a neutral substrate for measuring the PVase activity of neuropathy target esterase (NTE), a key molecular event of organophosphorus-induced delayed neuropathy. This substrate has been used to discriminate and identify other proteins with esterase activity and potential targets of organophosphorus (OP) binding. A protein with PVase activity in chicken (model for delayed neurotoxicity) was identified as butyrylcholinesterase (BChE). Further studies in human BChE suggest that other sites might be involved in PVase activity. From the theoretical docking analysis, other more favorable sites for binding PV related to the Asn289 residue located far from the catalytic site ("PVsite") were deduced.In this paper, we demonstrate that acetylcholinesterase is also able to hydrolyze PV. Robust kinetic studies of interactions between substrates PV and acetylthiocholine (AtCh) were performed. The kinetics did not fit the classic competition models among substrates. While PV interacts as a competitive inhibitor in AChE activity, AtCh at low concentrations enhances PVase activity and inhibits this activity at high concentrations. Kinetic behavior suggests that the potentiation effect is caused by thiocholine released at the active site, where AtCh could act as a Trojan Horse. We conclude that the products released at the active site could play an important role in the hydrolysis reactions of different substrates in biological systems.
Collapse
Affiliation(s)
- Jorge Estévez
- Nstitute of Bioengineering, University Miguel Hernández, Elche (Alicante), Spain.
| | - Marina Terol
- Nstitute of Bioengineering, University Miguel Hernández, Elche (Alicante), Spain
| | - Miguel Ángel Sogorb
- Nstitute of Bioengineering, University Miguel Hernández, Elche (Alicante), Spain
| | - Eugenio Vilanova
- Nstitute of Bioengineering, University Miguel Hernández, Elche (Alicante), Spain
| |
Collapse
|
6
|
Acetylcholine esterase inhibitory activity of green synthesized nanosilver by naphthopyrones isolated from marine-derived Aspergillus niger. PLoS One 2021; 16:e0257071. [PMID: 34506550 PMCID: PMC8432876 DOI: 10.1371/journal.pone.0257071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Aspergillus niger metabolites exhibited a wide range of biological properties including antioxidant and neuro-protective effects and some physical properties as green synthesis of silver nanoparticles AgNP. The present study presents a novel evidence for the various biological activities of green synthesized AgNPs. For the first time, some isolated naphtho-γ-pyrones from marine-derived Aspergillus niger, flavasperone (1), rubrofusarin B (2), aurasperone A (3), fonsecinone A (4) in addition to one alkaloid aspernigrin A (7) were invistigated for their inhibitory activity of acetylcholine esterase AChE, a hallmark of Alzheimer’s disease (AD). The ability to synthesize AgNPs by compounds 3, 4 and 7 has been also tested for the first time. Green synthesized AgNPs were well-dispersed, and their size was ranging from 8–30 nm in diameter, their morphology was obviously spherical capped with the organic compounds. Further biological evaluation of their AChE inhibitory activity was compared to the parent compounds. AgNps dramatically increased the inhibitory activity of Compounds 4, 3 and 7 by 84, 16 and 13 fold, respectively to be more potent than galanthamine as a positive control with IC50 value of 1.43 compared to 0.089, 0.311 and 1.53 of AgNPs of Compounds 4, 3 and 7, respectively. Also compound 2 showed moderate inhibitory activity. This is could be probably explained by closer fitting to the active sites or the synergistic effect of the stabilized AgNPs by the organic compouds. These results, in addition to other intrinsic chemical and biological properties of naphtho-γ-pyrones, suggest that the latter could be further explored with a view towards other neuroprotective studies for alleviating AD.
Collapse
|
7
|
Miles JA, Ng JH, Sreenivas BY, Courageux C, Igert A, Dias J, McGeary RP, Brazzolotto X, Ross BP. Discovery of drug-like acetylcholinesterase inhibitors by rapid virtual screening of a 6.9 million compound database. Chem Biol Drug Des 2021; 97:1048-1058. [PMID: 33455074 DOI: 10.1111/cbdd.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Cholinesterase inhibitors remain the mainstay of Alzheimer's disease treatment, and the search for new inhibitors with better efficacy and side effect profiles is ongoing. Virtual screening (VS) is a powerful technique for searching large compound databases for potential hits. This study used a sequential VS workflow combining ligand-based VS, molecular docking and physicochemical filtering to screen for central nervous system (CNS) drug-like acetylcholinesterase inhibitors (AChEIs) amongst the 6.9 million compounds of the CoCoCo database. Eleven in silico hits were initially selected, resulting in the discovery of an AChEI with a Ki of 3.2 µM. In vitro kinetics and in silico molecular dynamics experiments informed the selection of an additional seven analogues. This led to the discovery of two further AChEIs, with Ki values of 2.9 µM and 0.65 µM. All three compounds exhibited reversible, mixed inhibition of acetylcholinesterase. Importantly, the in silico physicochemical filter facilitated the discovery of CNS drug-like compounds, such that all three inhibitors displayed high in vitro blood-brain barrier model permeability.
Collapse
Affiliation(s)
- Jared A Miles
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Jia Hui Ng
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - B Yogi Sreenivas
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Alexandre Igert
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Abstract
Alzheimer's disease (AD) is a significant health crisis, and current treatments provide only limited benefits to cognition at the cost of serious side effects. Recently, virtual screening techniques such as ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) have emerged as powerful drug discovery tools for identifying potential ligands of a biological target from a large database of chemical structures. The cholinesterases are an AD target particularly well suited for drug discovery using virtual screening due to their well-characterized active sites and comprehensive understanding of the structure-activity relationships of existing inhibitors. Over the last 5 years (2015-2020), at least 15 studies have used virtual screening techniques to discover potent new cholinesterase inhibitors. Herein we review how LBVS and SBVS have been applied individually or in tandem to discover novel acetylcholinesterase and butyrylcholinesterase inhibitors for AD, and highlight the need to confirm in vitro activity of screening compounds.
Collapse
Affiliation(s)
- Jared A. Miles
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin P. Ross
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations. Arch Biochem Biophys 2020; 698:108728. [PMID: 33345803 DOI: 10.1016/j.abb.2020.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
In the present study, the inhibitory mechanisms and effects of a synthetic phenazine dye, safranin O (SO) on human plasma butyrylcholinesterase (BChE), human erythrocyte acetylcholinesterase (AChE) and recombinant BChE mutants were investigated. Kinetic studies showed the following information: SO leaded to linear competitive inhibition of human plasma BChE with Ki = 0.44 ± 0.085 μM; α = ∞. It acted as a hyperbolic noncompetitive inhibitor of human erythrocyte AChE with Ki = 0.69 ± 0.13; α = 1; β = 0.08 ± 0.02. On the other hand, the inhibitory effects of SO on two BChE mutants, where A328 was modified to either F or Y, revealed differences in terms of inhibitory patterns and Ki values, compared to the obtained results with recombinant wild type BChE. SO was found to act as a linear competitive inhibitor of A328F and A328Y BChE mutants. Compared to recombinant wild type BChE, A328Y and A328F BChE mutants caused a 4- and 10-fold decrease in Ki value for SO, respectively. These findings were supported by molecular modelling studies. In conclusion, SO is a potent inhibitor of human cholinesterases and may be useful in the design and development of new drugs for the treatment of AD.
Collapse
|
10
|
Miles JA, Kapure JS, Deora GS, Courageux C, Igert A, Dias J, McGeary RP, Brazzolotto X, Ross BP. Rapid discovery of a selective butyrylcholinesterase inhibitor using structure-based virtual screening. Bioorg Med Chem Lett 2020; 30:127609. [PMID: 33039562 DOI: 10.1016/j.bmcl.2020.127609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
Acetylcholinesterase inhibitors are the mainstay of Alzheimer's disease treatments, despite having only short-term symptomatic benefits and severe side effects. Selective butyrylcholinesterase inhibitors (BuChEIs) may be more effective treatments in late-stage Alzheimer's disease with fewer side effects. Virtual screening is a powerful tool for identifying potential inhibitors in large digital compound databases. This study used structure-based virtual screening combined with physicochemical filtering to screen the InterBioScreen and Maybridge databases for novel selective BuChEIs. The workflow rapidly identified 22 potential hits in silico, resulting in the discovery of a human BuChEI with low-micromolar potency in vitro (IC50 2.4 µM) and high selectivity for butyrylcholinesterase over acetylcholinesterase. The compound was a rapidly reversible BuChEI with mixed-model in vitro inhibition kinetics. The binding interactions were investigated using in silico molecular dynamics and by developing structure-activity relationships using nine analogues. The compound also displayed high permeability in an in vitro model of the blood-brain barrier.
Collapse
Affiliation(s)
- Jared A Miles
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Jeevak S Kapure
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia
| | - Girdhar Singh Deora
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Alexandre Igert
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Ross P McGeary
- The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223 Brétigny sur Orge, France
| | - Benjamin P Ross
- The University of Queensland, School of Pharmacy, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
11
|
Synthesis, In Silico and In Vitro Evaluation of Some Flavone Derivatives for Acetylcholinesterase and BACE-1 Inhibitory Activity. Molecules 2020; 25:molecules25184064. [PMID: 32899576 PMCID: PMC7570966 DOI: 10.3390/molecules25184064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acetylcholinesterase (AChE) and β-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer’s disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35–85%). Six of the synthetic flavones (B4, B5, B6, B8, D6 and D7) had completely new structures. The AChE and BACE-1 inhibitory activities were tested, giving pIC50 3.47–4.59 (AChE) and 4.15–5.80 (BACE-1). Three compounds (B3, D5 and D6) exhibited the highest biological effects on both AChE and BACE-1. A molecular docking investigation was conducted to explain the experimental results. These molecules could be employed for further studies to discover new structures with dual action on both AChE and BACE-1 that could serve as novel therapies for AD.
Collapse
|
12
|
Synthesis, In Silico and In Vitro Evaluation for Acetylcholinesterase and BACE-1 Inhibitory Activity of Some N-Substituted-4-Phenothiazine-Chalcones. Molecules 2020; 25:molecules25173916. [PMID: 32867308 PMCID: PMC7504348 DOI: 10.3390/molecules25173916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%). The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.
Collapse
|
13
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
14
|
Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact 2019; 314:108845. [DOI: 10.1016/j.cbi.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/03/2023]
|
15
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon. Biomolecules 2019; 9:biom9100583. [PMID: 31597234 PMCID: PMC6843506 DOI: 10.3390/biom9100583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries. Such compounds are potent acetylcholinesterase irreversible inhibitors, and share the toxic profile with nerve agents. Pyridinium oximes are the only clinically available antidotes against poisoning by these substances, but their poor penetration into the blood-brain barrier hampers the efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in future SAR studies, we evaluated neutral aryloximes as reactivators for paraoxon-inhibited Electrophorus eel acetylcholinesterase. Our findings may result into lead compounds, useful for development of more active compounds for emergencies and supportive care.
Collapse
|
17
|
Cavalcante SFDA, Kitagawa DAS, Rodrigues RB, Bernardo LB, da Silva TN, Dos Santos WV, Correa ABDA, de Almeida JSFD, França TCC, Kuča K, Simas ABC. Synthesis and in vitro evaluation of neutral aryloximes as reactivators of Electrophorus eel acetylcholinesterase inhibited by NEMP, a VX surrogate. Chem Biol Interact 2019; 309:108682. [PMID: 31163137 DOI: 10.1016/j.cbi.2019.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/23/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Casualties caused by nerve agents, potent acetylcholinesterase inhibitors, have attracted attention from media recently. Poisoning with these chemicals may be fatal if not correctly addressed. Therefore, research on novel antidotes is clearly warranted. Pyridinium oximes are the only clinically available compounds, but poor penetration into the blood-brain barrier hampers efficient enzyme reactivation at the central nervous system. In searching for structural factors that may be explored in SAR studies, we synthesized and evaluated neutral aryloximes as reactivators for acetylcholinesterase inhibited by NEMP, a VX surrogate. Although few tested compounds reached comparable reactivation results with clinical standards, they may be considered as leads for further optimization.
Collapse
Affiliation(s)
- Samir F de A Cavalcante
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil; Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil; University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic.
| | - Daniel A S Kitagawa
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Rafael B Rodrigues
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Leandro B Bernardo
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Thiago N da Silva
- University Castelo Branco (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro, 21710-255, Brazil
| | - Wellington V Dos Santos
- Emergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMERJ), Praça São Salvador 4, Rio de Janeiro, 22231-170, Brazil; University Universus Veritas (UNIVERITAS), School of Biomedicine, Rua Marquês de Abrantes 55, Rio de Janeiro, 22230-060, Brazil
| | - Ana Beatriz de A Correa
- Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Avenida das Américas 28705, Rio de Janeiro, 23020-470, Brazil
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Tanos C C França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic; Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACDB), Praça General Tibúrcio 80, Rio de Janeiro, 22290-270, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003, Hradec Králové, Czech Republic
| | - Alessandro B C Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
18
|
Rivastigmine and metabolite analogues with putative Alzheimer’s disease-modifying properties in a Caenorhabditis elegans model. Commun Chem 2019. [DOI: 10.1038/s42004-019-0133-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Kim JH, Hwang CE, Yoon KA, Seong KM, Lee J, Kim JH, Lee SH. Molecular and biochemical characterization of the bed bug salivary gland cholinesterase as an acetylcholine-sequestering enzyme. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:52-58. [PMID: 30266661 DOI: 10.1016/j.ibmb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The common bed bug, Cimex lectularius, possesses a cholinesterase expressed exclusively in the salivary gland (ClSChE). In this study, we investigated the molecular forms, tissue distribution patterns and biochemical properties of ClSChE and showed that ClSChE exists as a soluble monomeric form or a soluble dimeric form connected by a disulfide bridge. Immunohistochemical analysis confirmed that ClSChE was expressed in the epithelial cells of both the salivary gland and the duct. In addition, the secretion of monomeric ClSChE through the proboscis during feeding was confirmed by western blotting using a ClSChE-specific antibody. To predict the role of ClSChE injected into the tissue of an animal host, we analyzed the extent of hydrolysis of acetylcholine (ACh) by ClSChE by ultra-performance liquid chromatography-tandem mass spectrometry. ClSChE binding to ACh was not clearly resolved in the binding assay format used in this study, probably due to the weak but detectable ACh-hydrolytic activity of ClSChE. Nevertheless, kinetic analysis revealed that ClSChE possesses extremely low Km (high affinity to ACh) and Vmax values. These findings suggest that ClSChE functions virtually as an ACh-sequestering protein by having a very strong affinity to ACh but an extremely long turnover time. Given that ACh regulates a wide variety of host physiologies, we discuss the tentative roles of ClSChE in blood vessel constriction and itch/pain regulation in the host.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chae Eun Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Department of Animal Management and Research, National Institute of Ecology, Seocheon 33657, Republic of Korea.
| | - Kyungjae Andrew Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Mook Seong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jonghwa Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Science, Seoul National University, Seoul, South Korea.
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
20
|
Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM. Metformin - a Future Therapy for Neurodegenerative Diseases : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2614-2627. [PMID: 28589443 PMCID: PMC5736777 DOI: 10.1007/s11095-017-2199-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex, chronic and progressive metabolic disease, which is characterized by relative insulin deficiency, insulin resistance, and high glucose levels in blood. Esteemed published articles and epidemiological data exhibit an increased risk of developing Alzheimer's disease (AD) in diabetic pateints. Metformin is the most frequently used oral anti-diabetic drug, which apart from hypoglycaemic activity, improves serum lipid profiles, positively influences the process of haemostasis, and possesses anti-inflammatory properties. Recently, scientists have put their efforts in establishing metformin's role in the treatment of neurodegenerative diseases, such as AD, amnestic mild cognitive impairment and Parkinson's disease. Results of several clinical studies confirm that long term use of metformin in diabetic patients contributes to better cognitive function, compared to participants using other anti-diabetic drugs. The exact mechanism of metformin's advantageous activity in AD is not fully understood, but scientists claim that activation of AMPK-dependent pathways in human neural stem cells might be responsible for the neuroprotective activity of metformin. Metformin was also found to markedly decease Beta-secretase 1 (BACE1) protein expression and activity in cell culture models and in vivo, thereby reducing BACE1 cleavage products and the production of Aβ (β-amyloid). Furthermore, there is also some evidence that metformin decreases the activity of acetylcholinesterase (AChE), which is responsible for the degradation of acetylcholine (Ach), a neurotransmitter involved in the process of learning and memory. In regard to the beneficial effects of metformin, its anti-inflammatory and anti-oxidative properties cannot be omitted. Numerous in vitro and in vivo studies have confirmed that metformin ameliorates oxidative damage.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Aleksandra Szydłowska
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Agata Skupień
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul., Muszyńskiego 1, 90-151, Lodz, Poland
| | - Kristiina M. Huttunen
- School Of Pharmacy, Faculty of Health Sciences, University of Eastern Finland,, Yliopistonranta 1C, POB 1627, 70211 Kuopio, Finland
| |
Collapse
|
21
|
Kang S, Lee S, Yang W, Seo J, Han MS. A direct assay of butyrylcholinesterase activity using a fluorescent substrate. Org Biomol Chem 2016; 14:8815-8820. [DOI: 10.1039/c6ob01360k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a fluorescent substrate for a direct and continuous assay of BChE activity and screening of its potential inhibitors.
Collapse
Affiliation(s)
- Seungyoon Kang
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Suji Lee
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Woojin Yang
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Jiwon Seo
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | - Min Su Han
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| |
Collapse
|
22
|
The assessment of cholinesterase from the liver of Puntius javanicus as detection of metal ions. ScientificWorldJournal 2014; 2014:571094. [PMID: 25401148 PMCID: PMC4225846 DOI: 10.1155/2014/571094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/27/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and −25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
Collapse
|
23
|
Tong F, Islam RM, Carlier PR, Ma M, Ekström F, Bloomquist JR. Effects of Anticholinesterases on Catalysis and Induced Conformational Change of the Peripheral Anionic Site of Murine Acetylcholinesterase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 106:79-84. [PMID: 24003261 PMCID: PMC3758491 DOI: 10.1016/j.pestbp.2013.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Conventional insecticides targeting acetylcholinesterase (AChE) typically show high mammalian toxicities and because there is resistance to these compounds in many insect species, alternatives to established AChE inhibitors used for pest control are needed. Here we used a fluorescence method to monitor interactions between various AChE inhibitors and the AChE peripheral anionic site, which is a novel target for new insecticides acting on this enzyme. The assay uses thioflavin-T as a probe, which binds to the peripheral anionic site of AChE and yields an increase in fluorescent signal. Three types of AChE inhibitors were studied: catalytic site inhibitors (carbamate insecticides, edrophonium, and benzylpiperidine), peripheral site inhibitors (tubocurarine, ethidium bromide, and propidium iodide), and bivalent inhibitors (donepezil, BW284C51, and a series of bis(n)-tacrines). All were screened on murine AChE to compare and contrast changes of peripheral site conformation in the TFT assay with catalytic inhibition. All the inhibitors reduced thioflavin-T fluorescence in a concentration-dependent manner with potencies (IC50) ranging from 8 nM for bis(6)-tacrine to 159 μM for benzylpiperidine. Potencies in the fluorescence assay were correlated well with their potencies for enzyme inhibition (R2 = 0.884). Efficacies for reducing thioflavin-T fluorescence ranged from 23-36% for catalytic site inhibitors and tubocurarine to near 100% for ethidium bromide and propidium iodide. Maximal efficacies could be reconciled with known mechanisms of interaction of the inhibitors with AChE. When extended to pest species, we anticipate these findings will assist in the discovery and development of novel, selective bivalent insecticides acting on AChE.
Collapse
Affiliation(s)
- Fan Tong
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | | | | | | | | | | |
Collapse
|
24
|
The use of mixed self-assembled monolayers as a strategy to improve the efficiency of carbamate detection in environmental monitoring. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Somji M, Dounin V, Muench SB, Schulze H, Bachmann TT, Kerman K. Electroanalysis of amino acid substitutions in bioengineered acetylcholinesterase. Bioelectrochemistry 2012; 88:110-3. [DOI: 10.1016/j.bioelechem.2012.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/01/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
26
|
|
27
|
Song J, Gordon MS, Deakyne CA, Zheng W. Theoretical Investigations of Acetylcholine (ACh) and Acetylthiocholine (ATCh) Using ab Initio and Effective Fragment Potential Methods. J Phys Chem A 2004. [DOI: 10.1021/jp0406013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Song
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Mark S. Gordon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Carol A. Deakyne
- Department of Chemistry, University of MissouriColumbia, Columbia, Missouri 65211
| | - Wencui Zheng
- Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920
| |
Collapse
|
28
|
Mesulam M, Guillozet A, Shaw P, Quinn B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis 2002; 9:88-93. [PMID: 11848688 DOI: 10.1006/nbdi.2001.0462] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Butyrylcholinesterase (BChE), also known as the "pseudo" or "non-neuronal" cholinesterase, is traditionally thought to have a restricted CNS distribution and to play little, if any, role in cholinergic transmission. OBJECTIVE To reanalyze the role of BChE in the human brain with more sensitive methodology. METHODS Three brains were examined with acetylcholinesterase and BChE histochemistry. The sections were examined with bright- and dark-field microscopy. RESULTS The histochemical parameters used in the present experiments showed that BChE activity was present in all hippocampal and temporal neocortical areas known to receive cholinergic input. At all of these locations, the BChE enzyme could hydrolyze the acetylcholine surrogate acetylthiocholine. A substantial portion of the hippocampal and neocortical BChE appeared to be located within neuroglia and their processes. CONCLUSIONS Butyrylcholinesterase may have a greater role in cholinergic transmission than previously surmised, making BChE inhibition an important therapeutic goal in Alzheimer's disease. The results also suggest that the role of neuroglia in cholinergic transmission may be analogous to their well known role in glutamatergic transmission.
Collapse
Affiliation(s)
- Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
29
|
Predicting relative binding free energies of substrates and inhibitors of acetylcholin- and butyrylcholinesterases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(01)00511-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Liu T, Gu J, Tan XJ, Zhu WL, Luo XM, Jiang HL, Ji RY, Chen KX, Silman I, Sussman JL. Theoretical Insight into the Interactions of TMA-Benzene and TMA-Pyrrole with B3LYP Density-Functional Theory (DFT) and ab Initio Second Order Møller−Plesset Perturbation Theory (MP2) Calculations. J Phys Chem A 2001. [DOI: 10.1021/jp003098c] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Liu
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jiande Gu
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Xiao-Jian Tan
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Wei-Liang Zhu
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Xiao-Min Luo
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Hua-Liang Jiang
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ru-Yun Ji
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Kai-Xian Chen
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Israel Silman
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Joel L Sussman
- Center for Drug Discovery & Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P. R. China, Chemical Process & Biotechnology Department, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel, and Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
31
|
Van Belle D, De Maria L, Iurcu G, Wodak SJ. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling. J Mol Biol 2000; 298:705-26. [PMID: 10788331 DOI: 10.1006/jmbi.2000.3698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clearance of seven different ligands from the deeply buried active-site of Torpedo californica acetylcholinesterase is investigated by combining multiple copy sampling molecular dynamics simulations, with the analysis of protein-ligand interactions, protein motion and the electrostatic potential sampled by the ligand copies along their journey outwards. The considered ligands are the cations ammonium, methylammonium, and tetramethylammonium, the hydrophobic methane and neopentane, and the anionic product acetate and its neutral form, acetic acid. We find that the pathways explored by the different ligands vary with ligand size and chemical properties. Very small ligands, such as ammonium and methane, exit through several routes. One involves the main exit through the mouth of the enzyme gorge, another is through the so-called back door near Trp84, and a third uses a side door at a direction of approximately 45 degrees to the main exit. The larger polar ligands, methylammonium and acetic acid, leave through the main exit, but the bulkiest, tetramethylammonium and neopentane, as well as the smaller acetate ion, remain trapped in the enzyme gorge during the time of the simulations. The pattern of protein-ligand contacts during the diffusion process is highly non-random and differs for different ligands. A majority is made with aromatic side-chains, but classical H-bonds are also formed. In the case of acetate, but not acetic acid, the anionic and neutral form, respectively, of one of the reaction products, specific electrostatic interactions with protein groups, seem to slow ligand motion and interfere with protein flexibility; protonation of the acetate ion is therefore suggested to facilitate clearance. The Poisson-Boltzmann formalism is used to compute the electrostatic potential of the thermally fluctuating acetylcholinesterase protein at positions actually visited by the diffusing ligand copies. Ligands of different charge and size are shown to sample somewhat different electrostatic potentials during their migration, because they explore different microscopic routes. The potential along the clearance route of a cation such as methylammonium displays two clear minima at the active and peripheral anionic site. We find moreover that the electrostatic energy barrier that the cation needs to overcome when moving between these two sites is small in both directions, being of the order of the ligand kinetic energy. The peripheral site thus appears to play a role in trapping inbound cationic ligands as well as in cation clearance, and hence in product release.
Collapse
Affiliation(s)
- D Van Belle
- Unité de Conformation de Macromolécules Biologiques CP160/16, Université Libre de Bruxelles, 50 av. F.D. Roosevelt, Bruxelles, 1050, Belgium
| | | | | | | |
Collapse
|
32
|
García JL, Sánchez-Beato AR, Medrano FJ, López R. Versatility of choline-binding domain. Microb Drug Resist 2000; 4:25-36. [PMID: 9533722 DOI: 10.1089/mdr.1998.4.25] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J L García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Muñoz FJ, Aldunate R, Inestrosa NC. Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. Neuroreport 1999; 10:3621-5. [PMID: 10619655 DOI: 10.1097/00001756-199911260-00029] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acetylcholinesterase (AChE) catalyses the hydrolysis of the neurotransmitter acetylcholine and it has been implicated in several non-cholinergic actions, including neurite outgrowth and amyloid formation. We have studied the trophic function of brain AChE on neuronal cell metabolism and proliferation as well as the enzyme domain involved in such effects. Low AChE concentrations (0.1-2.5 nM) stimulated neurite outgrowth and induced cell proliferation as measured by MTT reduction and [3H]thymidine incorporation. The action of AChE was not affected by edrophonium and tacrine both active site inhibitors, but it was abolished by propidium and gallamine, two peripheral anionic binding site (PAS) ligands. We conclude that the PAS domain of AChE is involved in the neurotrophic activity of the enzyme.
Collapse
Affiliation(s)
- F J Muñoz
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | | | | |
Collapse
|
34
|
Zámocký M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:19-66. [PMID: 10446501 DOI: 10.1016/s0079-6107(98)00058-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review gives an overview about the structural organisation of different evolutionary lines of all enzymes capable of efficient dismutation of hydrogen peroxide. Major potential applications in biotechnology and clinical medicine justify further investigations. According to structural and functional similarities catalases can be divided in three subgroups. Typical catalases are homotetrameric haem proteins. The three-dimensional structure of six representatives has been resolved to atomic resolution. The central core of each subunit reveals a characteristic "catalase fold", extremely well conserved among this group. In the native tetramer structure pairs of subunits tightly interact via exchange of their N-terminal arms. This pseudo-knot structures implies a highly ordered assembly pathway. A minor subgroup ("large catalases") possesses an extra flavodoxin-like C-terminal domain. A > or = 25 A long channel leads from the enzyme surface to the deeply buried active site. It enables rapid and selective diffusion of the substrates to the active center. In several catalases NADPH is tightly bound close to the surface. This cofactor may prevent and reverse the formation of compound II, an inactive reaction intermediate. Bifunctional catalase-peroxidase are haem proteins which probably arose via gene duplication of an ancestral peroxidase gene. No detailed structural information is currently available. Even less is know about manganese catalases. Their di-manganese reaction centers may be evolutionary.
Collapse
Affiliation(s)
- M Zámocký
- Institut für Biochemie and Molekulare Zellbiologie, Vienna, Austria.
| | | |
Collapse
|
35
|
Deakyne CA, Meot-Ner (Mautner) M. Ionic Hydrogen Bonds in Bioenergetics. 4. Interaction Energies of Acetylcholine with Aromatic and Polar Molecules. J Am Chem Soc 1999. [DOI: 10.1021/ja982549s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carol A. Deakyne
- Contribution from the Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920, and Chemical Kinetics and Thermodynamics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | - Michael Meot-Ner (Mautner)
- Contribution from the Department of Chemistry, Eastern Illinois University, Charleston, Illinois 61920, and Chemical Kinetics and Thermodynamics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| |
Collapse
|
36
|
Lejus C, Blanloeil Y, Burnat P, Souron R. [Cholinesterases]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 1998; 17:1122-35. [PMID: 9835982 DOI: 10.1016/s0750-7658(00)80006-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review current data on butyrylcholinesterase. DATA SOURCES Search through Medline data bases of articles in French or English. STUDY SELECTION Original articles and case reports were selected. Letters to editor were excluded. DATA EXTRACTION The articles were analyzed in order to obtain current data on biochemical structure, action, major pathological variations, especially with regard to the recent informations obtained by molecular biology concerning the identification of genetic variants. DATA SYNTHESIS Butyrylcholinesterase must be differentiated from acetylcholinesterase, which cannot hydrolyse succinylcholine. The physiological action of butyrylcholinesterase remains unknown, although it can hydrolyse many drugs. Excluding genetical mutations, several physiopathological situations alter butyryl-cholinesterase activity. Butyrylcholinesterase activity assessment does not allow the diagnosis of genetic variants. Whatever the origin, only deficits of more than 50% modify significantly the metabolism of succinylcholine or mivacurium. The diagnosis of a prolonged neuromuscular blockade is obtained with systematic monitoring of the neuromuscular function in case of administration of mivacurium or succinylcholine. Mivacurium should only be re-injected when one response at train of four is obtained. In case of prolonged neuromuscular blockade, the anticholinesterasic agent should not be administered when no response at train of four is obtained. The biochemical methods using inhibitors (dibucaine, fluoride) of the butyrylcholinesterase and a familial study lead to the diagnosis in most cases because the atypical and fluoride variants are the most frequent. When results are doubtful, genetic molecular methods with the use of PCR and restriction enzymes allow a rapid diagnosis.
Collapse
Affiliation(s)
- C Lejus
- Service d'anesthésie-réanimation chirurgicale, CHR, Nantes, France
| | | | | | | |
Collapse
|
37
|
Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA. From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A 1998; 95:12088-93. [PMID: 9770444 PMCID: PMC22789 DOI: 10.1073/pnas.95.21.12088] [Citation(s) in RCA: 436] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/06/1998] [Indexed: 11/18/2022] Open
Abstract
The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation-pi interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions of cation-pi binding abilities and (ii) EC50 values for acetylcholine at the receptor for a series of tryptophan derivatives that were incorporated into the receptor by using the in vivo nonsense-suppression method for unnatural amino acid incorporation. Such a correlation is seen at one, and only one, of the aromatic residues-tryptophan-149 of the alpha subunit. This finding indicates that, on binding, the cationic, quaternary ammonium group of acetylcholine makes van der Waals contact with the indole side chain of alpha tryptophan-149, providing the most precise structural information to date on this receptor. Consistent with this model, a tethered quaternary ammonium group emanating from position alpha149 produces a constitutively active receptor.
Collapse
Affiliation(s)
- W Zhong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Alvarez A, Opazo C, Alarcón R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 1997; 272:348-61. [PMID: 9325095 DOI: 10.1006/jmbi.1997.1245] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acetylcholinesterase (AChE), an enzyme involved in the hydrolysis of the neurotransmitter acetylcholine, consistently colocalizes with the amyloid deposits characteristic of Alzheimer's disease and may contribute to the generation of amyloid proteins and/or physically affect fibril assembly. In order to identify the structural domains of the amyloid-beta-peptide (Abeta) involved in the aggregation induced by AChE, we have studied the effect of this cholinergic enzyme on Abeta peptide fragments of different sizes. AChE enhanced the aggregation of the Abeta(12-28) and Abeta(25-35) peptides but not of the Abeta(1-16) fragment. The inductive effect of AChE on the aggregation of Abeta(12-28) was abolished by the presence of either Abeta(1-16) or Abeta(9-21). The effect of the enzyme was also analysed using two different mutant fragments, possessing a low and the other a high capacity for fibrillogenesis. The fragments used were Abeta(12-28)Val18-->Ala and Abeta(12-28)Glu22-->Gln, respectively. AChE was able to promote the aggregation of these fragments in a very specific way and both mutant peptides were able to form amyloid fibrils, as revealed by negative staining under the electron microscope. Binding assays indicated that AChE was bound to Abeta(12-28), as well as to the Abeta(1-16) peptide. AChE was seen to form strong complexes with the Abeta(12-28) fibrils as such complexes stained positively for both thioflavine-T and AChE activity, were resistant to high ionic strength treatment, and were partially sensitive to detergents, suggesting that hydrophobic interactions may play a role in the stabilization of the AChE-Abeta complex. Our results suggest that such amyloid-AChE complexes are formed when AChE interacts with the growing amyloid fibrils and accelerates the assembly of Abeta peptides. This is consistent with the fact that AChE is known to be present within Abeta deposits including the pre-amyloid diffuse and mature senile plaques found in Alzheimer's brain.
Collapse
Affiliation(s)
- A Alvarez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
40
|
Reyes AE, Perez DR, Alvarez A, Garrido J, Gentry MK, Doctor BP, Inestrosa NC. A monoclonal antibody against acetylcholinesterase inhibits the formation of amyloid fibrils induced by the enzyme. Biochem Biophys Res Commun 1997; 232:652-5. [PMID: 9126330 DOI: 10.1006/bbrc.1997.6357] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A monoclonal antibody (mAb) 25B1 directed against fetal bovine-serum acetylcholinesterase (FBS AChE) was used to examine the ability of the cholinergic enzyme to promote the assembly of amyloid-beta peptides (A beta) into Alzheimerś fibrils. This mAb binds to the peripheral anionic site of the enzyme and allosterically inhibits catalytic activity of FBS AChE. Several techniques, including thioflavine-T fluorescence, turbidity, and negative-staining at the electron microscopy level, were used to assess amyloid formation. Inhibition of amyloid formation was dependent on the molar ratio AChE:mAb 25B1, and at least 50% of the inhibition of the AChE promoting effect occurs at a molar ratio similar to that required for inhibition of the esterase activity. Our results suggest that mAb 25B1 inhibits the promotion of the amyloid fibril formation triggered by AChE by affecting the lag period of the A beta aggregation process.
Collapse
Affiliation(s)
- A E Reyes
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
41
|
Ullmann GM, Knapp EW, Kostić NM. Computational Simulation and Analysis of Dynamic Association between Plastocyanin and Cytochrome f. Consequences for the Electron-Transfer Reaction. J Am Chem Soc 1997. [DOI: 10.1021/ja962237u] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. Matthias Ullmann
- Contribution from the Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Ernst-Walter Knapp
- Contribution from the Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Nenad M. Kostić
- Contribution from the Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany, and Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
42
|
Medrano FJ, Gasset M, López-Zúmel C, Usobiaga P, García JL, Menéndez M. Structural characterization of the unligated and choline-bound forms of the major pneumococcal autolysin LytA amidase. Conformational transitions induced by temperature. J Biol Chem 1996; 271:29152-61. [PMID: 8910572 DOI: 10.1074/jbc.271.46.29152] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The secondary and tertiary structures of the choline-dependent major pneumococcal autolysin LytA amidase and of its COOH-terminal domain, C-LytA, have been investigated by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Deconvolution analysis shows that the far-UV CD spectrum of both proteins is governed by chiral contributions, ascribed to aromatic residue clusters contained in the COOH-terminal module. The secondary structure of LytA, determined from the FTIR spectral features of the amide I' band, results in 19% of alpha-helix and tight loops, 47% of beta-sheets, 23% of turns, and 11% of irregular structures. Similar values are obtained for C-LytA. The addition of choline significantly modifies the far- and near-UV CD spectra of LytA and C-LytA. These changes are attributed to alterations in the environment of their aromatic clusters, since the FTIR spectra indicate that the secondary structure is essentially unaffected. CD choline titration curves at different wavelengths show the existence of two types of binding sites/subunit. Data analysis assuming protein dimerization upon saturation of the high affinity sites reveals positive cooperativity between the low affinity sites. Thermal denaturation of both proteins occurs with the formation of unfolding intermediates and the presence of residual secondary structure in the final denatured state. The irreversibility of the thermal denaturation of LytA and C-LytA results from the collapse of the polypeptide chain into intermolecular extended structures. At saturating concentrations, choline prevents the formation of these structures in the isolated COOH-terminal module.
Collapse
Affiliation(s)
- F J Medrano
- Centro de Investigaciones Biológicas, CSIC, Velázquez 144, 28006 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Cerveñansky C, Durán R, Karlsson E. Fasciculin: modification of carboxyl groups and discussion of structure-activity relationship. Toxicon 1996; 34:718-21. [PMID: 8817817 DOI: 10.1016/0041-0101(95)00155-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Norleucine methylester was coupled to carboxylates of fasciculin 2, a snake toxin that inhibits acetylcholinesterase (AChE). This neutralized negative charges but had no effect on the activity, suggesting that carboxyls do not participate in binding to AChE. Earlier results are discussed. Modification of three aromatic amino acids in the peripheral site of AChE, the binding site for fasciculin, decreased the affinity 100 to one million times. Neutralizing the charge of cationic groups of fasciculin lowered the affinity only three to seven times. A change in either the toxin or enzyme part of a binding site should have about the same effect. Since this was not so, it suggests that cationic groups of fasciculin do not bind to aromatic rings in the peripheral site.
Collapse
Affiliation(s)
- C Cerveñansky
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | |
Collapse
|
44
|
Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 1996; 16:881-91. [PMID: 8608006 DOI: 10.1016/s0896-6273(00)80108-7] [Citation(s) in RCA: 821] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.
Collapse
Affiliation(s)
- N C Inestrosa
- Departamento de Biología Celular y Molecular Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Harel M, Quinn DM, Nair HK, Silman I, Sussman JL. The X-ray Structure of a Transition State Analog Complex Reveals the Molecular Origins of the Catalytic Power and Substrate Specificity of Acetylcholinesterase. J Am Chem Soc 1996. [DOI: 10.1021/ja952232h] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michal Harel
- Contribution from the Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Biology and Chemistry Departments, Brookhaven National Laboratory, Upton, New York 11973, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Daniel M. Quinn
- Contribution from the Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Biology and Chemistry Departments, Brookhaven National Laboratory, Upton, New York 11973, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Haridasan K. Nair
- Contribution from the Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Biology and Chemistry Departments, Brookhaven National Laboratory, Upton, New York 11973, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Israel Silman
- Contribution from the Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Biology and Chemistry Departments, Brookhaven National Laboratory, Upton, New York 11973, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Joel L. Sussman
- Contribution from the Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Biology and Chemistry Departments, Brookhaven National Laboratory, Upton, New York 11973, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
46
|
Abstract
Cations bind to the pi face of an aromatic structure through a surprisingly strong, non-covalent force termed the cation-pi interaction. The magnitude and generality of the effect have been established by gas-phase measurements and by studies of model receptors in aqueous media. To first order, the interaction can be considered an electrostatic attraction between a positive charge and the quadrupole moment of the aromatic. A great deal of direct and circumstantial evidence indicates that cation-pi interactions are important in a variety of proteins that bind cationic ligands or substrates. In this context, the amino acids phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) can be viewed as polar, yet hydrophobic, residues.
Collapse
Affiliation(s)
- D A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|
47
|
Harel M, Kleywegt GJ, Ravelli RB, Silman I, Sussman JL. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 1995; 3:1355-66. [PMID: 8747462 DOI: 10.1016/s0969-2126(01)00273-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fasciculin (FAS), a 61-residue polypeptide purified from mamba venom, is a three-fingered toxin which is a powerful reversible inhibitor of acetylcholinesterase (AChE). Solution of the three-dimensional structure of the AChE/FAS complex would provide the first structure of a three-fingered toxin complexed with its target. RESULTS The structure of a complex between Torpedo californica AChE and fasciculin-II (FAS-II), from the venom of the green mamba (Dendroaspis angusticeps) was solved by molecular replacement techniques, and refined at 3.0 A resolution to an R-factor of 0.231. The structure reveals a stoichiometric complex with one FAS molecule bound to each AChE subunit. The AChE and FAS conformations in the complex are very similar to those in their isolated structures. FAS is bound at the 'peripheral' anionic site of AChE, sealing the narrow gorge leading to the active site, with the dipole moments of the two molecules roughly aligned. The high affinity of FAS for AChE is due to a remarkable surface complementarity, involving a large contact area (approximately 2000 A2) and many residues either unique to FAS or rare in other three-fingered toxins. The first loop, or finger, of FAS reaches down the outer surface of the thin aspect of the gorge. The second loop inserts into the gorge, with an unusual stacking interaction between Met33 in FAS and Trp279 in AChE. The third loop points away from the gorge, but the C-terminal residue makes contact with the enzyme. CONCLUSIONS Two conserved aromatic residues in the AChE peripheral anionic site make important contacts with FAS. The absence of these residues from chicken and insect AChEs and from butyrylcholinesterase explains the very large reduction in the affinity of these enzymes for FAS. Several basic residues in FAS make important contacts with AChE. The complementarity between FAS and AChE is unusual, inasmuch as it involves a number of charged residues, but lacks any intermolecular salt linkages.
Collapse
Affiliation(s)
- M Harel
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
48
|
Cervenanský C, Engström A, Karlsson E. Role of arginine residues for the activity of fasciculin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:270-5. [PMID: 7744040 DOI: 10.1111/j.1432-1033.1995.0270l.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The West African green mamba, Dendroaspis angusticeps, has two toxins, fasciculins, that are non-competitive inhibitors of acetylcholinesterase. Arginine residues of fasciculin 2 were modified with 1,2-cyclohexanedione. Two of these residues, Arg24 and Arg37, reacted very slowly or not at all. Modification of Arg28 reduced the activity only by 13%. Arg11 and Arg27 are unique for fasciculins; a comparison of the sequences of 175 snake toxins homologous to fasciculins showed that no other toxin has arginine in the corresponding positions. Modification of the two unique arginines had a large effect and decreased the activity by 73% (Arg11) and 85% (Arg27). This was apparently not due to structural perturbations, since the modification did not change the circular dichroic spectra. The two arginine residues probably participate in the binding to acetylcholinesterase. They are located on the same side of the toxin molecule and the distance between their alpha-carbons is 2.7 nm. This may indicate binding to sites that are far apart and suggests that fasciculin covers a large area of the enzyme.
Collapse
Affiliation(s)
- C Cervenanský
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | |
Collapse
|
49
|
Binding Sites of Acetylcholine in the Aromatic Gorge Leading to the Active Site of Acetylcholinesterase. MODELLING OF BIOMOLECULAR STRUCTURES AND MECHANISMS 1995. [DOI: 10.1007/978-94-011-0497-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Salih E, Chishti SB, Vicedomine P, Cohen SG, Chiara DC, Cohen JB. Active-site peptides of acetylcholinesterase of Electrophorus electricus: labelling of His-440 by 1-bromo-[2-14C]pinacolone and Ser-200 by tritiated diisopropyl fluorophosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1208:324-31. [PMID: 7947965 DOI: 10.1016/0167-4838(94)90120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To characterize the structure of the active site of acetylcholinesterase (AChE) from the electric organ of E. electricus, we identified sites of incorporation of two active-site affinity labels, [3H]diisopropyl fluorophosphate ([3H]DFP), and 1-bromo-2-[14C]pinacolone ([14C]BrPin). AChE was isolated, purified, inactivated and digested with trypsin, and peptides containing 3H or 14C were purified by reverse-phase HPLC and characterized by N-terminal sequence analysis. [3H]DFP, labelling Ser-200, was found in a single peptide, QVTIFGESAGAASVGMHLLSPDSR, 83% identical with the sequence from Thr-193 to Arg-216 deduced for AChE of T. californica, with Gln, Ala, Leu, and Asp in place of Thr-193, Gly-203, Ile-210 and Gly-214, respectively, and 87% identical with that from bovine and human brain AChEs. Inactivation by [14C]BrPin led to two radioactive peptides. One, ASNLVWPEWMGVIHGYEIEFVFGLPLEK, was 96% identical with that extending from Ala-427 to Lys-454 of T. californica. Release of 14C in cycle 14 established reaction of [14C]BrPin with active-site His-440, protected by 5-trimethylammonio-2-pentanone (TAP). The other peptide, LLXVTENIDDAER, 77% homologous with that of T. californica extending from Leu-531 to Arg-543, had label associated with the third cycle, not protected by TAP, corresponding to Asn-533. The slow inactivation of eel AChE by reaction of [14C]BrPin at His-440 contrasts with that of AChE from T. nobiliana, where it reacts rapidly with a free cysteine, Cys-231, not present in eel AChE. For both AChEs, inactivation by BrPin prevents subsequent reaction with [3H]DFP, and prior inactivation by DFP does not prevent reactions with [14C]BrPin.
Collapse
Affiliation(s)
- E Salih
- Department of Chemistry, Brandeis University, Waltham, MA 02254
| | | | | | | | | | | |
Collapse
|