1
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Yokosawa T, Wakasugi K. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP. Int J Mol Sci 2023; 24:15453. [PMID: 37895133 PMCID: PMC10607379 DOI: 10.3390/ijms242015453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Kanaji S, Chen W, Morodomi Y, Shapiro R, Kanaji T, Yang XL. Mechanistic perspectives on anti-aminoacyl-tRNA synthetase syndrome. Trends Biochem Sci 2023; 48:288-302. [PMID: 36280495 PMCID: PMC9974581 DOI: 10.1016/j.tibs.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/18/2023]
Abstract
Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Biros E, Malabu UH, Vangaveti VN, Birosova E, Moran CS. The IFN-γ-mini/TrpRS signaling axis: an insight into the pathophysiology of osteoporosis and therapeutic potential. Cytokine Growth Factor Rev 2022; 64:7-11. [DOI: 10.1016/j.cytogfr.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
5
|
Ahn YH, Oh SC, Zhou S, Kim TD. Tryptophanyl-tRNA Synthetase as a Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22094523. [PMID: 33926067 PMCID: PMC8123658 DOI: 10.3390/ijms22094523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.
Collapse
Affiliation(s)
- Young Ha Ahn
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China;
- Correspondence: (S.Z.); (T.-D.K.)
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (S.Z.); (T.-D.K.)
| |
Collapse
|
6
|
Mini-TrpRS is essential for IFNγ-induced monocyte-derived giant cell formation. Cytokine 2021; 142:155486. [PMID: 33721618 DOI: 10.1016/j.cyto.2021.155486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.
Collapse
|
7
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
8
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
9
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Jin M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp Mol Med 2019; 51:1-10. [PMID: 30613102 PMCID: PMC6321835 DOI: 10.1038/s12276-018-0196-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tryptophanyl tRNA synthetase (WRS) is an essential enzyme as it catalyzes the ligation of tryptophan to its cognate tRNA during translation. Interestingly, mammalian WRS has evolved to acquire domains or motifs for novel functions beyond protein synthesis; WRS can also further expand its functions via alternative splicing and proteolytic cleavage. WRS is localized not only to the nucleus but also to the extracellular space, playing a key role in innate immunity, angiogenesis, and IFN-γ signaling. In addition, the expression of WRS varies significantly in different tissues and pathological states, implying that it plays unique roles in physiological homeostasis and immune defense. This review addresses the current knowledge regarding the evolution, structural features, and context-dependent functions of WRS, particularly focusing on its roles in immune regulation. Targeting tryptophanyl tRNA synthetase (WRS), an evolutionarily conserved enzyme involved in protein synthesis, could be an effective strategy for modulating the immune system. In addition to helping translate mRNA into amino acid sequences in cytoplasm, human WRS can be secreted and activate immune responses against invading pathogens. Mirim Jin at Gachon University, Incheon, South Korea, reviews recent studies on the structure, expression pattern and functions of WRS other than protein synthesis. High levels of WRS protein have been found in patients with sepsis and autoimmune diseases suggesting that inhibiting WRS could be a potential therapeutic approach for treating these conditions. Further research into WRS will shed light not only on how it regulates the immune system, but also on how it exerts other reported effects on blood vessel formation and cell migration.
Collapse
Affiliation(s)
- Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Korea. .,Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Korea.
| |
Collapse
|
11
|
Miyanokoshi M, Yokosawa T, Wakasugi K. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J Biol Chem 2018; 293:8428-8438. [PMID: 29666190 DOI: 10.1074/jbc.ra117.001247] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Wakasugi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci Rep 2016; 6:24750. [PMID: 27094087 PMCID: PMC4837363 DOI: 10.1038/srep24750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity.
Collapse
|
13
|
Al-Gubory K, Arianmanesh M, Garrel C, Fowler P. The conceptus regulates tryptophanyl-tRNA synthetase and superoxide dismutase 2 in the sheep caruncular endometrium during early pregnancy. Int J Biochem Cell Biol 2015; 60:112-8. [DOI: 10.1016/j.biocel.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
14
|
Al-Gubory KH, Arianmanesh M, Garrel C, Bhattacharya S, Cash P, Fowler PA. Proteomic analysis of the sheep caruncular and intercaruncular endometrium reveals changes in functional proteins crucial for the establishment of pregnancy. Reproduction 2014; 147:599-614. [DOI: 10.1530/rep-13-0600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The expression and regulation of endometrial proteins are crucial for conceptus implantation and development. However, little is known about site-specific proteome profiles of the mammalian endometrium during the peri-implantation period. We utilised a two-dimensional gel electrophoresis/mass spectrometry-based proteomics approach to compare and identify differentially expressed proteins in sheep endometrium. Caruncular and intercaruncular endometrium were collected on days 12 (C12) and 16 (C16) of the oestrous cycle and at three stages of pregnancy corresponding to conceptus pre-attachment (P12), implantation (P16) and post-implantation (P20). Abundance and localisation changes in differentially expressed proteins were determined by western blot and immunohistochemistry. In caruncular endometrium, 45 protein spots (5% of total spots) altered between day 12 of pregnancy (P12) and P16 while 85 protein spots (10% of total spots) were differentially expressed between P16 and C16. In intercaruncular endometrium, 31 protein spots (2% of total spots) were different between P12 and P16 while 44 protein spots (4% of total spots) showed differential expression between C12 and C16. The pattern of protein changes between caruncle and intercaruncle sites was markedly different. Among the protein spots with implantation-related changes in volume, 11 proteins in the caruncular endometrium and six proteins in the intercaruncular endometrium, with different functions such as protein synthesis and degradation, antioxidant defence, cell structural integrity, adhesion and signal transduction, were identified. Our findings highlight the different but important roles of the caruncular and intercaruncular proteins during early pregnancy.
Collapse
|
15
|
Miyanokoshi M, Tanaka T, Tamai M, Tagawa YI, Wakasugi K. Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells. Sci Rep 2013; 3:3477. [PMID: 24327169 PMCID: PMC3858792 DOI: 10.1038/srep03477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022] Open
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) catalyzes the aminoacylation of tRNATrp. mRNA of a rodent-specific alternative splice variant of TrpRS (SV-TrpRS), which results in the inclusion of an additional hexapeptide at the C-terminus of full-length TrpRS (FL-TrpRS), has been identified in murine embryonic stem (ES) cells. In the present study, we evaluated the expression of mouse TrpRS mRNA by real-time reverse transcription PCR. We show that SV-TrpRS and FL-TrpRS mRNAs are highly expressed in murine ES cells, embryo, spleen, lung, liver and uterus, and that the relative expression of SV-TrpRS compared to FL-TrpRS is significantly less in the brain. Moreover, we found that interferon-γ increases the expression of TrpRS in a mouse cell line. These results provide the first evidence for tissue-specific expression and alternative splicing of mouse TrpRS.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
16
|
Wu X, Wang S, Yu Y, Zhang J, Sun Z, Yan Y, Zhou J. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus. Proteomics 2013; 13:3309-26. [PMID: 24115376 DOI: 10.1002/pmic.201300180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022]
Abstract
Cross-species transmissions of swine influenza viruses (SIVs) raise great public health concerns. In this study, subcellular proteomic profiles of human A549 cells inoculated with H3N2 subtype SIV were used to characterize dynamic cellular responses to infection. By 2DE and MS, 27 differentially expressed (13 upregulated, 14 downregulated) cytoplasmic proteins and 20 differentially expressed (13 upregulated, 7 downregulated) nuclear proteins were identified. Gene ontology analysis suggested that these differentially expressed proteins were mainly involved in cell death, stress response, lipid metabolism, cell signaling, and RNA PTMs. Moreover, 25 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between mock- and virus-infected A549 cells. Western blot analysis confirmed that changes in abundance of identified cellular proteins heterogeneous nuclear ribonucleoprotein (hnRNP) U, hnRNP C, ALDH1A1, tryptophanyl-tRNA synthetase, IFI35, and HSPB1 in H3N2 SIV-infected cells were consistent with results of 2DE analysis. By confocal microscopy, nucleus-to-cytoplasm translocation of hnRNP C and colocalization between the viral nonstructural protein 1 and hnRNP C as well as N-myc (and STAT) interactor were observed upon infection. Ingenuity Pathway Analysis revealed that cellular proteins altered during infection were grouped mainly into NFκB and interferon signaling networks. Collectively, these identified subcellular constituents provide an important framework for understanding host/SIV interactions and underlying mechanisms of SIV cross-species infection and pathogenesis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, de Pouplana LR, Yogavel M, Sharma A. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One 2013; 8:e66224. [PMID: 23776638 PMCID: PMC3680381 DOI: 10.1371/journal.pone.0066224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankur Garg
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arvind Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Testoni B, Völlenkle C, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M. Chromatin dynamics of gene activation and repression in response to interferon alpha (IFN(alpha)) reveal new roles for phosphorylated and unphosphorylated forms of the transcription factor STAT2. J Biol Chem 2011; 286:20217-27. [PMID: 21498520 PMCID: PMC3121502 DOI: 10.1074/jbc.m111.231068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 2 (STAT2), the critical component of type I interferons signaling, is a prototype latent cytoplasmic signal-dependent transcription factor. Activated tyrosine-phosphorylated STAT2 associates with STAT1 and IRF9 to bind the ISRE elements in the promoters of a subset of IFN-inducible genes (ISGs). In addition to activate hundreds of ISGs, IFNα also represses numerous target genes but the mechanistic basis for this dual effect and transcriptional repression is largely unknown. We investigated by ChIP-chip the binding dynamics of STAT2 and "active" phospho(P)-STAT2 on 113 putative IFNα direct target promoters before and after IFNα induction in Huh7 cells and primary human hepatocytes (PHH). STAT2 is already bound to 62% of our target promoters, including most "classical" ISGs, before IFNα treatment. 31% of STAT2 basally bound promoters also show P-STAT2 positivity. By correlating in vivo promoter occupancy with gene expression and changes in histone methylation marks we found that: 1) STAT2 plays a role in regulating ISGs expression, independently from its phosphorylation; 2) P-STAT2 is involved in ISGs repression; 3) "activated" ISGs are marked by H3K4me1 and H3K4me3 before IFNα; 4) "repressed" genes are marked by H3K27me3 and histone methylation plays a dominant role in driving IFNα-mediated ISGs repression.
Collapse
Affiliation(s)
- Barbara Testoni
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
| | - Christine Völlenkle
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
| | - Francesca Guerrieri
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the LEA INSERM U785 and Sapienza University, 00161 Rome, Italy
| | | | - Giovanni Blandino
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
- the Regina Elena Cancer Institute, Translational Oncogenomic Unit, 00144 Rome, Italy, and
| | - Massimo Levrero
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
- the LEA INSERM U785 and Sapienza University, 00161 Rome, Italy
- the DMISM, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
19
|
Wakasugi K. An Exposed Cysteine Residue of Human Angiostatic Mini Tryptophanyl-tRNA Synthetase. Biochemistry 2010; 49:3156-60. [DOI: 10.1021/bi1000239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, and PRESTO, Japan Science and Technology (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
20
|
Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. Int J Parasitol 2010; 40:417-29. [DOI: 10.1016/j.ijpara.2009.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 02/07/2023]
|
21
|
Hayes SL, Lye DJ, McKinstry CA, Vesper SJ. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract. Can J Microbiol 2010; 56:27-31. [PMID: 20130691 DOI: 10.1139/w09-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 h after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (gamma-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-alpha) transcripts. Aeromonas caviae has always been considered an opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests that an A. caviae strain can colonize the murine intestinal tract and cause what has been described by others as a dysregulatory cytokine response. This response could explain why a number of diarrheal waterborne disease cases have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.
Collapse
Affiliation(s)
- Samuel L Hayes
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Water Supply/Water Resources Division, 26 W. Martin Luther King Dr, MS-387, Cincinnati, OH 45268, USA.
| | | | | | | |
Collapse
|
22
|
Wakasugi K. Species-specific differences in the regulation of the aminoacylation activity of mammalian tryptophanyl-tRNA synthetases. FEBS Lett 2010; 584:229-32. [PMID: 19941862 DOI: 10.1016/j.febslet.2009.11.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/19/2009] [Indexed: 11/30/2022]
Abstract
Tryptophanyl-tRNA synthetases (TrpRSs) catalyze the aminoacylation of tRNA(Trp). Previously, I demonstrated that Zn(2+)-depleted human TrpRS is enzymatically inactive and that binding of Zn(2+) or heme to human TrpRS stimulates its aminoacylation activity. In the present study, bovine and mouse TrpRSs were found to be constitutively active regardless of the presence of Zn(2+) or ferriprotoporphyrin IX chloride. Mutagenesis experiments demonstrated that the human H130R mutant is constitutively active and that the bovine R135H, E438A double mutant binds with Zn(2+) or heme to enhance its aminoacylation activity as does human wild-type TrpRS. These results provide the first evidence of species-specific regulation of TrpRS activity.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
The life in science. Mol Biol 2008. [DOI: 10.1134/s0026893308050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Wakasugi K. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity. Biochemistry 2007; 46:11291-8. [PMID: 17877375 DOI: 10.1021/bi7012068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian tryptophanyl-tRNA synthetases (TrpRSs) are Zn2+-binding proteins that catalyze the aminoacylation of tRNATrp. The cellular expression level of human TrpRS is highly upregulated by interferon-gamma (IFN-gamma). In this study, a heme biosynthesis inhibitor, succinylacetone (SA), was found to inhibit cellular TrpRS activity in IFN-gamma-activated cells without affecting TrpRS protein expression. In addition, supplementation of lysates from the SA-treated cells with hemin fully restored TrpRS activity to control levels. Biochemical analyses using purified TrpRS demonstrated that heme can interact strongly with Zn2+-depleted human full-length TrpRS with a stoichiometric heme:protein ratio of 1:1 to enhance the aminoacylation activity significantly. In contrast, the Zn2+-bound form of TrpRS did not bind heme. Further studies using site-directed mutagenesis clarified that the Zn2+-unbound human H130R mutant cannot bind heme. These results provide the first evidence of the involvement of heme in regulation of TrpRS aminoacylation activity. The regulation mechanism and its physiological roles are discussed.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
25
|
Bogdanov AA, Karpov VL. RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary). BIOCHEMISTRY (MOSCOW) 2006; 71:915-24. [PMID: 16978156 DOI: 10.1134/s0006297906080141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review highlights studies by Lev L. Kisselev and his colleagues on the initial and terminal stages of protein biosynthesis, which cover the period of the last 45 years (1961-2006). They investigated spatial structure of tRNAs, structure and functions of aminoacyl-tRNA-synthetases of higher organisms, and the final step of protein synthesis, termination of translation. L. Kisselev and his team have made three major contributions to these fields of molecular biology; (i) they proposed the hypothesis on the role of anticodon triplet of tRNA in recognition by cognate aminoacyl-tRNA synthetase, which has been experimentally confirmed and is now included in textbooks; (ii) identified primary structures and functions of two eukaryotic protein factors (eRF1 and eRF3) playing a pivotal role in translation termination; (iii) characterized a structural basis for stop codon recognition by eRF1 within the ribosome and discovered the negative structural elements of eRF1, limiting its recognition of one or two stop-codons.
Collapse
Affiliation(s)
- A A Bogdanov
- Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
26
|
Wakasugi K, Nakano T, Morishima I. Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Biochemistry 2005; 44:225-32. [PMID: 15628863 DOI: 10.1021/bi048313k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) exists in two forms in human cells, i.e., a major form which represents the full-length protein and a truncated form (mini TrpRS) in which an NH(2)-terminal extension is deleted because of alternative splicing of its pre-mRNA. Mini TrpRS can act as an angiostatic factor, while full-length TrpRS is inactive. We herein show that an oxidized form of human glyceraldehyde-3-phosphate dehydrogenase (GapDH) interacts with both full-length and mini TrpRSs and specifically stimulates the aminoacylation potential of mini, but not full-length, TrpRS. In contrast, reduced GapDH did not bind to TrpRSs and did not influence their aminoacylation activity. Mutagenesis experiments clarified that the NH(2)-terminal Rossmann fold region of GapDH is crucial for its interaction with mini TrpRS as well as tRNA and for the regulation of its aminoacylation potential and suggested that monomeric GapDH can bind to mini TrpRS and stimulate its aminoacylation activity. These results suggest that the angiostatic human mini, but not the full-length, TrpRS may play an important role in the intracellular regulation of protein synthesis under conditions of oxidative stress.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
27
|
Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 2004; 11:149-56. [PMID: 14730354 DOI: 10.1038/nsmb722] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 12/15/2003] [Indexed: 11/08/2022]
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2003; 75:163-89. [PMID: 14525967 DOI: 10.1189/jlb.0603252] [Citation(s) in RCA: 2940] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
29
|
Kron M, Petridis M, Milev Y, Leykam J, Härtlein M. Expression, localization and alternative function of cytoplasmic asparaginyl-tRNA synthetase in Brugia malayi. Mol Biochem Parasitol 2003; 129:33-9. [PMID: 12798504 DOI: 10.1016/s0166-6851(03)00080-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases (AARS) are a family of enzymes that exhibit primary and various secondary functions in different species. In Brugia malayi, the gene for asparaginyl-tRNA synthetase (AsnRS), a class II AARS, previously has been identified as a multicopy gene encoding an immunodominant antigen in the serum of humans with lymphatic filariasis. However, the relative level of expression and alternative functions of AARS in nematode parasites is not well understood. We searched the Filarial Genome Project database to identify the number and amino acid specificity of B. malayi AARS cDNAs to gain insight into the role of different AARS in filaria. These data showed that cytoplasmic AsnRS was present in five gene clusters, and is the most frequently represented member of the aminoacyl-tRNA synthetase family in adult B. malayi. The relative level of AsnRS transcribed in adult female B. malayi was compared to the levels of a low abundance and medium abundance AARS by quantitative real-time RT-PCR. By this method, AsnRS cDNA was 11 times greater than arginyl-tRNA synthetase and methionyl-tRNA synthetase cDNA. In situ hybridization using a B. malayi AsnRS-specific oligonucleotide probe identified abundant cytoplasmic mRNA, particularly in the hypodermis of adult B. malayi. In the absence of tRNA, AsnRS synthesizes diadenosine triphosphate, a potent regulator of cell growth in other eukaryotes. These data support the hypothesis that all AARS are not equally expressed in B. malayi and that these enzymes may demonstrate important alternative functions in filaria.
Collapse
Affiliation(s)
- Michael Kron
- Department of Medicine, Michigan State University, B323 Life Science Building, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
30
|
Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A 2002; 99:173-7. [PMID: 11773626 PMCID: PMC117534 DOI: 10.1073/pnas.012602099] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the first step of protein synthesis. It was shown recently that human tyrosyl-tRNA synthetase (TyrRS) can be split into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. Tryptophanyl-tRNA synthetase (TrpRS) is a close homologue of TyrRS. A natural fragment, herein designated as mini TrpRS, was shown by others to be produced by alternative splicing. Production of this fragment is reported to be stimulated by IFN-gamma, a cytokine that also stimulates production of angiostatic factors. Mini TrpRS is shown here to be angiostatic in a mammalian cell culture system, the chicken embryo, and two independent angiogenesis assays in the mouse. The full-length enzyme is inactive in the same assays. Thus, protein synthesis may be linked to the regulation of angiogenesis by a natural fragment of TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Kim JE, Kim KH, Lee SW, Seol W, Shiba K, Kim S. An elongation factor-associating domain is inserted into human cysteinyl-tRNA synthetase by alternative splicing. Nucleic Acids Res 2000; 28:2866-72. [PMID: 10908348 PMCID: PMC102683 DOI: 10.1093/nar/28.15.2866] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The amino acid sequence of human cytoplasmic cysteinyl-tRNA synthetase (CRS) was examined by analyzing sequences of genomic and expressed sequence tag fragments. From theses analyses, a few interesting possibilities were suggested for the structure of human CRS. First, different isoforms of CRS may result from alternative splicing. Second, the largest one would comprise 831 amino acids. Third, a new exon was identified encoding an 83 amino acid domain that is homologous to parts of elongation factor-1 subunits as well as other proteins involved in protein synthesis. Northern blot analysis showed three different mRNAs for CRS (of approximately 3.0, 2.7 and 2.0 kb) from human testis while only the 2.7 kb mRNA was commonly detected in other tissues. Expression of the exon 2-containing transcript in testis was confirmed by RT-PCR and northern blotting. CRS containing the exon 2-encoded peptide retained catalytic activity comparable to that lacking this peptide. This peptide was responsible for the specific interaction of CRS with elongation factor-1gamma.
Collapse
Affiliation(s)
- J E Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, 300 Chunchun-Dong, Changan-Ku, Suwon-Si, Kyunggi-Do 440-746, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 2000; 275:16820-6. [PMID: 10828066 DOI: 10.1074/jbc.275.22.16820] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone encoding the human mitochondrial tryptophanyl-tRNA synthetase (h(mt)TrpRS) has been identified. The deduced amino acid sequence shows high homology to both the mitochondrial tryptophanyl-tRNA synthetase ((mt)TrpRS) from Saccharomyces cerevisiae and to different eubacterial forms of tryptophanyl-tRNA synthetase (TrpRS). Using the baculovirus expression system, we have expressed and purified the protein with a carboxyl-terminal histidine tag. The purified His-tagged h(mt)TrpRS catalyzes Trp-dependent exchange of PP(i) in the PP(i)-ATP exchange assay. Expression of h(mt)TrpRS in both human and insect cells leads to high levels of h(mt)TrpRS localizing to the mitochondria, and in insect cells the first 18 amino acids constitute the mitochondrial localization signal sequence. Until now the human cytoplasmic tryptophanyl-tRNA synthetase (hTrpRS) was thought to function as the h(mt)TrpRS, possibly in the form of a splice variant. However, no mitochondrial localization signal sequence was ever detected and the present identification of a different (mt)TrpRS almost certainly rules out that possibility. The h(mt)TrpRS shows kinetic properties similar to human mitochondrial phenylalanyl-tRNA synthetase (h(mt)PheRS), and h(mt)TrpRS is not induced by interferon-gamma as is hTrpRS.
Collapse
Affiliation(s)
- R Jorgensen
- Department of Molecular and Structural Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
34
|
Ko YG, Kang YS, Kim EK, Park SG, Kim S. Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J Cell Biol 2000; 149:567-74. [PMID: 10791971 PMCID: PMC2174846 DOI: 10.1083/jcb.149.3.567] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human aminoacyl-tRNA synthetases (ARSs) are normally located in cytoplasm and are involved in protein synthesis. In the present work, we found that human methionyl-tRNA synthetase (MRS) was translocated to nucleolus in proliferative cells, but disappeared in quiescent cells. The nucleolar localization of MRS was triggered by various growth factors such as insulin, PDGF, and EGF. The presence of MRS in nucleoli depended on the integrity of RNA and the activity of RNA polymerase I in the nucleolus. The ribosomal RNA synthesis was specifically decreased by the treatment of anti-MRS antibody as determined by nuclear run-on assay and immunostaining with anti-Br antibody after incorporating Br-UTP into nascent RNA. Thus, human MRS plays a role in the biogenesis of rRNA in nucleoli, while it is catalytically involved in protein synthesis in cytoplasm.
Collapse
Affiliation(s)
- Young-Gyu Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Young-Sun Kang
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Eun-Kyoung Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| | - Sunghoon Kim
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Jangangu, Suwon, Kyunggido 440-746, Korea
| |
Collapse
|
35
|
Abstract
The Drosophila salivary gland is proving to be an excellent experimental system for understanding how cells commit to specific developmental programs and, once committed, how cells implement such decisions. Through genetic studies, the factors that determine where salivary glands will form, the number of cells committed to a salivary gland fate, and the distinction between the two major cell types (secretory cells and duct cells) have been discovered. Within the next few years, we will learn the molecular details of the interactions among the salivary gland regulators and salivary gland target genes. We will also learn how the early-expressed salivary gland genes coordinate their activities to mediate the morphogenetic movements required to form the salivary gland and the changes in cell physiology required for high secretory activity.
Collapse
Affiliation(s)
- D J Andrew
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA.
| | | | | |
Collapse
|
36
|
Abstract
The exact physiological function of Ap3A (A5'ppp5"A, 5'5" diadenosine triphosphate) remains unclear. Previously we have demonstrated that the human p46 2-5A synthetase (OAS1) efficiently utilises Ap3A as an acceptor substrate for oligoadenylate synthesis. Here we show that Ap3A(2'p5'A)n oligonucleotides can activate the 2-5A-dependent RNase (RNase L), when the number of 2',5'-linked adenyl residues is two or more. Under the experimental conditions applied the half-maximal activation (AC50) of RNase L for 2'-adenylated Ap3A derivatives was determined to be in nanomolar range while the AC50 for 2-5A3 was 0.4 nM. The Ap3A(2'p5'A)n oligonucleotides are thus less effective in activating RNase L than 2-5A. We also investigated the occurrence of 2'-adenylated Ap3A in interferon and poly(I).poly(C)-treated HeLa cells. In purified trichloroacetic acid-soluble extracts about 40% of RNase L-activating material is resistant to phosphatase treatment, whereas the removal of 5'-terminal phosphates greatly reduces the activating properties of 2-5A. We assume that this activity at least partly may be associated with the presence of 2'-adenylated ApnA derivatives with blocked 5'-terminal phosphates.
Collapse
Affiliation(s)
- K Turpaev
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | |
Collapse
|
37
|
Seshaiah P, Andrew DJ. WRS-85D: A tryptophanyl-tRNA synthetase expressed to high levels in the developing Drosophila salivary gland. Mol Biol Cell 1999; 10:1595-608. [PMID: 10233165 PMCID: PMC25347 DOI: 10.1091/mbc.10.5.1595] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1998] [Accepted: 02/08/1999] [Indexed: 11/11/2022] Open
Abstract
In a screen for genes expressed in the Drosophila embryonic salivary gland, we identified a tryptophanyl-tRNA synthetase gene that maps to cytological position 85D (WRS-85D). WRS-85D expression is dependent on the homeotic gene Sex combs reduced (Scr). In the absence of Scr function, WRS-85D expression is lost in the salivary gland primordia; conversely, ectopic expression of Scr results in expression of WRS-85D in new locations. Despite the fact that WRS-85D is a housekeeping gene essential for protein synthesis, we detected both WRS-85D mRNA and protein at elevated levels in the developing salivary gland. WRS-85D is required for embryonic survival; embryos lacking the maternal contribution were unrecoverable, whereas larvae lacking the zygotic component died during the third instar larval stage. We showed that recombinant WRS-85D protein specifically charges tRNATrp, and WRS-85D is likely to be the only tryptophanyl-tRNA synthetase gene in Drosophila. We characterized the expression patterns of all 20 aminoacyl-tRNA synthetases and found that of the four aminoacyl-tRNA synthetase genes expressed at elevated levels in the salivary gland primordia, WRS-85D is expressed at the highest level throughout embryogenesis. We also discuss the potential noncanonical activities of tryptophanyl-tRNA synthetase in immune response and regulation of cell growth.
Collapse
Affiliation(s)
- P Seshaiah
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
38
|
Shaw AC, Røssel Larsen M, Roepstorff P, Justesen J, Christiansen G, Birkelund S. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 1999; 20:984-93. [PMID: 10344276 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<984::aid-elps984>3.0.co;2-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon gamma (IFN-gamma) is a potent immunomodulatory lymphokine, secreted by activated T-lymphocytes and NK-cells during the cellular immune response. Actions of IFN-gamma are mediated through binding to the IFN-gamma-receptor, present on most cells, and the subsequent activation of a great magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system. A semiconfluent layer of HeLa cells was grown on tissue culture plates, and changes in protein expression due to 100 U/mL IFN-gamma were investigated at different periods after treatment, using pulse labeling with [35S]methionine/cysteine in combination with 2-D PAGE (IPG). The identity of eight protein spots was elucidated by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), and several variants of the IFN-gamma-inducible tryptophanyl-tRNA synthetase (hWRS) were detected by immunoblotting.
Collapse
Affiliation(s)
- A C Shaw
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
39
|
Kisselev LL, Justesen J, Wolfson AD, Frolova LY. Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett 1998; 427:157-63. [PMID: 9607303 DOI: 10.1016/s0014-5793(98)00420-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diadenosine oligophosphates (Ap(n)A) were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). Now, more than 30 years later, about 300 papers have been published around these substances in attempt to decipher their role in cells. Recently, Ap(n)A have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of Ap(n)A levels (n from 2 to 6) and Ap3A/Ap4A ratio. Cell differentiation and apoptosis have substantial and opposite effects on Ap3A/Ap4A ratio in cultured cells. A human Ap3A hydrolase, Fhit, appeared to be involved in protection of cells against tumourigenesis. Ap3A is synthesised by mammalian u synthetase (TrpRS) which in contrast to most other aaRS is unable to synthesise Ap4A and is an interferon-inducible protein. Moreover, Ap3A appeared to be a preferred substrate for 2-5A synthetase, also interferon-inducible, priming the synthesis of 2' adenylated derivatives of Ap3A, which in turn may serve as substrates of Fhit. Tumour suppressor activity of Fhit is assumed to be associated with involvement of the Fhit.Ap3A complex in cytokine signalling pathway(s) controlling cell proliferation. The Ap(n)A family is potentially a novel class of signal-transducing molecules whose functions are yet to be determined.
Collapse
|
40
|
Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L. Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 1997; 415:160-2. [PMID: 9350987 DOI: 10.1016/s0014-5793(97)01086-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The biological role of diadenosine oligophosphates (DAOP) remains obscure in spite of numerous attempts to solve this enigma. It is known that Ap3A contrary to Ap4A accumulates in human cultured cells treated with interferons (IFNs) alpha or gamma. Since IFNs are considered as antiproliferative regulators, we assumed that different cell status may be associated with varying intracellular levels of DAOP. Promyelocytic human cell line HL60 induced by phorbol ester (TPA) to differentiate to macrophage-like cells in culture exhibits a profound loss of proliferative potential. Here we have shown a 4-5-fold increase in Ap3A concentration in HL60 cells induced by TPA, similar to the effect of IFN, while the Ap4A concentration remained unchanged. On the contrary, in cells undergoing apoptosis induced by VP16, a topoisomerase II inhibitor, the Ap3A concentration considerably decreased, while the Ap4A concentration increased. These findings combined with earlier results suggest an involvement of the Ap3A/Ap4A ratio in signal transduction pathways controlling the cell status.
Collapse
Affiliation(s)
- A Vartanian
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
41
|
Turpaev K, Hartmann R, Kisselev L, Justesen J. Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. FEBS Lett 1997; 408:177-81. [PMID: 9187362 DOI: 10.1016/s0014-5793(97)00365-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biological role of Ap3A synthesized in cells by tryptophanyl-tRNA synthetase (WRS) is unknown. Previously we have demonstrated that the cellular level of Ap3A significantly increases after interferon treatment. Here we show that the human 46 kDa 2-5A synthetase efficiently utilizes Ap3A as a primer for oligoadenylate synthesis. The Km for Ap3A is several-fold lower than for Ap4A and 100-fold lower than for ATP. This implies that Ap3A might be a natural primer for the 2'-adenylation reaction catalysed by 2-5A synthetase. Since WRS and 2-5A synthetase are both interferon-inducible proteins, a new link between two interferon-dependent enzymes is established.
Collapse
Affiliation(s)
- K Turpaev
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
42
|
Abstract
Interferons are cytokines that play a complex and central role in the resistance of mammalian hosts to pathogens. Type I interferon (IFN-alpha and IFN-beta) is secreted by virus-infected cells. Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells. Although originally defined as an agent with direct antiviral activity, the properties of IFN-gamma include regulation of several aspects of the immune response, stimulation of bactericidal activity of phagocytes, stimulation of antigen presentation through class I and class II major histocompatibility complex (MHC) molecules, orchestration of leukocyte-endothelium interactions, effects on cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes whose functional significance remains obscure. The implementation of such a variety of effects by a single cytokine is achieved by complex patterns of cell-specific gene regulation: Several IFN-gamma-regulated genes are themselves components of transcription factors. The IFN-gamma response is itself regulated by interaction with responses to other cytokines including IFN-alpha/beta, TNF-alpha, and IL-4. Over 200 genes are now known to be regulated by IFN-gamma and they are listed in a World Wide Web document that accompanies this review. However, much of the cellular response to IFN-gamma can be described in terms of a set of integrated molecular programs underlying well-defined physiological systems, for example the induction of efficient antigen processing for MHC-mediated antigen presentation, which play clearly defined roles in pathogen resistance. A promising approach to the complexity of the IFN-gamma response is to extend the analysis of the less understood IFN-gamma-regulated genes in terms of molecular programs functional in pathogen resistance.
Collapse
Affiliation(s)
- U Boehm
- Institute for Genetics, University of Cologne, Köln, Germany.
| | | | | | | |
Collapse
|
43
|
Kolmer M, Pelto-Huikko M, Parvinen M, Höög C, Alho H. The transcriptional and translational control of diazepam binding inhibitor expression in rat male germ-line cells. DNA Cell Biol 1997; 16:59-72. [PMID: 9022045 DOI: 10.1089/dna.1997.16.59] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The diazepam binding inhibitor [DBI, also known as acyl-CoA-binding protein, (ACBP), or endozepine] is a 10-kD protein that has been suggested to be involved in the regulation of several biological processes such as acyl-CoA metabolism, steroidogenesis, insulin secretion, and gamma-aminobutyric acid type A (GABA(A))/benzodiazepine receptor modulation. DBI has been cloned from vertebrates, insects, plants, and yeasts. In mammals, DBI is expressed in almost all the tissues studied. Nevertheless, DBI expression is restricted to specific cell types. Here we have studied DBI gene expression in the germ-line cells of rat testis. The DBI gene was intensively transcribed in postmeiotic round spermatids from stages VI to VIII of the seminiferous epithelial cycle. A prominent, spermatid-specific upstream transcription initiation site was identified in addition to the multiple common transcriptional initiation sites found in the somatic tissues. However, no DBI protein was detected in round spermatids, suggesting that the DBI transcripts were translationally arrested. The DBI protein was detected in the late spermatogenic stages starting from elongating spermatids from step 18 (stage VI) onward. The DBI protein was also detected in mature spermatozoa and in ejaculated human sperms. The majority of DBI was located at the middle piece of the spermatozoons tail enriched with mitochondria. On the basis of this observation and the well-established role of DBI in acyl-CoA metabolism, we propose that DBI expression in spermatozoa reflects the usage of fatty acids as a primary energy source by spermatozoa. The biological function of DBI in spermatozoa could thus be related to the motility function of sperm.
Collapse
Affiliation(s)
- M Kolmer
- University of Tampere, Medical School, Finland
| | | | | | | | | |
Collapse
|
44
|
Blechynden LM, Lawson CM, Garlepp MJ. Sequence and polymorphism analysis of the murine gene encoding histidyl-tRNA synthetase. Gene X 1996; 178:151-6. [PMID: 8921907 DOI: 10.1016/0378-1119(96)00358-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The murine histidyl-tRNA synthetase-encoding gene (MMHRS) coding region has been cloned and sequenced. The 1527-bp transcript shows a strikingly similar structural organization to that of its human counterpart, particularly within the three class II aminoacyl-tRNA synthetase structural motifs and the two histidyl-tRNA synthetase signature regions. It is predicted, as in humans, to have a coiled-coil alpha-helical structure that is characteristic of many autoantigens. MMHRS shows some degree of polymorphism at both the DNA and amino-acid levels, although its sequence is well conserved amongst the commonly used laboratory mouse strains.
Collapse
Affiliation(s)
- L M Blechynden
- Australian Neuromuscular Research Institute, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | | | | |
Collapse
|
45
|
Turpaev KT, Zakhariev VM, Sokolova IV, Narovlyansky AN, Amchenkova AM, Justesen J, Frolova LY. Alternative processing of the tryptophanyl-tRNA synthetase mRNA from interferon-treated human cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:732-7. [PMID: 8856077 DOI: 10.1111/j.1432-1033.1996.0732h.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have analysed the structure of mRNA isoforms of the human gene encoding tryptophanyl-tRNA synthetase (Trp-tRNA synthetase) expressed in the epithelial CaOv cells and MT-4 lymphocytes. The Trp-tRNA synthetase gene is induced by interferon-gamma in both lines and, in MT-4 lymphocytes, also by interferon-alpha. Four Trp-tRNA synthetase mRNA isoforms have different combinations of the first exons IA, IB and II. Two transcription initiation sites (P1 and P2) were detected 90 bp from each other. Processing of the primary transcript initiated from the P1 start site generates the mRNA isoform where exon IA joins to exon II. The other three isoforms are produced by alternative splicing of the primary transcript produced from the P2 start site. Isoform 2 has a 3'-end fragment of exon IA joined to exon II. Isoform 3 contains exons IA and IB. Isoform 4 contains exon IA and exon III and lacks exon II encoding the N-terminus of the Trp-tRNA synthetase. Therefore, the two primary transcripts of the Trp-tRNA synthetase gene differ only in the 5' flank sequence between P1 and P2, and this fragment regulates their processing. Both interferon-alpha and interferon-gamma induce exon IA-containing and exon IB-containing isoforms of the Trp-tRNA synthetase mRNA.
Collapse
Affiliation(s)
- K T Turpaev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
46
|
Vartanian A, Narovlyansky A, Amchenkova A, Turpaev K, Kisselev L. Interferons induce accumulation of diadenosine triphosphate (Ap3A) in human cultured cells. FEBS Lett 1996; 381:32-4. [PMID: 8641433 DOI: 10.1016/0014-5793(96)00073-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After incubation of human monocytes J96 and human myeloid leukemia HL60 cells with interferons (IFN) alpha or gamma, the Ap3A concentration considerably increases in parallel with accumulation of tryptophanyl-tRNA synthetase (TrpRS, EC 6.1.1.2). The Ap3A formation in response to IFNs is catalysed by an excessive amount of TrpRS. Although the Ap3A function still remains unknown, its accumulation may imply the Ap3A involvement in the IFN-signalling pathway.
Collapse
Affiliation(s)
- A Vartanian
- Engelhardt Institute of Molecular Biology, Russian Academy Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
47
|
Tolstrup AB, Bejder A, Fleckner J, Justesen J. Transcriptional regulation of the interferon-gamma-inducible tryptophanyl-tRNA synthetase includes alternative splicing. J Biol Chem 1995; 270:397-403. [PMID: 7814400 DOI: 10.1074/jbc.270.1.397] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have investigated the transcriptional control elements of the human interferon (IFN)-gamma-induced tryptophanyl-tRNA synthetase (hWRS) gene and characterized the transcripts. Transcription leads to a series of mRNAs with different combinations of the first exons. The full-length mRNA codes for a 55-kDa protein (hWRS), but a mRNA lacking exon II is present in almost as high amounts as the full-length transcript. This alternatively spliced mRNA is probably translated into a 48-kDa protein starting from Met48 in exon III. The predicted 48-kDa protein corresponds exactly to an IFN-gamma-inducible protein previously detected by two-dimensional gel electrophoresis. By isolation of genomic clones and construction of plasmids containing hWRS promoter fragments fused to the secreted alkaline phosphatase reporter gene we have mapped a promoter region essential for IFN-mediated gene activation. This region contains IFN-stimulated response elements (ISRE) as well as a Y-box and a gamma-activated sequence (GAS) element. IFN-gamma inducibility of hWRS depends on ongoing protein synthesis, suggesting that so far undescribed transcription factors apart from the latent GAS-binding protein p91 contribute to gene activation. This could be interferon-regulatory factor-1, which binds ISRE elements.
Collapse
Affiliation(s)
- A B Tolstrup
- Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
48
|
A novel interferon-alpha-regulated, DNA-binding protein participates in the regulation of the IFP53/tryptophanyl-tRNA synthetase gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37235-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Abstract
Aminoacyl-tRNA synthetases of higher organisms are far less studied compared to their prokaryotic and unicellular eukaryotic counterparts. However, many aminoacyl-tRNA synthetases from multi-cellular organisms exhibit certain features not yet described for the same enzymes of bacteria or yeast. Tryptophanyl-tRNA synthetases (TrpRS) are among the most thoroughly studied mammalian enzymes of this group. TrpRS are Zn(2+)-dependent, dimeric, class I aminoacyl-tRNA synthetases with known amino acid sequence for four different mammalian orders. TrpRS is not associated in a stable multi-synthetase complex, although it exhibits a long N-terminal extension absent from bacterial TrpRS. The human gene encoding TrpRS belongs to the interferon-responsive gene family and TrpRS activity drastically increases after interferon gamma induction. For unknown reasons TrpRS is overproduced in pancreas of Ruminantia. Other data on TrpRS available so far are summarized and briefly discussed here.
Collapse
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|