1
|
Parkesh R, Vasudevan S, Berry A, Galione A, ChurchillI G. Chemo-enzymatic synthesis and biological evaluation of photolabile nicotinic acid adenine dinuclotide phosphate (NAADP+). Org Biomol Chem 2006; 5:441-3. [PMID: 17252124 PMCID: PMC2518626 DOI: 10.1039/b617344f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chemo-enzymatic synthesis of novel caged NAADP+ without the formation of multiple cage compounds has been achieved. The biological activity of the caged NAADP+ was demonstrated by its fast uncaging in intact sea-urchin eggs.
Collapse
|
2
|
|
3
|
Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1550-64. [PMID: 10712584 DOI: 10.1046/j.1432-1327.2000.01187.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past decades, the pyridine nucleotides have been established as important molecules in signaling pathways, besides their well known function in energy transduction. Similarly to another molecule carrying such dual functions, ATP, NAD(P)+ may serve as substrate for covalent protein modification or as precursor of biologically active compounds. Protein modification is catalyzed by ADP-ribosyl transferases that attach the ADP-ribose moiety of NAD+ to specific amino-acid residues of the acceptor proteins. For a number of ADP ribosylation reactions the specific transferases and their target proteins have been identified. As a result of the modification, the biological activity of the acceptor proteins may be severely changed. The cell nucleus contains enzymes catalyzing the transfer of ADP-ribose polymers (polyADP-ribose) onto the acceptor proteins. The best known enzyme of this type is poly(ADP-ribose) polymerase 1 (PARP1), which has been implicated in the regulation of several important processes including DNA repair, transcription, apoptosis, neoplastic transformation and others. The second group of reactions leads to the synthesis of an unusual cyclic nucleotide, cyclic ADP-ribose (cADPR). Moreover, the enzymes catalyzing this reaction may also replace the nicotinamide of NADP+ by nicotinic acid resulting in the synthesis of nicotinic acid adenine dinucleotide phosphate (NAADP+). Both cADPR and NAADP+ have been reported to be potent intracellular calcium-mobilizing agents. In concert with inositol 1,4,5-trisphosphate, they participate in cytosolic calcium regulation by releasing calcium from intracellular stores.
Collapse
Affiliation(s)
- M Ziegler
- Freie Universität Berlin, Institut für Biochemie, Berlin, Germany.
| |
Collapse
|
4
|
Sumita Y, Shirato M, Ueno Y, Matsuda A, Shuto S. Nucleosides and nucleotides. 192. Toward the total synthesis of cyclic ADP-carbocyclic-ribose. Formation of the intramolecular pyrophosphate linkage by a conformation-restriction strategy in a syn-form using a halogen substitution at the 8-position of the adenine ring. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:175-87. [PMID: 10772708 DOI: 10.1080/15257770008033002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis of cyclic ADP-carbocyclic-ribose (2), as a stable mimic for cyclic ADP-ribose, was investigated. Construction of the 18-membered backbone structure was successfully achieved by condensation of the two phosphate groups of 19, possibly due to restriction of the conformation of the substrate in a syn-form using an 8-chloro substituent at the adenine moiety. SN2 reactions between an optically active carbocyclic unit 8, which was constructed by a previously developed method, and 8-bromo-N6-trichloroacetyl-2',3'-O-isopropylideneadenosine 9c gave N-1-carbocyclic derivative, which was deprotected to give 5'-5"-diol derivatives 18. When 18 was treated with POCl3 in PO(OEt)3, the bromo group at the 8-position was replaced to give N-1-carbocyclic-8-chloroadenosine 5',5"-diphosphate derivative 19 in 43% yield. Treatment of 19 with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride gave the desired intramolecular condensation product 20 in 10% yield. This is the first chemical construction of the 18-membered backbone structure containing an intramolecular pyrophosphate linkage of a cADPR-related compound with an adenine base.
Collapse
Affiliation(s)
- Y Sumita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
5
|
Fukuoka M, Shuto S, Minakawa N, Ueno Y, Matsuda A. Alternative synthesis of cyclic IDP-carbocyclic ribose. Efficient cyclization of an 8-bromo-N1-[5-(phosphoryl)carbocyclic-ribosyl]inosine 5′-phenylthiophosphate derivative mediated by iodine. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)00977-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Abstract
Cyclic ADP-ribose (cADPR) was discovered as a potent Ca2+-mobilising natural compound in sea urchin eggs. Recently, cADPR was reported to stimulate Ca2+ signalling in several higher eukaryotic cell systems (e.g., smooth and cardiac muscle cells, neuronal cells, adrenal chromaffin cells, macrophages, pancreatic acinar cells and T-lymphocytes). The following aspects of the role of cADPR as a Ca2+-mobilising second messenger are reviewed: coupling of metabolism of cADPR to stimulation of receptors in the plasma membrane, properties and pharmacology of Ca2+ release by cADPR and the involvement of cADPR in Ca2+ entry.
Collapse
Affiliation(s)
- A H Guse
- Department of Enzyme Chemistry, Institute of Physiological Chemistry, University of Hamburg, Germany.
| |
Collapse
|
7
|
Abstract
The objective of this brief review is to present an overview of the bioorganic chemistry of cyclic-ADP-ribose (cADPR) with special emphasis on the methodology used for the synthesis of analogues of cADPR. New structural analogues of cADPR can be prepared using either the biomimetic method or ADP-ribosyl cyclase from Aplysia californica. For the most part, both procedures give similar product profiles, but higher yields are generally obtained with the enzymatic method. These synthetic methodologies have allowed the transformation of a variety of structurally modified analogues of NAD+ into their corresponding cyclic nucleotides. Several of these novel analogues are more potent than cADPR in inducing calcium release and are also more stable towards degradative enzymes. They could serve as valuable affinity probes for the isolation of cADPR-binding proteins.
Collapse
Affiliation(s)
- F J Zhang
- School of Pharmacy, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
8
|
Shuto S, Shirato M, Sumita Y, Ueno Y, Matsuda A. Synthetic studies of carbocyclic analogs of cyclic ADP-ribose. Formation of a cyclic dimer, a 36-membered-ring product, in the condensation reaction of an 8-bromo-N1-[5-(phenylthiophosphoryl)carbocyclic-ribosyl]inosine 5′-phosphate derivative mediated by AgNO3. Tetrahedron Lett 1998. [DOI: 10.1016/s0040-4039(98)01575-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Yamaki H, Morita K, Kitayama S, Imai Y, Itadani K, Akagawa Y, Dohi T. Cyclic ADP-ribose induces Ca2+ release from caffeine-insensitive Ca2+ pools in canine salivary gland cells. J Dent Res 1998; 77:1807-16. [PMID: 9786637 DOI: 10.1177/00220345980770100801] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cyclic ADP-ribose (cADPR), a novel putative messenger of the ryanodine receptor, was examined regarding its ability to mobilize Ca2+ from intracellular Ca2+ stores in isolated cells of parotid and submandibular glands of the dog. cADPR induced a rapid and transient Ca2+ release in the digitonin-permeabilized cells of salivary glands. cADPR-induced Ca2+ release was inhibited by ryanodine receptor antagonists ruthenium red, ryanodine, benzocaine, and imperatoxin inhibitor but not by the inositol 1,4,5-trisphosphate (IP3)-receptor antagonist heparin. Thapsigargin, at a concentration of 3 to 30 microM, inhibited IP3-induced Ca2+ release, while higher concentrations were required to inhibit cADPR-induced Ca2+ release. Cross-potentiation was observed between cADPR and ryanodine or SrCl2, suggesting that cADPR sensitizes the Ca2+-induced Ca2+ release mechanism. Cyclic AMP plays a stimulatory role on cADPR- and IP3-induced Ca2+ release in digitonin-permeabilized cells. Calmodulin also potentiated cADPR-induced Ca2+ release, but inhibited IP3-induced Ca2+ release. Acetylcholine and ryanodine caused the rise in intracellular free Ca2+ concentration ([Ca2+]i) in intact submandibular and parotid cells. Caffeine did not produce any increase in Ca2+ release or [Ca2+]i rise in any preparation. ADP-ribosyl cyclase activity was found in the centrifuged particulate fractions of the salivary glands. These results suggest that cADPR serves as an endogenous modulator of Ca2+ release from Ca2+ pools through a caffeine-insensitive ryanodine receptor channel, which are different from IP3-sensitive pools in canine salivary gland cells. This system is positively regulated by cyclic AMP and calmodulin.
Collapse
Affiliation(s)
- H Yamaki
- Department of Removable Prosthodontics, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Morita K, Kitayama S, Dohi T. Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J Biol Chem 1997; 272:21002-9. [PMID: 9261101 DOI: 10.1074/jbc.272.34.21002] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclic ADP-ribose (cADPR) is suggested to be a novel messenger of ryanodine receptors in various cellular systems. However, the regulation of its synthesis in response to cell stimulation and its functional roles are still unclear. We examined the physiological relevance of cADPR to the messenger role in stimulation-secretion coupling in cultured bovine adrenal chromaffin cells. Sensitization of Ca2+-induced Ca2+ release (CICR) and stimulation of catecholamine release by cADPR in permeabilized cells were demonstrated along with the contribution of CICR to intracellular Ca2+ dynamics and secretory response during stimulation of intact chromaffin cells. ADP-ribosyl cyclase was activated in the membrane preparation from chromaffin cells stimulated with acetylcholine (ACh), excess KCl depolarization, and 8-bromo-cyclic-AMP. ACh-induced activation of ADP-ribosyl cyclase was dependent on the influx of Ca2+ into cells and on the activation of cyclic AMP-dependent protein kinase. These and previous findings that ACh activates adenylate cyclase by Ca2+ influx in chromaffin cells suggested that ACh induces activation of ADP-ribosyl cyclase through Ca2+ influx and cyclic AMP-mediated pathways. These results provide evidence that the synthesis of cADPR is regulated by cell stimulation, and the cADPR/CICR pathway forms a significant signal transduction for secretion.
Collapse
Affiliation(s)
- K Morita
- Department of Pharmacology, Hiroshima University School of Dentistry, 1-2-3 Kasumi, Minami-ku, Hiroshima 734, Japan
| | | | | |
Collapse
|
11
|
Vu CQ, Coyle DL, Jacobson MK. Natural occurrence of 2'-phospho-cyclic ADP ribose in mammalian tissues. Biochem Biophys Res Commun 1997; 236:723-6. [PMID: 9245722 DOI: 10.1006/bbrc.1997.7038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
2'-Phospho-cyclic ADP-ribose (P-cADPR) is a newly identified Ca2+-mobilizing agent derived from NADP that stimulates intracellular Ca2+ release by a mechanism distinct from inositol 1, 4, 5-trisphosphate. In this report, we show that P-cADPR is an endogenous metabolite in bovine tissues with basal levels ranging from 17.6 to 89.5 fmol/mg protein. The natural occurrence of this Ca2+-mobilizing nucleotide provides a potential link between NADP(H) metabolism and regulation of Ca2+ homeostasis.
Collapse
Affiliation(s)
- C Q Vu
- Division of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington 40536, USA
| | | | | |
Collapse
|
12
|
Guse AH, da Silva CP, Weber K, Armah CN, Ashamu GA, Schulze C, Potter BV, Mayr GW, Hilz H. 1-(5-phospho-beta-D-ribosyl)2'-phosphoadenosine 5'-phosphate cyclic anhydride induced Ca2+ release in human T-cell lines. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:411-7. [PMID: 9151972 DOI: 10.1111/j.1432-1033.1997.t01-1-00411.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1-(5-Phospho-beta-D-ribosyl)2'-phosphoadenosine 5'-phosphate cyclic anhydride [2'-phospho-cyclic ADP-ribose, cAdo(2')P(5')PP-Rib] was prepared enzymatically from NADP+ using ADP-ribosyl-cyclase from Aplysia californica. The product was purified by HPLC and characterized by NMR and mass spectroscopy, by conversion to 1-(5-phospho-beta-D-ribosyl)adenosine 5'-phosphate cyclic anhydride (cADP-Rib) by alkaline phosphatase and by resistance to snake venom phosphodiesterase. cAdo-(2')P(5')PP-Rib dose-dependently released Ca2+ from an intracellular, non-endoplasmic reticular Ca2+ pool of permeabilized Jurkat and HPB. ALL T-lymphocytes. In contrast, the closely related compounds 1-(5-phospho-beta-D-ribosyl)3'phosphoadenosine 5'-phosphate cyclic anhydride and 1-(5-phospho-beta-D-ribosyl)cyclic 2',3'-phosphoadenosine 5'-phosphate cyclic anhydride did not induce Ca2+-release from permeabilized T cells. The Ca2+ pool sensitive to cAdo(2')P(5')PP-Rib partially overlapped with the Ca2+ pool sensitive to cADP-Rib recently described in T cells [Guse, A. H., da Silva, C. P., Emmrich, F., Ashamu, G. A., Potter, B. V. L. & Mayr, G. W. (1995) Characterization of cyclic adenosine diphosphate-ribose-induced Ca2+-release in T-lymphocyte cell lines, J. Immunol. 155, 3353-3359]. Control experiments suggest that the results were neither due to Ca2+ contaminations in the cADP-Rib preparation nor to catabolism of cAdo(2')P(5')PP-Rib to cADP-Rib.
Collapse
Affiliation(s)
- A H Guse
- Institut für Physiologische Chemie, Abteilung für Enzymchemie, Universität Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Genazzani AA, Galione A. A Ca2+ release mechanism gated by the novel pyridine nucleotide, NAADP. Trends Pharmacol Sci 1997; 18:108-10. [PMID: 9149538 DOI: 10.1016/s0165-6147(96)01036-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A A Genazzani
- Department of Pharmacology, University of Oxford, UK
| | | |
Collapse
|
14
|
Characterization of cyclic ADP-ribose and 2′-phospho-cyclic-ADP-ribose by 31P NMR spectroscopy. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00048-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Affiliation(s)
- E L Jacobson
- Department of Clinical Sciences, University of Kentucky, Lexington 40506, USA
| | | |
Collapse
|
16
|
|
17
|
|
18
|
Ziegler M, Jorcke D, Schweiger M. Metabolism of cyclic ADP-ribose: a new role for NAD+ glycohydrolases. Rev Physiol Biochem Pharmacol 1997; 131:89-126. [PMID: 9204690 DOI: 10.1007/3-540-61992-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Ziegler
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
19
|
Jacobson MK, Coyle DL, Vu CQ, Kim H, Jacobson EL. Preparation of cyclic ADP-ribose, 2'-phospho-cyclic ADP-ribose, and nicotinate adenine dinucleotide phosphate: possible second messengers of calcium signaling. Methods Enzymol 1997; 280:265-75. [PMID: 9211322 DOI: 10.1016/s0076-6879(97)80118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M K Jacobson
- Division of Medicinal Chemistry and Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington 40506, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Zhang FJ, Sih CJ. Novel analogs of cyclic-ADP-ribose: 9-Cyclic etheno-ADP-ribose and cyclic etheno-CDP-ribose. Bioorg Med Chem Lett 1996. [DOI: 10.1016/0960-894x(96)00428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Zhang FJ, Yamada S, Gu QM, Sih CJ. Synthesis and characterization of cyclic ATP-ribose: a potent mediator of calcium release. Bioorg Med Chem Lett 1996. [DOI: 10.1016/0960-894x(96)00207-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|