1
|
Singh V, Harinarayanan R. (p)ppGpp Buffers Cell Division When Membrane Fluidity Decreases in Escherichia coli. Mol Microbiol 2024. [PMID: 39461000 DOI: 10.1111/mmi.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Fluidity is an inherent property of biological membranes and its maintenance (homeoviscous adaptation) is important for optimal functioning of membrane-associated processes. The fluidity of bacterial cytoplasmic membrane increases with temperature or an increase in the proportion of unsaturated fatty acids and vice versa. We found that strains deficient in the synthesis of guanine nucleotide analogs (p)ppGpp and lacking FadR, a transcription factor involved in fatty acid metabolism exhibited a growth defect that was rescued by an increase in growth temperature or unsaturated fatty acid content. The strain lacking (p)ppGpp was sensitive to genetic or chemical perturbations that decrease the proportion of unsaturated fatty acids over saturated fatty acids. Microscopy showed that the growth defect was associated with cell filamentation and lysis and rescued by combined expression of cell division genes ftsQ, ftsA, and ftsZ from plasmid or the gain-of-function ftsA* allele but not over-expression of ftsN. The results implicate (p)ppGpp in positive regulation of cell division during membrane fluidity loss through enhancement of FtsZ proto-ring stability. To our knowledge, this is the first report of a (p)ppGpp-mediated regulation needed for adaptation to membrane fluidity loss in bacteria.
Collapse
Affiliation(s)
- Vani Singh
- Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Lin Y, Shen C, Zhao J, Wang C, Obara M, Maung AT, Morita M, Abdelaziz MNS, Masuda Y, Honjoh KI, Miyamoto T. Antibacterial effect and mechanism of theaflavin against Listeria monocytogenes and its application on apple skins. J Food Sci 2024; 89:6653-6663. [PMID: 39289799 DOI: 10.1111/1750-3841.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
Theaflavin 3,3'-digallate (TF3), a major polyphenolic component of black tea, exhibits antibacterial effects against many foodborne pathogens. However, the antibacterial mechanisms of TF3 against Listeria monocytogenes remain unclear. In this study, we investigated the effects of TF3 on viability, biofilm, and membrane function of L. monocytogenes by the conventional plating method, crystal violet staining, and microscopy using fluorescent dyes JC-1 and Laurdan, respectively. It was found that TF3 showed excellent antibacterial activity against L. monocytogenes with the minimum inhibitory concentration of 62.5 mg/L. The viable count determined on TSA decreased by 3 log after the treatment for 2 h with TF3 at 62.5 mg/L. The viable count determined on TSA containing 4% NaCl decreased by more than 4 log after the treatment for 30 min with TF3 at the same concentration, suggesting that TF3 gave damage on the cells, enhancing the antibacterial action of 4% NaCl, but the damage was recoverable in the absence of 4% NaCl. To explore the antibacterial mechanisms of TF3, the effects of TF3 on membrane potential and membrane fluidity were investigated. TF3 reduced both membrane potential and fluidity of L. monocytogenes at 62.5 mg/L, suggesting that TF3 damaged the structural integrity of the cell membrane. TF3 reduced biofilm mass of mature biofilm of L. monocytogenes. Moreover, THEAFLAVIN TF40, a commercially available Camellia sinensis leaf extract containing TF3, reduced viable count of L. monocytogenes by 2 log on apple skin. These results suggest the potential of theaflavins as a natural anti-Listeria disinfectant.
Collapse
Affiliation(s)
- Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
- Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Manami Obara
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Miho Morita
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioscience and Bioenvironmental Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
3
|
Maiti A, Erimban S, Daschakraborty S. Extreme makeover: the incredible cell membrane adaptations of extremophiles to harsh environments. Chem Commun (Camb) 2024; 60:10280-10294. [PMID: 39190300 DOI: 10.1039/d4cc03114h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The existence of life beyond Earth has long captivated humanity, and the study of extremophiles-organisms surviving and thriving in extreme environments-provides crucial insights into this possibility. Extremophiles overcome severe challenges such as enzyme inactivity, protein denaturation, and damage of the cell membrane by adopting several strategies. This feature article focuses on the molecular strategies extremophiles use to maintain the cell membrane's structure and fluidity under external stress. Key strategies include homeoviscous adaptation (HVA), involving the regulation of lipid composition, and osmolyte-mediated adaptation (OMA), where small organic molecules protect the lipid membrane under stress. Proteins also have direct and indirect roles in protecting the lipid membrane. Examining the survival strategies of extremophiles provides scientists with crucial insights into how life can adapt and persist in harsh conditions, shedding light on the origins of life. This article examines HVA and OMA and their mechanisms in maintaining membrane stability, emphasizing our contributions to this field. It also provides a brief overview of the roles of proteins and concludes with recommendations for future research directions.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | - Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India.
| | | |
Collapse
|
4
|
Gill LT, Kennedy JR, Box ICH, Marshall KE. Ice in the intertidal: patterns and processes of freeze tolerance in intertidal invertebrates. J Exp Biol 2024; 227:jeb247043. [PMID: 39051142 DOI: 10.1242/jeb.247043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Many intertidal invertebrates are freeze tolerant, meaning that they can survive ice formation within their body cavity. Freeze tolerance is a fascinating trait, and understanding its mechanisms is important for predicting the survival of intertidal animals during extreme cold weather events. In this Review, we bring together current research on the ecology, biochemistry and physiology of this group of freeze-tolerant organisms. We first introduce the ecology of the intertidal zone, then highlight the strong geographic and taxonomic biases within the current body of literature on this topic. Next, we detail current knowledge on the mechanisms of freeze tolerance used by intertidal invertebrates. Although the mechanisms of freeze tolerance in terrestrial arthropods have been well-explored, marine invertebrate freeze tolerance is less well understood and does not appear to work similarly because of the osmotic differences that come with living in seawater. Freeze tolerance mechanisms thought to be utilized by intertidal invertebrates include: (1) low molecular weight cryoprotectants, such as compatible osmolytes and anaerobic by-products; (2) high molecular weight cryoprotectants, such as ice-binding proteins; as well as (3) other molecular mechanisms involving heat shock proteins and aquaporins. Lastly, we describe untested hypotheses, methods and approaches that researchers can use to fill current knowledge gaps. Understanding the mechanisms and consequences of freeze tolerance in the intertidal zone has many important ecological implications, but also provides an opportunity to broaden our understanding of the mechanisms of freeze tolerance more generally.
Collapse
Affiliation(s)
- Lauren T Gill
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jessica R Kennedy
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, 0985, New Zealand
| | - Isaiah C H Box
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
5
|
Ghosh T, Barman D, Show K, Lo R, Manna D, Ghosh T, Maiti DK. N-Heterocyclic Carbene-Catalyzed Facile Synthesis of Phthalidyl Sulfonohydrazones: Density Functional Theory Mechanistic Insights and Docking Interactions. ACS OMEGA 2024; 9:11510-11522. [PMID: 38496936 PMCID: PMC10938401 DOI: 10.1021/acsomega.3c08529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
N-heterocyclic carbene catalysis reaction protocol is disclosed for the synthesis of phthalidyl sulfonohydrazones. A broad range of N-tosyl hydrazones react effectively with phthalaldehyde derivatives under open-air conditions, enabling the formation of a new C-N bond via an oxidative path. The reaction proceeds under mild reaction conditions with broad substrate scopes, wide functional group tolerance, and good to excellent yields. The mechanistic pathway is studied successfully using control experiments, competitive reactions, ESI-MS spectral analyses of the reaction mixture, and computational study by density functional theory. The potential use of one of the phthalidyl sulfonohydrazone derivatives as the inhibitor of β-ketoacyl acyl carrier protein synthase I of Escherichia coli is investigated using molecular docking.
Collapse
Affiliation(s)
- Tanmoy Ghosh
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Debabrata Barman
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Krishanu Show
- Department
of Chemistry, Malda College, Malda, West Bengal 732101, India
| | - Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, Prague 6, Praha 16610, Czech Republic
| | - Debashree Manna
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, Prague 6, Praha 16610, Czech Republic
- Department
of Applied Chemistry, Maulana Abul Kalam
Azad University of Technology, Haringhata, West Bengal 741249, India
| | - Tapas Ghosh
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Dilip K. Maiti
- Department
of Chemistry, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
6
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
7
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
8
|
Wray AC, Gorman-Lewis D. Bioenergetics of aerobic and anaerobic growth of Shewanella putrefaciens CN32. Front Microbiol 2023; 14:1234598. [PMID: 37601367 PMCID: PMC10433392 DOI: 10.3389/fmicb.2023.1234598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Shewanella putrefaciens is a model dissimilatory iron-reducing bacterium that can use Fe(III) and O2 as terminal electron acceptors. Consequently, it has the ability to influence both aerobic and anaerobic groundwater systems, making it an ideal microorganism for improving our understanding of facultative anaerobes with iron-based metabolism. In this work, we examine the bioenergetics of O2 and Fe(III) reduction coupled to lactate oxidation in Shewanella putrefaciens CN32. Bioenergetics were measured directly via isothermal calorimetry and by changes to the chemically defined growth medium. We performed these measurements from 25 to 36°C. Modeling metabolism with macrochemical equations allowed us to define a theoretical growth stoichiometry for the catabolic reaction of 1.00 O2:lactate and 1.33 Fe(III):lactate that was consistent with the observed ratios of O2:lactate (1.20 ± 0.23) and Fe(III):lactate (1.46 ± 0.15) consumption. Aerobic growth showed minimal variation with temperature and minimal variation in thermodynamic potentials of incubation. Fe(III)-based growth showed a strong temperature dependence. The Gibbs energy and enthalpy of incubation was minimized at ≥30°C. Energy partitioning modeling of Fe(III)-based calorimetric incubation data predicted that energy consumption for non-growth associate maintenance increases substantially above 30°C. This prediction agrees with the data at 33 and 35°C. These results suggest that the effects of temperature on Shewanella putrefaciens CN32 are metabolism dependent. Gibbs energy of incubation above 30°C was 3-5 times more exergonic with Fe(III)-based growth than with aerobic growth. We compared data gathered in this study with predictions of microbial growth based on standard-state conditions and based on the thermodynamic efficiency of microbial growth. Quantifying the growth requirements of Shewanella putrefaciens CN32 has advanced our understanding of the thermodynamic constraints of this dissimilatory iron-reducing bacterium.
Collapse
Affiliation(s)
- Addien C. Wray
- Earth and Space Sciences, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
9
|
Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Uegaki T, Takei T, Yamaguchi S, Fujiyama K, Sato Y, Hino T, Nagano S. Anammox Bacterial S-Adenosyl-l-Methionine Dependent Methyltransferase Crystal Structure and Its Interaction with Acyl Carrier Proteins. Int J Mol Sci 2023; 24:ijms24010744. [PMID: 36614187 PMCID: PMC9821293 DOI: 10.3390/ijms24010744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Ladderane lipids (found in the membranes of anaerobic ammonium-oxidizing [anammox] bacteria) have unique ladder-like hydrophobic groups, and their highly strained exotic structure has attracted the attention of scientists. Although enzymes encoded in type II fatty acid biosynthesis (FASII) gene clusters in anammox bacteria, such as S-adenosyl-l-methionine (SAM)-dependent enzymes, have been proposed to construct a ladder-like structure using a substrate connected to acyl carrier protein from anammox bacteria (AmxACP), no experimental evidence to support this hypothesis was reported to date. Here, we report the crystal structure of a SAM-dependent methyltransferase from anammox bacteria (AmxMT1) that has a substrate and active site pocket between a class I SAM methyltransferase-like core domain and an additional α-helix inserted into the core domain. Structural comparisons with homologous SAM-dependent C-methyltransferases in polyketide synthase, AmxACP pull-down assays, AmxACP/AmxMT1 complex structure predictions by AlphaFold, and a substrate docking simulation suggested that a small compound connected to AmxACP could be inserted into the pocket of AmxMT1, and then the enzyme transfers a methyl group from SAM to the substrate to produce branched lipids. Although the enzymes responsible for constructing the ladder-like structure remain unknown, our study, for the first time, supports the hypothesis that biosynthetic intermediates connected to AmxACP are processed by SAM-dependent enzymes, which are not typically involved in the FASII system, to produce the ladder-like structure of ladderane lipids in anammox bacteria.
Collapse
Affiliation(s)
- Tesshin Uegaki
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Taisei Takei
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shuhei Yamaguchi
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Keisuke Fujiyama
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Tomoya Hino
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shingo Nagano
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Correspondence:
| |
Collapse
|
11
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
12
|
Wang Y, Chen X, Wu B, Ma T, Jiang H, Mi Y, Jiang C, Zang H, Zhao X, Li C. Potential and mechanism for bioremediation of papermaking black liquor by a psychrotrophic lignin-degrading bacterium, Arthrobacter sp. C2. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129534. [PMID: 35850064 DOI: 10.1016/j.jhazmat.2022.129534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
To meet the challenge of bioremediation of black liquor in pulp and paper mills at low temperatures, a psychrotrophic lignin-degrading bacterium was employed in black liquor treatment for the first time. In this study, Arthrobacter sp. C2 exhibited excellent cold adaptability and lignin degradation ability, with a lignin degradation rate of 65.5% and a mineralization rate of 43.9% for 3 g/L lignin at 15 °C. Bioinformatics analysis and multiple experiments confirmed that cold shock protein 1 (Csp1) was the dominant cold regulator of strain C2, and dye-decolorizing peroxidase (DyP) played a crucial role in lignin degradation. Moreover, structural equation modeling (SEM), mRNA monitoring, and phenotypic variation analysis demonstrated that Csp1 not only mediated cold adaptation but also modulated DyP activity by controlling dyp gene expression, thus driving lignin depolymerization for strain C2 at low temperatures. Furthermore, 96.4% of color, 64.2% of chemical oxygen demand (COD), and 100% of nitrate nitrogen (NO₃--N) were removed from papermaking black liquor by strain C2 within 15 days at 15 °C. This study provides insights into the association between the cold regulator and catalytic enzyme of psychrotrophic bacteria and offers a feasible alternative strategy for the bioremediation of papermaking black liquor in cold regions.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xi Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bowen Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hanyi Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yaozu Mi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Cheng Jiang
- College of Life Sciences, Resources and Environment, Yichun University, Yichun 336000, Jiangxi, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
13
|
Chen A, Mindrebo JT, Davis TD, Kim WE, Katsuyama Y, Jiang Z, Ohnishi Y, Noel JP, Burkart MD. Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states. Acta Crystallogr D Struct Biol 2022; 78:1171-1179. [PMID: 36048156 PMCID: PMC9435599 DOI: 10.1107/s2059798322007434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ketosynthases (KSs) catalyse essential carbon-carbon bond-forming reactions in fatty-acid biosynthesis using a two-step, ping-pong reaction mechanism. In Escherichia coli, there are two homodimeric elongating KSs, FabB and FabF, which possess overlapping substrate selectivity. However, FabB is essential for the biosynthesis of the unsaturated fatty acids (UFAs) required for cell survival in the absence of exogenous UFAs. Additionally, FabB has reduced activity towards substrates longer than 12 C atoms, whereas FabF efficiently catalyses the elongation of saturated C14 and unsaturated C16:1 acyl-acyl carrier protein (ACP) complexes. In this study, two cross-linked crystal structures of FabB in complex with ACPs functionalized with long-chain fatty-acid cross-linking probes that approximate catalytic steps were solved. Both homodimeric structures possess asymmetric substrate-binding pockets suggestive of cooperative relationships between the two FabB monomers when engaged with C14 and C16 acyl chains. In addition, these structures capture an unusual rotamer of the active-site gating residue, Phe392, which is potentially representative of the catalytic state prior to substrate release. These structures demonstrate the utility of mechanism-based cross-linking methods to capture and elucidate conformational transitions accompanying KS-mediated catalysis at near-atomic resolution.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Abstract
Sunlight drives phototrophic metabolism, which affects redox conditions and produces substrates for nonphototrophs. These environmental parameters fluctuate daily due to Earth’s rotation, and nonphototrophic organisms can therefore benefit from the ability to respond to, or even anticipate, such changes. Circadian rhythms, such as daily changes in body temperature, in host organisms can also affect local conditions for colonizing bacteria. Here, we investigated the effects of light/dark and temperature cycling on biofilms of the opportunistic pathogen Pseudomonas aeruginosa PA14. We grew biofilms in the presence of a respiratory indicator dye and found that enhanced dye reduction occurred in biofilm zones that formed during dark intervals and at lower temperatures. This pattern formation occurred with cycling of blue, red, or far-red light, and a screen of mutants representing potential sensory proteins identified two with defects in pattern formation, specifically under red light cycling. We also found that the physiological states of biofilm subzones formed under specific light and temperature conditions were retained during subsequent condition cycling. Light/dark and temperature cycling affected expression of genes involved in primary metabolic pathways and redox homeostasis, including those encoding electron transport chain components. Consistent with this, we found that cbb3-type oxidases contribute to dye reduction under light/dark cycling conditions. Together, our results indicate that cyclic changes in light exposure and temperature have lasting effects on redox metabolism in biofilms formed by a nonphototrophic, pathogenic bacterium.
Collapse
|
15
|
Stable isotope analysis confirms substantial changes in the fatty acid composition of bacteria treated with antimicrobial random peptide mixtures (RPMs). Sci Rep 2022; 12:11230. [PMID: 35789165 PMCID: PMC9252987 DOI: 10.1038/s41598-022-13134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
Resistance of plant-pathogenic bacteria to classic antibiotics has prompted the search for suitable alternative antimicrobial substances. One promising strategy could be the use of purposely synthesized random peptide mixtures (RPMs). Six plant-pathogenic bacteria were cultivated and treated with two RPMs previously found to show antimicrobial activity mainly by bacterial membrane disruption. Here, we show that bacteria treated with RPMs showed partly remarkable changes in the fatty acid pattern while those unaffected did not. Quantitative changes could be verified by compound specific isotope analysis of δ13C values (‰). This technique was employed due to the characteristic feature of stronger bonds between heavier isotopes in (bio)chemical reactions. As a proof of concept, the increase in abundance of a fatty acid group after RPM treatment was accompanied with a decrease in the 13C content and vice versa. We propose that our findings will help designing and synthesizing more selective antimicrobial peptides.
Collapse
|
16
|
Loss of β-Ketoacyl Acyl Carrier Protein Synthase III Activity Restores Multidrug-Resistant Escherichia coli Sensitivity to Previously Ineffective Antibiotics. mSphere 2022; 7:e0011722. [PMID: 35574679 PMCID: PMC9241538 DOI: 10.1128/msphere.00117-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative pathogens are a major concern for global public health due to increasing rates of antibiotic resistance and the lack of new drugs. A major contributing factor toward antibiotic resistance in Gram-negative bacteria is their formidable outer membrane, which acts as a permeability barrier preventing many biologically active antimicrobials from reaching the intracellular targets and thus limiting their efficacy.
Collapse
|
17
|
Herren CM, Baym M. Decreased thermal niche breadth as a trade-off of antibiotic resistance. THE ISME JOURNAL 2022; 16:1843-1852. [PMID: 35422477 PMCID: PMC9213455 DOI: 10.1038/s41396-022-01235-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 01/24/2023]
Abstract
Evolutionary theory predicts that adaptations, including antibiotic resistance, should come with associated fitness costs; yet, many resistance mutations seemingly contradict this prediction by inducing no growth rate deficit. However, most growth assays comparing sensitive and resistant strains have been performed under a narrow range of environmental conditions, which do not reflect the variety of contexts that a pathogenic bacterium might encounter when causing infection. We hypothesized that reduced niche breadth, defined as diminished growth across a diversity of environments, can be a cost of antibiotic resistance. Specifically, we test whether chloramphenicol-resistant Escherichia coli incur disproportionate growth deficits in novel thermal conditions. Here we show that chloramphenicol-resistant bacteria have greater fitness costs at novel temperatures than their antibiotic-sensitive ancestors. In several cases, we observed no resistance cost in growth rate at the historic temperature but saw diminished growth at warmer and colder temperatures. These results were consistent across various genetic mechanisms of resistance. Thus, we propose that decreased thermal niche breadth is an under-documented fitness cost of antibiotic resistance. Furthermore, these results demonstrate that the cost of antibiotic resistance shifts rapidly as the environment changes; these context-dependent resistance costs should select for the rapid gain and loss of resistance as an evolutionary strategy.
Collapse
Affiliation(s)
- Cristina M Herren
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.,Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Michael Baym
- Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA. .,Harvard Data Science Initiative, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Helicobacter pylori FabX contains a [4Fe-4S] cluster essential for unsaturated fatty acid synthesis. Nat Commun 2021; 12:6932. [PMID: 34836944 PMCID: PMC8626469 DOI: 10.1038/s41467-021-27148-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.
Collapse
|
19
|
Frank MW, Whaley SG, Rock CO. Branched-chain amino acid metabolism controls membrane phospholipid structure in Staphylococcus aureus. J Biol Chem 2021; 297:101255. [PMID: 34592315 PMCID: PMC8524195 DOI: 10.1016/j.jbc.2021.101255] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.
Collapse
Affiliation(s)
- Matthew W Frank
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sarah G Whaley
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
20
|
Helamieh M, Gebhardt A, Reich M, Kuhn F, Kerner M, Kümmerer K. Growth and fatty acid composition of Acutodesmus obliquus under different light spectra and temperatures. Lipids 2021; 56:485-498. [PMID: 34173670 DOI: 10.1002/lipd.12316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022]
Abstract
The combined impact of temperature and light spectra on the fatty acid (FA) composition in microalgae has been sparsely investigated. The aim of this study was to investigate the interactions of light and temperature on the FA composition in Acutodesmus obliquus. For this purpose, A. obliquus was cultivated with different temperatures (20, 30, and 35°C), as well as broad light spectra (blue, green, and red light). Growth and FA composition were monitored daily. Microalgal FA were extracted, and a qualitative characterization was done by gas chromatography coupled with electron impact ionization mass spectrometry (GC-EI/MS). Compared to red light, green and blue light caused a higher percentage of the polyunsaturated fatty acids (PUFA) 16:4, 18:3, and 18:4, at all temperatures. The highest total percentage of these PUFA were observed at the lowest cultivation temperature and blue and green light. These data imply that a combination of lower temperatures and blue-green light (450-550 nm) positively influences the activity of specific FA-desaturases in A. obliquus. Additionally, a lower 16:1 trans/cis ratio was observed upon green and blue light treatment and lower cultivation temperatures. Remarkably, green light treatment resulted in a comparably high growth under all tested conditions. Therefore, a higher content of green light, compared to blue light might additionally lead to a higher biomass concentration. Microalgae cultivation with low temperatures and green light might therefore result in a suitable FA composition for the food industry and a comparably high biomass production.
Collapse
Affiliation(s)
- Mark Helamieh
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Lüneburg, Germany.,Strategic Science Consult Ltd., Hamburg, Germany
| | | | - Marco Reich
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Friedericke Kuhn
- Institute of Experimental Business Psychology, Leuphana University of Lüneburg, Lüneburg, Germany
| | | | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
21
|
Menaquinone-mediated regulation of membrane fluidity is relevant for fitness of Listeria monocytogenes. Arch Microbiol 2021; 203:3353-3360. [PMID: 33871675 PMCID: PMC8289781 DOI: 10.1007/s00203-021-02322-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen with the ability to grow at low temperatures down to − 0.4 °C. Maintaining cytoplasmic membrane fluidity by changing the lipid membrane composition is important during growth at low temperatures. In Listeria monocytogenes, the dominant adaptation effect is the fluidization of the membrane by shortening of fatty acid chain length. In some strains, however, an additional response is the increase in menaquinone content during growth at low temperatures. The increase of this neutral lipid leads to fluidization of the membrane and thus represents a mechanism that is complementary to the fatty acid-mediated modification of membrane fluidity. This study demonstrated that the reduction of menaquinone content for Listeria monocytogenes strains resulted in significantly lower resistance to temperature stress and lower growth rates compared to unaffected control cultures after growth at 6 °C. Menaquinone content was reduced by supplementation with aromatic amino acids, which led to a feedback inhibition of the menaquinone synthesis. Menaquinone-reduced Listeria monocytogenes strains showed reduced bacterial cell fitness. This confirmed the adaptive function of menaquinones for growth at low temperatures of this pathogen.
Collapse
|
22
|
Raes EJ, Karsh K, Sow SLS, Ostrowski M, Brown MV, van de Kamp J, Franco-Santos RM, Bodrossy L, Waite AM. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat Commun 2021; 12:2213. [PMID: 33850115 PMCID: PMC8044245 DOI: 10.1038/s41467-021-22409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.
Collapse
Affiliation(s)
- Eric J Raes
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia.
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada.
| | | | - Swan L S Sow
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Den Burg, The Netherlands
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Rita M Franco-Santos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | - Anya M Waite
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem 2021; 401:213-231. [PMID: 31318686 DOI: 10.1515/hsz-2019-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
24
|
Erimban S, Daschakraborty S. Cryostabilization of the Cell Membrane of a Psychrotolerant Bacteria via Homeoviscous Adaptation. J Phys Chem Lett 2020; 11:7709-7716. [PMID: 32840376 DOI: 10.1021/acs.jpclett.0c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homeoviscous adaptation (maintenance of a critical balance between the saturated and unsaturated lipids) of the cell membrane of psychrotolerant bacteria is essential to protect them against freeze-thaw cycle. But how does the homeoviscous adaptation protect the cell membrane during cold stress? In this Letter, we answer this question using a coarse-grained molecular dynamics simulation technique. On the basis of the reported fatty acid profiles of psychrotolerant bacteria at different temperatures, multiple lipid membranes are simulated at a wide range of temperatures between 250 and 300 K. We explicate how the homeoviscous adaptation minimizes the effect of cold stress on the structure and fluidity of the membrane. Partial freezing of the saturated lipid domain occurs with the self-aggregation of saturated and unsaturated lipids near the melting temperature of the unadapted lipid membrane. The gel-like phase provides necessary local packing density that can be sensed by sensor proteins responsible for the homeoviscous adaptation.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
25
|
Mindrebo JT, Misson LE, Johnson C, Noel JP, Burkart MD. Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis. Biochemistry 2020; 59:3626-3638. [PMID: 32857494 DOI: 10.1021/acs.biochem.0c00605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elongating ketosynthases (KSs) catalyze carbon-carbon bond-forming reactions during the committed step for each round of chain extension in both fatty acid synthases (FASs) and polyketide synthases (PKSs). A small α-helical acyl carrier protein (ACP) shuttles fatty acyl intermediates between enzyme active sites. To accomplish this task, the ACP relies on a series of dynamic interactions with multiple partner enzymes of FAS and associated FAS-dependent pathways. Recent structures of the Escherichia coli FAS ACP, AcpP, in covalent complexes with its two cognate elongating KSs, FabF and FabB, provide high-resolution details of these interfaces, but a systematic analysis of specific interfacial interactions responsible for stabilizing these complexes has not yet been undertaken. Here, we use site-directed mutagenesis with both in vitro and in vivo activity analyses to quantitatively evaluate these contacting surfaces between AcpP and FabF. We delineate the FabF interface into three interacting regions and demonstrate the effects of point mutants, double mutants, and region deletion variants. Results from these analyses reveal a robust and modular FabF interface capable of tolerating seemingly critical interface mutations with only the deletion of an entire region significantly compromising activity. Structure and sequence analyses of FabF orthologs from related type II FAS pathways indicate significant conservation of type II FAS KS interface residues and, overall, support its delineation into interaction regions. These findings strengthen our mechanistic understanding of molecular recognition events between ACPs and FAS enzymes and provide a blueprint for engineering ACP-dependent biosynthetic pathways.
Collapse
Affiliation(s)
- Jeffrey T Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Laetitia E Misson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Caitlin Johnson
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
26
|
A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proc Natl Acad Sci U S A 2020; 117:23557-23564. [PMID: 32883882 DOI: 10.1073/pnas.2013924117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells build fatty acids with biocatalytic assembly lines in which a subset of enzymes often exhibit overlapping activities (e.g., two enzymes catalyze one or more identical reactions). Although the discrete enzymes that make up fatty acid pathways are well characterized, the importance of catalytic overlap between them is poorly understood. We developed a detailed kinetic model of the fatty acid synthase (FAS) of Escherichia coli and paired that model with a fully reconstituted in vitro system to examine the capabilities afforded by functional redundancy in fatty acid synthesis. The model captures-and helps explain-the effects of experimental perturbations to FAS systems and provides a powerful tool for guiding experimental investigations of fatty acid assembly. Compositional analyses carried out in silico and in vitro indicate that FASs with multiple partially redundant enzymes enable tighter (i.e., more independent and/or broader range) control of distinct biochemical objectives-the total production, unsaturated fraction, and average length of fatty acids-than FASs with only a single multifunctional version of each enzyme (i.e., one enzyme with the catalytic capabilities of two partially redundant enzymes). Maximal production of unsaturated fatty acids, for example, requires a second dehydratase that is not essential for their synthesis. This work provides a kinetic, control-theoretic rationale for the inclusion of partially redundant enzymes in fatty acid pathways and supplies a valuable framework for carrying out detailed studies of FAS kinetics.
Collapse
|
27
|
Nies SC, Alter TB, Nölting S, Thiery S, Phan ANT, Drummen N, Keasling JD, Blank LM, Ebert BE. High titer methyl ketone production with tailored Pseudomonas taiwanensis VLB120. Metab Eng 2020; 62:84-94. [PMID: 32810591 DOI: 10.1016/j.ymben.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.
Collapse
Affiliation(s)
- Salome C Nies
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Tobias B Alter
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Sophia Nölting
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Susanne Thiery
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - An N T Phan
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Noud Drummen
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, 94720, USA; Virtual Institute of Microbial Stress and Survival, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Dept. of Bioengineering, University of California, Berkeley, CA, 94720, USA; Dept. of Chemical Engineering, University of California, Berkeley, CA, 94720, USA; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, DE, Germany; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
| |
Collapse
|
28
|
Liao JX, Li KH, Wang JP, Deng JR, Liu QG, Chang CQ. RNA-seq analysis provides insights into cold stress responses of Xanthomonas citri pv. citri. BMC Genomics 2019; 20:807. [PMID: 31694530 PMCID: PMC6833247 DOI: 10.1186/s12864-019-6193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Background Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. Results Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. Conclusions Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.
Collapse
Affiliation(s)
- Jin-Xing Liao
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Kai-Huai Li
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jin-Pei Wang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jia-Ru Deng
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Qiong-Guang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Chang-Qing Chang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China. .,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
29
|
Lopes C, Barbosa J, Maciel E, da Costa E, Alves E, Ricardo F, Domingues P, Mendo S, Domingues MRM. Decoding the Fatty Acid Profile of Bacillus licheniformis I89 and Its Adaptation to Different Growth Conditions to Investigate Possible Biotechnological Applications. Lipids 2019; 54:245-253. [PMID: 30957876 DOI: 10.1002/lipd.12142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023]
Abstract
Bacillus licheniformis I89 is a Gram-positive bacterium, a producer of the lantibiotic lichenicidin. No information is available on its fatty acid (FA) composition. Bacillus species are rich in branched FA (BrFA), claimed to be beneficial to human health and to treat diseases. Herein, the FA profile of B. licheniformis I89 was evaluated under different growth conditions: at two growth temperatures (37 and 50 °C) and at different growth phases (lag, exponential, and stationary), using gas chromatography-mass spectrometry. The FA profile revealed predominant BrFA of the iso-series and anteiso-series (i-15:0, ai-15:0, i-16:0, i-17:0, and ai-17:0) and low amounts of saturated FA (14:0, 16:0, and 18:0). Comparing the FA profiles at different temperatures, in the lag phase, at 50 °C, there was a decrease of ai-17:0 and a decrease of i-15:0 in the exponential phase, in comparison with 37 °C. In all growth phases, there was a decrease of ai-15:0 and an increase of i-17:0. From the lag to the stationary phase, at 50 °C, there was a decrease of ai-17:0 and i-16:0, whereas i-15:0 increased, while at 37 °C, there was an increase of i-15:0 and i-16:0, and a decrease in ai-15:0 and ai-17:0. B. licheniformis I89 can adapt its FA profile, at moderate temperatures, by changing the iso-FA and anteiso-FA composition and the iso/anteiso ratio. This nonpathogenic bacterium species can be used as a source of BrFA with putative beneficial health effects for gut protection and with reported antitumor properties, foreseeing its use for producing compounds with biotechnological applications.
Collapse
Affiliation(s)
- Celestina Lopes
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joana Barbosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete Maciel
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Eliana Alves
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernando Ricardo
- Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sónia Mendo
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário M Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
30
|
Physical states and thermodynamic properties of model gram-negative bacterial inner membranes. Chem Phys Lipids 2019; 218:57-64. [DOI: 10.1016/j.chemphyslip.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/16/2018] [Accepted: 12/05/2018] [Indexed: 01/27/2023]
|
31
|
Towijit U, Songruk N, Lindblad P, Incharoensakdi A, Jantaro S. Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhances lipid production in Synechocystis sp. PCC 6803. Sci Rep 2018; 8:13510. [PMID: 30201972 PMCID: PMC6131169 DOI: 10.1038/s41598-018-31789-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
The overexpression of native plsX and plsC genes involving in fatty acid/phospholipid synthesis first timely-reported the significantly enhanced lipid contents in Synechocystis sp. PCC 6803. Growth rate, intracellular pigment contents including chlorophyll a and carotenoids, and oxygen evolution rate of all overexpressing (OX) strains were normally similar as wild type. For fatty acid compositions, saturated fatty acid, in particular palmitic acid (16:0) was dominantly increased in OX strains whereas slight increases of unsaturated fatty acids were observed, specifically linoleic acid (18:2) and alpha-linolenic acid (18:3). The plsC/plsX-overexpressing (OX + XC) strain produced high lipid content of about 24.3%w/dcw under normal condition and was further enhanced up to 39.1%w/dcw by acetate induction. This OX + XC engineered strain was capable of decreasing phaA transcript level which related to poly-3-hydroxybutyrate (PHB) synthesis under acetate treatment. Moreover, the expression level of gene transcripts revealed that the plsX- and plsC/plsX-overexpression strains had also increased accA transcript amounts which involved in the irreversible carboxylation of acetyl-CoA to malonyl-CoA. Altogether, these overexpressing strains significantly augmented higher lipid contents when compared to wild type by partly overcoming the limitation of lipid production.
Collapse
Affiliation(s)
- Umaporn Towijit
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutchaya Songruk
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
32
|
Seoane A, Brea RJ, Fuertes A, Podolsky KA, Devaraj NK. Biomimetic Generation and Remodeling of Phospholipid Membranes by Dynamic Imine Chemistry. J Am Chem Soc 2018; 140:8388-8391. [PMID: 29886740 DOI: 10.1021/jacs.8b04557] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic liposomes have a wide array of applications in several areas, ranging from medicinal chemistry to synthetic biology. Due to their biocompatibility and biological relevance, there is particular interest in the formation of synthetic phospholipid vesicles and the development of methods to tune their properties in a controlled manner. However, while true biological membranes are capable of responding to environmental stimuli by enzymatically remodeling their composition, synthetic liposomes are typically static once formed. Herein we report the chemoselective reaction of the natural amine-containing lysosphingomyelin with a series of long-chain aldehydes to form imines. This transformation results in the formation of phospholipid liposomes that are in dynamic equilibrium with the aldehyde-amine form. The reversibility of the imine linkage is exploited in the synthesis of vesicles that are capable of responding to external stimuli such as temperature or the addition of small molecules.
Collapse
Affiliation(s)
- Andrés Seoane
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Alberto Fuertes
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
33
|
Saeloh D, Tipmanee V, Jim KK, Dekker MP, Bitter W, Voravuthikunchai SP, Wenzel M, Hamoen LW. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog 2018; 14:e1006876. [PMID: 29451901 PMCID: PMC5833292 DOI: 10.1371/journal.ppat.1006876] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/01/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
The acylphloroglucinol rhodomyrtone is a promising new antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa, a plant used in Asian traditional medicine. While many studies have demonstrated its antibacterial potential in a variety of clinical applications, very little is known about the mechanism of action of rhodomyrtone. Preceding studies have been focused on intracellular targets, but no specific intracellular protein could be confirmed as main target. Using live cell, high-resolution, and electron microscopy we demonstrate that rhodomyrtone causes large membrane invaginations with a dramatic increase in fluidity, which attract a broad range of membrane proteins. Invaginations then form intracellular vesicles, thereby trapping these proteins. Aberrant protein localization impairs several cellular functions, including the respiratory chain and the ATP synthase complex. Being uncharged and devoid of a particular amphipathic structure, rhodomyrtone did not seem to be a typical membrane-inserting molecule. In fact, molecular dynamics simulations showed that instead of inserting into the bilayer, rhodomyrtone transiently binds to phospholipid head groups and causes distortion of lipid packing, providing explanations for membrane fluidization and induction of membrane curvature. Both its transient binding mode and its ability to form protein-trapping membrane vesicles are unique, making it an attractive new antibiotic candidate with a novel mechanism of action. Bacterial antibiotic resistance constitutes a major public healthcare issue and deaths caused by antimicrobial resistance are expected to soon exceed the number of cancer-related fatalities. In order to fight resistance, new antibiotics have to be developed that are not affected by existing microbial resistance strategies. Thus, antibiotics with novel or multiple targets are urgently needed. Rhodomyrtone displays excellent antibacterial activity, has been safely used in traditional Asian medicine for a long time, and resistance against this promising antibiotic candidate could not be detected in multiple passaging experiments. Here we demonstrate that rhodomyrtone possesses a completely novel mechanism of action, which is opposed to that of existing cell envelope-targeting drugs, minimizing the risk of cross-resistance, and in fact rhodomyrtone is highly active against e.g. vancomycin-resistant Staphylococcus aureus. Thus, rhodomyrtone is an extremely interesting compound for further antibacterial drug development.
Collapse
Affiliation(s)
- Dennapa Saeloh
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Marien P. Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Supayang P. Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Michaela Wenzel
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| | - Leendert W. Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| |
Collapse
|
34
|
Raymond-Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol 2017; 19:4460-4479. [PMID: 28834033 DOI: 10.1111/1462-2920.13893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 01/22/2023]
Abstract
The eurypsychrophilic bacterium Planococcus halocryophilus is capable of growth down to -15°C, making it ideal for studying adaptations to subzero growth. To increase our understanding of the mechanisms and pathways important for subzero growth, we performed proteomics on P. halocryophilus grown at 23°C, 23°C with 12% w/v NaCl and -10°C with 12% w/v NaCl. Many proteins with increased abundances at -10°C versus 23°C also increased at 23C-salt versus 23°C, indicating a closely tied relationship between salt and cold stress adaptation. Processes which displayed the largest changes in protein abundance were peptidoglycan and fatty acid (FA) synthesis, translation processes, methylglyoxal metabolism, DNA repair and recombination, and protein and nucleotide turnover. We identified intriguing targets for further research at -10°C, including PlsX and KASII (FA metabolism), DD-transpeptidase and MurB (peptidoglycan synthesis), glyoxalase family proteins (reactive electrophile response) and ribosome modifying enzymes (translation turnover). PemK/MazF may have a crucial role in translational reprogramming under cold conditions. At -10°C P. halocryophilus induces stress responses, uses resources efficiently, and carefully controls its growth and metabolism to maximize subzero survival. The present study identifies several mechanisms involved in subzero growth and enhances our understanding of cold adaptation.
Collapse
Affiliation(s)
- Isabelle Raymond-Bouchard
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Ianina Altshuler
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Lyle G Whyte
- Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
35
|
Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. ACTA ACUST UNITED AC 2017; 44:1279-1292. [DOI: 10.1007/s10295-017-1958-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/20/2017] [Indexed: 11/25/2022]
Abstract
Abstract
Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.
Collapse
|
36
|
Singh A, Krishnan KP, Prabaharan D, Sinha RK. Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol 2017; 57:770-780. [DOI: 10.1002/jobm.201700182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Archana Singh
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Kottekattu P. Krishnan
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| | - Dharmar Prabaharan
- National Facility for Marine Cyanobacteria; Bharathidasan University; Tiruchirappalli Tamil Nadu India
| | - Rupesh K. Sinha
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| |
Collapse
|
37
|
Evidence for Amino Acid Snorkeling from a High-Resolution, In Vivo Analysis of Fis1 Tail-Anchor Insertion at the Mitochondrial Outer Membrane. Genetics 2016; 205:691-705. [PMID: 28007883 PMCID: PMC5289845 DOI: 10.1534/genetics.116.196428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023] Open
Abstract
Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiaeFis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus. Prompted by our global analysis, we subsequently analyzed the ability of individual Fis1p TA mutants to localize to mitochondria. Our findings suggest that the membrane-associated domain of the Fis1p TA may be bipartite in nature, and we encountered evidence that the positively charged patch at the carboxyl terminus of Fis1p is required for both membrane insertion and organelle specificity. Furthermore, lengthening or shortening of the Fis1p TA by up to three amino acids did not inhibit mitochondrial targeting, arguing against a model in which TA length directs insertion of TAs to distinct organelles. Most importantly, positively charged residues were more acceptable at several positions within the membrane-associated domain of the Fis1p TA than negatively charged residues. These findings, emerging from the first high-resolution analysis of an organelle targeting sequence by deep mutational scanning, provide strong, in vivo evidence that lysine and arginine can “snorkel,” or become stably incorporated within a lipid bilayer by placing terminal charges of their side chains at the membrane interface.
Collapse
|
38
|
Li H, Gänzle M. Some Like It Hot: Heat Resistance of Escherichia coli in Food. Front Microbiol 2016; 7:1763. [PMID: 27857712 PMCID: PMC5093140 DOI: 10.3389/fmicb.2016.01763] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
Heat treatment and cooking are common interventions for reducing the numbers of vegetative cells and eliminating pathogenic microorganisms in food. Current cooking method requires the internal temperature of beef patties to reach 71°C. However, some pathogenic Escherichia coli such as the beef isolate E. coli AW 1.7 are extremely heat resistant, questioning its inactivation by current heat interventions in beef processing. To optimize the conditions of heat treatment for effective decontaminations of pathogenic E. coli strains, sufficient estimations, and explanations are necessary on mechanisms of heat resistance of target strains. The heat resistance of E. coli depends on the variability of strains and properties of food formulations including salt and water activity. Heat induces alterations of E. coli cells including membrane, cytoplasm, ribosome and DNA, particularly on proteins including protein misfolding and aggregations. Resistant systems of E. coli act against these alterations, mainly through gene regulations of heat response including EvgA, heat shock proteins, σE and σS, to re-fold of misfolded proteins, and achieve antagonism to heat stress. Heat resistance can also be increased by expression of key proteins of membrane and stabilization of membrane fluidity. In addition to the contributions of the outer membrane porin NmpC and overcome of osmotic stress from compatible solutes, the new identified genomic island locus of heat resistant performs a critical role to these highly heat resistant strains. This review aims to provide an overview of current knowledge on heat resistance of E. coli, to better understand its related mechanisms and explore more effective applications of heat interventions in food industry.
Collapse
Affiliation(s)
- Hui Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
- College of Bioengineering and Food Science, Hubei University of TechnologyHubei, China
| |
Collapse
|
39
|
Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A 2016; 113:E7077-E7086. [PMID: 27791134 DOI: 10.1073/pnas.1611173113] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Daptomycin is a highly efficient last-resort antibiotic that targets the bacterial cell membrane. Despite its clinical importance, the exact mechanism by which daptomycin kills bacteria is not fully understood. Different experiments have led to different models, including (i) blockage of cell wall synthesis, (ii) membrane pore formation, and (iii) the generation of altered membrane curvature leading to aberrant recruitment of proteins. To determine which model is correct, we carried out a comprehensive mode-of-action study using the model organism Bacillus subtilis and different assays, including proteomics, ionomics, and fluorescence light microscopy. We found that daptomycin causes a gradual decrease in membrane potential but does not form discrete membrane pores. Although we found no evidence for altered membrane curvature, we confirmed that daptomycin inhibits cell wall synthesis. Interestingly, using different fluorescent lipid probes, we showed that binding of daptomycin led to a drastic rearrangement of fluid lipid domains, affecting overall membrane fluidity. Importantly, these changes resulted in the rapid detachment of the membrane-associated lipid II synthase MurG and the phospholipid synthase PlsX. Both proteins preferentially colocalize with fluid membrane microdomains. Delocalization of these proteins presumably is a key reason why daptomycin blocks cell wall synthesis. Finally, clustering of fluid lipids by daptomycin likely causes hydrophobic mismatches between fluid and more rigid membrane areas. This mismatch can facilitate proton leakage and may explain the gradual membrane depolarization observed with daptomycin. Targeting of fluid lipid domains has not been described before for antibiotics and adds another dimension to our understanding of membrane-active antibiotics.
Collapse
|
40
|
Fast-tumbling bicelles constructed from native Escherichia coli lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2097-2105. [DOI: 10.1016/j.bbamem.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022]
|
41
|
Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep 2015; 5:14446. [PMID: 26403200 PMCID: PMC4585886 DOI: 10.1038/srep14446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.
Collapse
Affiliation(s)
- Zengxin Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhen Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Guzhen Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| |
Collapse
|
42
|
Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli. J Mol Graph Model 2015; 61:214-23. [PMID: 26292066 DOI: 10.1016/j.jmgm.2015.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/01/2015] [Accepted: 07/18/2015] [Indexed: 12/14/2022]
Abstract
Escherichia coli is one of the most frequent causes of many common bacterial infections, including cholecystitis, bacteremia, cholangitis, urinary tract infection (UTI), traveler's diarrhea and other clinical infections such as neonatal meningitis and pneumonia. The fatty acid biosynthesis is essential for the bacterial viability and growth. There are three types of β-ketoacyl acyl carrier protein synthase (KAS) which are important for overcoming the bacterial resistance problem. β-ketoacyl acyl carrier protein synthase I (KAS I) is member of the condensing enzyme family, which is a key catalyst in bacterial fatty acid biosynthesis, and thus an attractive target for novel antibioticsis related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. In this report, we performed docking study of E. coli (KAS I) and 50 flavonoids. Out of these 50 flavonoids, there are two compounds, genistein and isorhamnetin, that showed the superior binding energy while fully satisfying the conditions of drug likeliness. The predicted binding energy of genistein and isorhamnetin toward KAS I are -135.76kcal/mol and -132.42kcal/mol, respectively. These energies favorably compare to the biding energy of known drugs thiolactomicin and cerulenin that are -90.26kcal/mol and -99.64kcal/mol, respectively. The method used was docking with the selected E. coli (KAS I-PDB ID-1FJ4) using iGemdock. This was also found to obey the Lipinski's guidelines of five and to show the drug likeliness and bioavailability.
Collapse
|
43
|
Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study. Chem Phys Lipids 2015; 195:12-20. [PMID: 26187855 DOI: 10.1016/j.chemphyslip.2015.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Trans unsaturated lipids are uncommon in nature. In the human diet, they occur as natural products of ruminal bacteria or from industrial food processing like hydrogenation of vegetable oils. Consumption of trans unsaturated lipids has been shown to have a negative influence on human health; in particular, the risk of cardiovascular disease is higher when the amount of trans unsaturated lipids in the diet is elevated. In this study, we first performed quantum mechanical calculations to specifically and accurately parameterize cis and trans mono-unsaturated lipids and subsequently validated the newly derived parameter set. Then, we carried out molecular dynamics (MD) simulations of lipid bilayers composed of cis or trans unsaturated lipids with and without cholesterol. Our results show that trans mono-unsaturated chains are more flexible than cis mono-unsaturated chains due to lower barriers for rotation around the single bonds next to the trans double bond than those next to the cis double bond. In effect, interactions between cholesterol and trans unsaturated chains are stronger than cis unsaturated chains, which results in a higher ordering effect of cholesterol in trans unsaturated bilayers.
Collapse
|
44
|
Affiliation(s)
- Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000-Rosario, Argentina;
| |
Collapse
|
45
|
Crosstalk between DnaA protein, the initiator of Escherichia coli chromosomal replication, and acidic phospholipids present in bacterial membranes. Int J Mol Sci 2013; 14:8517-37. [PMID: 23595001 PMCID: PMC3645759 DOI: 10.3390/ijms14048517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 11/16/2022] Open
Abstract
Anionic (i.e., acidic) phospholipids such as phosphotidylglycerol (PG) and cardiolipin (CL), participate in several cellular functions. Here we review intriguing in vitro and in vivo evidence that suggest emergent roles for acidic phospholipids in regulating DnaA protein-mediated initiation of Escherichia coli chromosomal replication. In vitro acidic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA to replicatively proficient ATP-DnaA, yet both PG and CL also can inhibit the DNA-binding activity of DnaA protein. We discuss how cellular acidic phospholipids may positively and negatively influence the initiation activity of DnaA protein to help assure chromosomal replication occurs once, but only once, per cell-cycle. Fluorescence microscopy has revealed that PG and CL exist in domains located at the cell poles and mid-cell, and several studies link membrane curvature with sub-cellular localization of various integral and peripheral membrane proteins. E. coli DnaA itself is found at the cell membrane and forms helical structures along the longitudinal axis of the cell. We propose that there is cross-talk between acidic phospholipids in the bacterial membrane and DnaA protein as a means to help control the spatial and temporal regulation of chromosomal replication in bacteria.
Collapse
|
46
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
47
|
Balamurugan S, Dugan MER. Growth temperature associated protein expression and membrane fatty acid composition profiles of Salmonella enterica serovar Typhimurium. J Basic Microbiol 2011; 50:507-18. [PMID: 20806250 DOI: 10.1002/jobm.201000037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Total cellular proteins and fatty acid composition profiles of mid-log phase cells of Salmonella enterica serovar Typhimurium grown at 8, 25, 37 or 42 °C were separated by 2D-PAGE and FAME analysis. Growth temperature associated protein expression can be grouped into 3 thermal classes which include proteins whose expression is: I) optimal at 37 °C, meaning their expression peaked at 37 °C; II) up-regulated with an increase in growth temperature; III) down-regulated with increase in growth temperature; meaning their expression peaked at 8 °C. At higher growth temperatures, proteins belonging to the functional groups of amino acid transport and metabolism, nucleotide metabolism, energy metabolism and post-translation modifications (chaperones) are present in substantially higher amounts. This increase in abundance is regulated in a temperature dependent manner. It is important to point out that proteins involved in energy metabolism observed in higher amounts at higher growth temperatures all belong to the glycolysis pathway, while at 8 °C they belonged to the TCA cycle. Increase in growth temperatures results in a decrease in membrane fatty acid unsaturation and an increase in saturated and cyclic fatty acids. These results provide an insight into the dynamic molecular and physiological responses of Salmonella Typhimurium during growth at different temperatures.
Collapse
|
48
|
Solute transport proteins and the outer membrane protein NmpC contribute to heat resistance of Escherichia coli AW1.7. Appl Environ Microbiol 2011; 77:2961-7. [PMID: 21398480 DOI: 10.1128/aem.01930-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to elucidate determinants of heat resistance in Escherichia coli by comparing the composition of membrane lipids, as well as gene expression, in heat-resistant E. coli AW1.7 and heat-sensitive E. coli GGG10 with or without heat shock. The survival of E. coli AW1.7 at late exponential phase was 100-fold higher than that of E. coli GGG10 after incubation at 60°C for 15 min. The cytoplasmic membrane of E. coli AW1.7 contained a higher proportion of saturated and cyclopropane fatty acids than that of E. coli GGG10. Microarray hybridization of cDNA libraries obtained from exponentially growing or heat-shocked cultures was performed to compare gene expression in these two strains. Expression of selected genes from different functional groups was quantified by quantitative PCR. DnaK and 30S and 50S ribosomal subunits were overexpressed in E. coli GGG10 relative to E. coli AW1.7 upon heat shock at 50°C, indicating improved ribosome stability. The outer membrane porin NmpC and several transport proteins were overexpressed in exponentially growing E. coli AW1.7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of membrane properties confirmed that NmpC is present in the outer membrane of E. coli AW1.7 but not in that of E. coli GGG10. Expression of NmpC in E. coli GGG10 increased survival at 60°C 50- to 1,000-fold. In conclusion, the outer membrane porin NmpC contributes to heat resistance in E. coli AW1.7, but the heat resistance of this strain is dependent on additional factors, which likely include the composition of membrane lipids, as well as solute transport proteins.
Collapse
|
49
|
|
50
|
Chao J, Wolfaardt GM, Arts MT. Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures. Can J Microbiol 2010; 56:1028-39. [DOI: 10.1139/w10-093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with ≥16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.
Collapse
Affiliation(s)
- Jerry Chao
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Gideon M. Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Michael T. Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| |
Collapse
|