1
|
Zuberbuehler MK, Parker ME, Wheaton JD, Espinosa JR, Salzler HR, Park E, Ciofani M. The transcription factor c-Maf is essential for the commitment of IL-17-producing γδ T cells. Nat Immunol 2018; 20:73-85. [PMID: 30538336 PMCID: PMC6294311 DOI: 10.1038/s41590-018-0274-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
Abstract
γδ T cells that produce the cytokine IL-17 (Tγδ17 cells) are innate-like mediators of immunity that undergo effector programming in the thymus. While regulators of Tγδ17 specialization restricted to various Vγ subsets are known, a commitment factor essential to all Tγδ17 cells has remained undefined. In this study, we identified c-Maf as a universal regulator for Tγδ17 cell differentiation and maintenance. Maf deficiency caused an absolute lineage block at the immature CD24+CD45RBlo γδ thymocyte stage, which revealed a critical checkpoint in the acquisition of effector functions. Here, c-Maf enforced Tγδ17 cell identity by promoting chromatin accessibility and expression of key type 17 program genes, notably Rorc and Blk, while antagonizing the transcription factor TCF1, which promotes IFN-γ-producing γδ T cells (Tγδ1 cells). Furthermore, γδ T cell antigen receptor (γδTCR) signal strength tuned c-Maf expression, which indicates that c-Maf is a core node connecting γδTCR signals to Tγδ17 cell transcriptional programming.
Collapse
Affiliation(s)
| | - Morgan E Parker
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Joshua D Wheaton
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jaclyn R Espinosa
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Harmony R Salzler
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Eunchong Park
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Tamehiro N, Oda H, Shirai M, Suzuki H. Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint. PLoS One 2015; 10:e0131047. [PMID: 26114424 PMCID: PMC4482576 DOI: 10.1371/journal.pone.0131047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
RhoH, an atypical small Rho-family GTPase, critically regulates thymocyte differentiation through the coordinated interaction with Lck and Zap70. Therefore, RhoH deficiency causes defective T cell development, leading to a paucity of mature T cells. Since there has been no gain-of-function study on RhoH before, we decided to take a transgenic approach to assess how the overexpression of RhoH affects the development of T cells. Although RhoH transgenic (RhoHtg) mice expressed three times more RhoH protein than wild-type mice, β-selection, positive, and negative selection in the thymus from RhoHtg mice were unaltered. However, transgenic introduction of RhoH into Rag2 deficient mice resulted in the generation of CD4+CD8+ (DP) thymocytes, indicating that overexpression of RhoH could bypass β-selection without TCRβ gene rearrangement. This was confirmed by the in vitro development of DP cells from Rag2-/-RhoHtg DN3 cells on TSt-4/Dll-1 stroma in an Lck dependent manner. Collectively, our results indicate that an excess amount of RhoH is able to initiate pre-TCR signaling in the absence of pre-TCR complexes.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Mutsunori Shirai
- Department of Microbiology, Yamaguchi University School of Medicine, Ube, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
- * E-mail:
| |
Collapse
|
3
|
ShcA regulates thymocyte proliferation through specific transcription factors and a c-Abl-dependent signaling axis. Mol Cell Biol 2015; 35:1462-76. [PMID: 25691660 DOI: 10.1128/mcb.01084-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling via the pre-T-cell receptor (pre-TCR), along with associated signals from Notch and chemokine receptors, regulates the β-selection checkpoint that operates on CD4(-) CD8(-) doubly negative (DN) thymocytes. Since many hematopoietic malignancies arise at the immature developmental stages of lymphocytes, understanding the signal integration and how specific signaling molecules and distal transcription factors regulate cellular outcomes is of importance. Here, a series of molecular and genetic approaches revealed that the ShcA adapter protein critically influences proliferation and differentiation during β-selection. We found that ShcA functions downstream of the pre-TCR and p56(Lck) and show that ShcA is important for extracellular signal-regulated kinase (ERK)-dependent upregulation of transcription factors early growth factor 1 (Egr1) and Egr3 in immature thymocytes and, in turn, of the expression and function of the Id3 and E2A helix-loop-helix (HLH) proteins. ShcA also contributes to pre-TCR-mediated induction of c-Myc and additional cell cycle regulators. Moreover, using an unbiased Saccharomyces cerevisiae (yeast) screen, we identified c-Abl as a binding partner of phosphorylated ShcA and demonstrated the relevance of the ShcA-c-Abl interaction in immature thymocytes. Collectively, these data identify multiple modes by which ShcA can fine-tune the development of early thymocytes, including a previously unappreciated ShcA-c-Abl axis that regulates thymocyte proliferation.
Collapse
|
4
|
Buckley MW, Trampont PC, Arandjelovic S, Fond AM, Juncadella IJ, Ravichandran KS. ShcA regulates late stages of T cell development and peripheral CD4+ T cell numbers. THE JOURNAL OF IMMUNOLOGY 2015; 194:1665-76. [PMID: 25595778 DOI: 10.4049/jimmunol.1401728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development in the thymus is a highly regulated process that critically depends upon productive signaling via the preTCR at the β-selection stage, as well as via the TCR for selection from the CD4(+)CD8(+) double-positive stage to the CD4 or CD8 single-positive stage. ShcA is an adapter protein expressed in thymocytes, and it is required for productive signaling through the preTCR, with impaired signaling via ShcA leading to a developmental block at the β-selection checkpoint. However, the role of ShcA in subsequent stages of T cell development has not been addressed. In this study, we generated transgenic mice (CD4-Cre/ShcFFF mice) that specifically express a phosphorylation-defective dominant-negative ShcA mutant (ShcFFF) in late T cell development. Thymocytes in CD4-Cre/ShcFFF mice progressed normally through the β-selection checkpoint, but displayed a significant reduction in the numbers of single-positive CD4(+) and CD8(+) thymocytes. Furthermore, CD4-Cre/ShcFFF mice, when bred with transgenic TCR mouse strains, had impaired signaling through the transgenic TCRs. Consistent with defective progression to the single-positive stage, CD4-Cre/ShcFFF mice also had significant peripheral lymphopenia. Moreover, these CD4-Cre/ShcFFF mice develop attenuated disease in CD4(+) T cell-dependent experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Collectively, these data identify an important role for the adapter protein ShcA in later stages of thymic T cell development and in peripheral T cell-dependent events.
Collapse
Affiliation(s)
- Monica W Buckley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Paul C Trampont
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Sanja Arandjelovic
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Aaron M Fond
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Ignacio J Juncadella
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
5
|
Ohsugi T. A transgenic mouse model of human T cell leukemia virus type 1-associated diseases. Front Microbiol 2013; 4:49. [PMID: 23483782 PMCID: PMC3592262 DOI: 10.3389/fmicb.2013.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/21/2013] [Indexed: 01/10/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia/lymphoma (ATLL) and several inflammatory diseases. Tax, the protein encoded by HTLV-1, may be responsible for the development of the diseases caused by this virus. To investigate the pathogenic role of Tax, several transgenic mouse strains expressing Tax have been developed in recent years. These mice develop various tumors including large granular lymphocytic leukemia, as well as inflammatory diseases such as arthritis. These results suggest that Tax expression alone is sufficient to cause both malignant neoplastic diseases and inflammatory diseases. However, until recently, there were no tax transgenic mice that develop T cell leukemia and lymphoma resembling ATLL. The first successful induction of leukemia in T cells was pre-T cell leukemia generated in transgenic mice in which a mouse lymphocyte-specific protein tyrosine kinase p56lck (lck)-proximal promoter was used to express the tax gene in immature T cells. Subsequently, transgenic mice were established in which the lck-distal promoter was used to express Tax in mature T cells; these mice developed mature T cell leukemia and lymphoma that more closely resembled ATLL than did earlier mouse models.
Collapse
Affiliation(s)
- Takeo Ohsugi
- Division of Microbiology and Genetics, Institute of Resource Development and Analysis, Kumamoto University Kumamoto, Japan
| |
Collapse
|
6
|
Boucherma R, Kridane-Miledi H, Langa Vives F, Vauchy C, Borg C, Kleinclauss F, Fiette L, Tiberghien P, Lemonnier FA, Rohrlich PS, Huetz F. Loss of central and peripheral CD8+T-cell tolerance to HFE in mouse models of human familial hemochromatosis. Eur J Immunol 2012; 42:851-62. [DOI: 10.1002/eji.201141664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hédia Kridane-Miledi
- Unité d’Immunité Cellulaire Antivirale; Département d’Immunologie; Institut Pasteur; Paris; France
| | - Francina Langa Vives
- Centre d’Ingénierie Génétique Murine; Département de Biologie du Développement; Institut Pasteur; Paris; France
| | - Charline Vauchy
- Inserm UMR 645 -IFR133; Université de Franche-Comté; EFS BFC; Besançon; France
| | | | | | - Laurence Fiette
- Unité d’Histopathologie Humaine et Modèles Animaux; Département Infection et Epidémiologie; Institut Pasteur; Paris; France
| | - Pierre Tiberghien
- Inserm UMR 645 -IFR133; Université de Franche-Comté; EFS BFC; Besançon; France
| | - François A. Lemonnier
- Unité d’Immunité Cellulaire Antivirale; Département d’Immunologie; Institut Pasteur; Paris; France
| | | | - François Huetz
- Unité d’Immunité Cellulaire Antivirale; Département d’Immunologie; Institut Pasteur; Paris; France
| |
Collapse
|
7
|
Hathcock KS, Farrington L, Ivanova I, Livak F, Selimyan R, Sen R, Williams J, Tai X, Hodes RJ. The requirement for pre-TCR during thymic differentiation enforces a developmental pause that is essential for V-DJβ rearrangement. PLoS One 2011; 6:e20639. [PMID: 21673984 PMCID: PMC3108609 DOI: 10.1371/journal.pone.0020639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/06/2011] [Indexed: 01/26/2023] Open
Abstract
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.
Collapse
MESH Headings
- Animals
- B7-2 Antigen/genetics
- B7-2 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Histones/chemistry
- Histones/metabolism
- Lysine
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Methylation
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Karen S Hathcock
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Merck E, Lees RK, Voyle RB, Held W, MacDonald HR. Ly49D-mediated ITAM signaling in immature thymocytes impairs development by bypassing the pre-TCR checkpoint. THE JOURNAL OF IMMUNOLOGY 2011; 187:110-7. [PMID: 21632721 DOI: 10.4049/jimmunol.1002755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.
Collapse
Affiliation(s)
- Estelle Merck
- Ludwig Center for Cancer Research, University of Lausanne, CH-1066 Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H. αβ versus γδ fate choice: counting the T-cell lineages at the branch point. Immunol Rev 2011; 238:169-81. [PMID: 20969592 DOI: 10.1111/j.1600-065x.2010.00947.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both αβ and γδ T cells develop in the thymus from a common progenitor. Historically distinguished by their T-cell receptor (TCR), these lineages are now defined on the basis of distinct molecular programs. Intriguingly, in many transgenic and knockout systems these programs are mismatched with the TCR type, leading to the development of γδ lineage cells driven by αβTCR and vice versa. These puzzling observations were recently explained by the demonstration that TCR signal strength, rather than TCR type per se, instructs lineage fate, with stronger TCR signal favoring γδ and weaker signal favoring αβ lineage fates. These studies also highlighted the ERK (extracellular signal regulated kinase)-Egr (early growth response)-Id3 (inhibitor of differentiation 3) axis as a potential molecular switch downstream of TCR that determines lineage choice. Indeed, removal of Id3 was sufficient to redirect TCRγδ transgenic cells to the αβ lineage, even in the presence of strong TCR signal. However, in TCR non-transgenic Id3 knockout mice the overall number of γδ lineage cells was increased due to an outgrowth of a Vγ1Vδ6.3 subset, suggesting that not all γδ T cells depend on this molecular switch for lineage commitment. Thus, the γδ lineage may in fact be a collection of two or more lineages not sharing a common molecular program and thus equipollent to the αβ lineage. TCR signaling is not the only factor that is required for development of αβ and γδ lineage cells; other pathways, such as signaling from Notch and CXCR4 receptors, cooperate with the TCR in this process.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Laboratory of Lymphocyte Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
10
|
Fasseu M, Aplan PD, Chopin M, Boissel N, Bories JC, Soulier J, von Boehmer H, Sigaux F, Regnault A. p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. Blood 2007; 110:2610-9. [PMID: 17507663 PMCID: PMC1988920 DOI: 10.1182/blood-2007-01-066209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inactivation of the CDKN2 genes that encode the p16(INK4A) and p14(ARF) proteins occurs in the majority of human T-cell acute lymphoblastic leukemias (T-ALLs). Ectopic expression of TAL1 and LMO1 genes is linked to the development of T-ALL in humans. In TAL1xLMO1 mice, leukemia develops in 100% of mice at 5 months. To identify the molecular events crucial to leukemic transformation, we produced several mouse models. We report here that expression of P16(INK4A) in developing TAL1xLMO1 thymocytes blocks leukemogenesis in the majority of the mice, and the leukemias that eventually develop show P16(INK4A) loss of expression. Events related to the T-cell receptor beta selection process are thought to be important for leukemic transformation. We show here that the absence of the pTalpha chain only slightly delays the appearance of TAL1xLMO1-induced T-ALL, which indicates a minor role of the pTalpha chain. We also show that the CD3epsilon-mediated signal transduction pathway is essential for this transformation process, since the TAL1xLMO1xCD3epsilon-deficient mice do not develop T-ALL for up to 1 year.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Differentiation
- Cell Lineage
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin D3
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- LIM Domain Proteins
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Survival Rate
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Magali Fasseu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U462, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miosge L, Zamoyska R. Signalling in T-cell development: is it all location, location, location? Curr Opin Immunol 2007; 19:194-9. [PMID: 17306519 DOI: 10.1016/j.coi.2007.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 02/02/2007] [Indexed: 12/31/2022]
Abstract
During thymocyte development, signals through the pre-T-cell receptor induce proliferation and differentiation at early stages of maturation; thereafter, signals through the alphabeta T-cell receptor complex mediate positive and negative selection and commitment to the CD4 or CD8 lineage. How these signals are initiated, the transduction pathways involved, and ultimately how gene transcription is regulated are current active areas of research. Recent literature highlights the importance of geography to thymocyte differentiation: first, in relation to the ability of the developing thymocyte to traffic to localities within the thymus in which particular selection events occur and which are crucial for successful T-cell maturation; and, second, in respect to the subcellular localisation of intracellular signalling molecules, which might provide the key to understanding how similar signals can be translated into dramatically distinct fates, such as positive selection, lineage commitment and negative selection.
Collapse
Affiliation(s)
- Lisa Miosge
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, London NW71AA, United Kingdom
| | | |
Collapse
|
12
|
Ohi H, Mishima Y, Kamimura K, Maruyama M, Sasai K, Kominami R. Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after gamma-irradiation. Oncogene 2007; 26:5280-9. [PMID: 17325664 DOI: 10.1038/sj.onc.1210325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whole-body gamma-irradiation to mice causes thymic atrophy where a population of precancerous cells with mutation can be found. Thus, clonal growth and DNA changes at Bcl11b, Ikaros, Pten, Notch1 and Myc were examined in not only thymic lymphomas but also in atrophic thymuses at various times after irradiation. Clonal expansion was detected from the distinct patterns of rearrangements at the TCRbeta receptor locus in a fraction of atrophic thymuses at as early as 30 days after irradiation. This expansion may be in part owing to the rearranged TCRbeta signaling because the transfer of bone marrow cells with the rearrangement and the wild-type locus into severe-combined immunodeficiency mice showed preferential growth of the rearranged thymocytes in atrophic thymus. Loss of heterozygosity (LOH) at Bcl11b and trisomy of Myc were found at high frequencies in both lymphomas and atrophic thymuses, and in contrast, LOH at Ikaros and Pten were rare in atrophic thymuses but prevalent in lymphomas. Notch1 activation was detected in lymphomas and in atrophic thymuses only at a late stage. Similar patterns of DNA changes were found in atrophic thymuses induced in Bcl11b(+/-) mice. These results suggest the order of genetic changes during lymphomagenesis, Bcl11b and Myc being at the early stage; whereas Ikaros, Pten and Notch1 at the late stage.
Collapse
Affiliation(s)
- H Ohi
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Jackson AM, Krangel MS. A role for MAPK in feedback inhibition of Tcrb recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:6824-30. [PMID: 16709842 DOI: 10.4049/jimmunol.176.11.6824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tcrb locus is subject to a host of regulatory mechanisms that impart a strict cell and developmental stage-specific order to variable (V), diversity (D), and joining (J) gene segment recombination. The Tcrb locus is also regulated by allelic exclusion mechanisms, which restrict functional rearrangements to a single allele. The production of a functional rearrangement in CD4-CD8- double-negative (DN) thymocytes leads to the assembly of a pre-TCR and initiates signaling cascades that allow for DN to CD4+CD8+ double-positive (DP) differentiation, proliferation, and feedback inhibition of further Vbeta to DJbeta rearrangement. Feedback inhibition is believed to be controlled, in part, by the loss of Vbeta gene segment accessibility during the DN to DP transition. However, the pre-TCR signaling pathways that lead to the inactivation of Vbeta chromatin have not been determined. Because activation of the MAPK pathway is documented to promote DP differentiation in the absence of allelic exclusion, we characterized the properties of Vbeta chromatin within DP thymocytes generated by a constitutively active Raf1 (Raf-CAAX) transgene. Consistent with previous reports, we show that the Raf-CAAX transgene does not inhibit Tcrb recombination in DN thymocytes. Nevertheless, DP thymocytes generated by Raf-CAAX signals display normal down-regulation of Vbeta segment accessibility and normal feedback inhibition of the Vbeta to DJbeta rearrangement. Therefore, our results emphasize the distinct requirements for feedback inhibition in the DN and DP compartments. Although MAPK activation cannot impose feedback in DN thymocytes, it contributes to feedback inhibition through developmental changes that are tightly linked to DN to DP differentiation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Alleles
- Animals
- Chromatin/chemistry
- Chromatin/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Feedback, Physiological/genetics
- Feedback, Physiological/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Protein Prenylation
- Proto-Oncogene Proteins c-raf/genetics
- Proto-Oncogene Proteins c-raf/physiology
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Annette M Jackson
- Department of Immunology, Duke University Medical Center, Durham NC 27710, USA
| | | |
Collapse
|
14
|
Owens BM, Hawley TS, Spain LM, Kerkel KA, Hawley RG. TLX1/HOX11-mediated disruption of primary thymocyte differentiation prior to the CD4+CD8+ double-positive stage. Br J Haematol 2006; 132:216-29. [PMID: 16398656 PMCID: PMC2431114 DOI: 10.1111/j.1365-2141.2005.05850.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The TLX1/HOX11 homeobox gene is frequently activated in T-cell acute lymphoblastic leukaemia (T-ALL) by the t(10;14)(q24;q11) and t(7;10)(q35;q24) chromosomal translocations or by as yet unknown transcriptional mechanisms in the absence of 10q24 cytogenetic abnormalities. Almost all TLX1(+) T-ALLs exhibit a CD4(+)CD8(+) double-positive (DP) phenotype. To investigate the role of TLX1 as an initiating oncogene in T-ALL pathogenesis, we assessed the consequences of retroviral vector-directed TLX1 expression during the differentiation of murine and human thymocytes in fetal thymic organ cultures. Interestingly, enforced expression of TLX1 disrupted the differentiation of murine fetal liver precursors and human cord blood CD34(+) stem/progenitor cells prior to the DP thymocyte stage. Although differentiation arrest was associated with an increased percentage of apoptotic thymocytes, it could only be partially bypassed by coexpression of transgenic BCL2. Mutation of the invariant asparagine residue at position 51 of the homeodomain - which is required for efficient DNA binding - released the block, consistent with the notion that TLX1 inhibits thymocyte differentiation and promotes T-cell oncogenesis by functioning as a transcription factor. The relevance of these findings is discussed in the context of activating NOTCH1 mutations and the other genetic lesions implicated in the multistep transformation process of TLX1(+) T-ALL.
Collapse
Affiliation(s)
- Bronwyn M. Owens
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| | - Teresa S. Hawley
- Flow Cytometry Core Facility, The George Washington University Medical Center, Washington DC
| | - Lisa M. Spain
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristi A. Kerkel
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| | - Robert G. Hawley
- Graduate Program in Molecular and Cellular Oncology, Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington DC
| |
Collapse
|
15
|
Canté-Barrett K, Gallo EM, Winslow MM, Crabtree GR. Thymocyte Negative Selection Is Mediated by Protein Kinase C- and Ca2+-Dependent Transcriptional Induction of Bim. THE JOURNAL OF IMMUNOLOGY 2006; 176:2299-306. [PMID: 16455986 DOI: 10.4049/jimmunol.176.4.2299] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The processes of positive and negative selection in the thymus both determine the population of T cells that will enter the peripheral immune system and eliminate self-reactive T cells by apoptosis. Substantial evidence indicates that TCR signal intensity mediates this cell fate choice: low-intensity signals lead to survival and differentiation, whereas high-intensity signals generated by self-Ag lead to cell death. The molecular mechanism by which these graded signals are converted to discrete outcomes is not understood. Positive selection requires the Ca(2+)-dependent phosphatase calcineurin, whereas negative selection requires the proapoptotic Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim). In this study, we investigated the regulation of Bim expression and the role of Ca(2+) in mediating negative selection. Our results show that transcription is necessary for both negative selection and Bim induction. Surprisingly, we also found that Ca(2+) is necessary for Bim induction. Induction of bim transcription appears to involve protein kinase C, but not calcineurin, JNK, p38 MAPK, or MEK. These results localize the decision point in positive vs negative selection to a step downstream of Ca(2+) signaling and suggest that negative selection signals induce Ca(2+)-dependent bim transcription through PKC.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | |
Collapse
|
16
|
Williams JA, Hathcock KS, Klug D, Harada Y, Choudhury B, Allison JP, Abe R, Hodes RJ. Regulated costimulation in the thymus is critical for T cell development: dysregulated CD28 costimulation can bypass the pre-TCR checkpoint. THE JOURNAL OF IMMUNOLOGY 2005; 175:4199-207. [PMID: 16177059 PMCID: PMC1343453 DOI: 10.4049/jimmunol.175.7.4199] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expression of CD28 is highly regulated during thymic development, with CD28 levels extremely low on immature thymocytes but increasing dramatically as CD4- CD8- cells initiate expression of TCRbeta. B7-1 and B7-2, the ligands for CD28, have a restricted distribution in the thymic cortex where immature thymocytes reside and are more highly expressed in the medulla where the most mature thymocytes are located. To determine the importance of this regulated CD28/B7 expression for T cell development, we examined the effect of induced CD28 signaling of immature thymocytes in CD28/B7-2 double-transgenic mice. Strikingly, we found that differentiation to the CD4+ CD8+ stage in CD28/B7-2 transgenics proceeds independent of the requirement for TCRbeta expression manifest in wild-type thymocytes, occurring even in Rag- or CD3epsilon- knockouts. These findings indicate that signaling of immature thymocytes through CD28 in the absence of TCR- or pre-TCR-derived signals can promote an aberrant pathway of T cell differentiation and highlight the importance of finely regulated physiologic expression of CD28 and B7 in maintaining integrity of the "beta" checkpoint for pre-TCR/TCR-dependent thymic differentiation.
Collapse
Affiliation(s)
- Joy A Williams
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A plethora of genes involved in murine B and T cell development have been identified, and developmental pathways within the primary lymphoid tissues have been well delineated. The generation of a functional, but non-self reacting lymphocyte repertoire results from the completion of several checkpoints during lymphocyte development and competition for survival factors in the periphery. Improved knowledge of these developmental checkpoints and homeostatic mechanisms is critical for understanding human immunodeficiency, leukaemia/lymphoma and autoimmunity, which are conditions where checkpoints and homeostasis are likely to be deregulated.
Collapse
Affiliation(s)
- Lisa A Miosge
- Immunogenomics Laboratory, Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
18
|
Woods CC, Banks KE, Lebsack TW, White TC, Anderson GA, Maccallum T, Gruener R, DeLuca D. Use of a microgravity organ culture dish system to demonstrate the signal dampening effects of modeled microgravity during T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:565-582. [PMID: 15752552 DOI: 10.1016/j.dci.2004.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 09/11/2004] [Accepted: 09/16/2004] [Indexed: 05/24/2023]
Abstract
Recently, we have shown that exposure of fetal thymus organ cultures (FTOC) to modeled microgravity (MMG) using a clinostat with a microgravity organ culture dish system (MOCDS) blocks T cell development in a manner independent of steroid stress hormones present in vivo. In this study, we describe the development of the MOCDS system, as well as its use in attempting to understand the mechanism by which T cell development is inhibited in MMG. We show that after MMG exposure FTOC exhibited a significant reduction in CD4+CD8+ double positive (DP) cell production, but those DP cells which remained expressed higher levels of the T cell receptor (TCR) associated molecule, CD3. Interestingly, CD4-CD8- double negative (DN) cells expressed lower levels of CD3 on their surface. DN, as well as immature single positive (ISP) cells, also expressed reduced levels of the IL-7 receptor alpha chain (CD127). These changes in CD3 and CD127 expression were concomitantly associated with an increased production of tumor necrosis factor (TNF)-alpha. We were also able to show that addition of an exogenous signal (anti-CD3epsilon monoclonal antibody) to these cultures effectively mitigated the MMG-induced effects, suggesting that MMG-exposure causes a signal dampening effect on developing thymocytes.
Collapse
Affiliation(s)
- Chris C Woods
- Department of Microbiology and Immunology, University of Arizona, 1501 N Campbell Ave., PO Box 245049, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 2004; 23:7990-8000. [PMID: 15489916 DOI: 10.1038/sj.onc.1208074] [Citation(s) in RCA: 531] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function of the Src-family kinases (SFKs) Lck and Fyn in T cells has been intensively studied over the past 15 years. Animal models and cell line studies both indicate a critical role for Lck and Fyn in proximal T-cell antigen receptor (TCR) signal transduction. Recruited SFKs phosphorylate TCR ITAMs (immunoreceptor tyrosine-based activation motifs) in the CD3 and zeta chains, which then serve as docking sites for Syk-family kinases. SFKs then phosphorylate and activate the recruited Syk-family kinase. Lck and Fyn are spatially segregated in cell membranes due to differential lipid raft localization, and may undergo sequential activation. In addition to the CD4 and CD8 coreceptors, a recently described adaptor, Unc119, may link SFKs to the TCR. CD45 and Csk provide positive and negative regulatory control of SFK functions, respectively, and Csk is constitutively bound to the transmembrane adapter protein, PAG/Cbp. TCR-based signaling is required at several stages of T-cell development, including at least pre-TCR signaling, positive selection, peripheral maintenance of naive T cells, and lymphopenia-induced proliferation. SFKs are required for each of these TCR-based signals, and Lck seems to be the major contributor.
Collapse
Affiliation(s)
- Emil H Palacios
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine and The Howard Hughes Medical Institute, University of California, San Francisco 94143-0795, USA
| | | |
Collapse
|
20
|
Eyquem S, Chemin K, Fasseu M, Bories JC. The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci U S A 2004; 101:15712-7. [PMID: 15496469 PMCID: PMC524847 DOI: 10.1073/pnas.0405546101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-T cell receptor (TCR) functions as a critical checkpoint during alphabeta T cell development. Signaling through the pre-TCR controls the differentiation of immature CD4(-)CD8(-)CD25(+)CD44(-) [double-negative (DN)3] thymocytes into CD4(+)CD8(+) double-positive (DP) cells through the CD4(-)CD8(-)CD25(-)CD44(-)(DN4) stage. In addition, pre-TCR activity triggers expansion and survival of thymocytes and inhibits TCRbeta gene rearrangement through a process referred to as allelic exclusion. Whereas many proteins involved in the pre-TCR transduction cascade have been identified, little is known about the nuclear factors associated with receptor function. Here, we use gene targeting to inactivate the Ets-1 transcription factor in mice and analyze pre-TCR function in developing Ets-1-deficient (Ets-1(-/-)) thymocytes. We find that inactivation of Ets-1 impairs the development of DN3 into DP thymocytes and induces an elevated rate of cell death in the DN4 subset. This defect appears specific to the alphabeta lineage because gammadelta T cells maturate efficiently. Finally, the percentage of thymocytes coexpressing two different TCRbeta chains is increased in the Ets-1(-/-) background and, in contrast with wild type, forced activation of pre-TCR signaling does not block endogenous TCRbeta gene rearrangement. These data identify Ets-1 as a critical transcription factor for pre-TCR functioning and for allelic exclusion at the TCRbeta locus.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Cell Cycle
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Stéphanie Eyquem
- Institut National de la Santé et de la Recherche Médicale Unité 462, Institut Universitaire d'Hématologie, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | | | | | |
Collapse
|
21
|
Yui MA, Rothenberg EV. Deranged Early T Cell Development in Immunodeficient Strains of Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2004; 173:5381-91. [PMID: 15494484 DOI: 10.4049/jimmunol.173.9.5381] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NOD mice exhibit defects in T cell functions that have been postulated to contribute to diabetes susceptibility in this strain. However, early T cell development in NOD mice has been largely unexplored. NOD mice with the scid mutation and Rag1 deficiency were analyzed for pre-T cell development in the NOD genetic background. These strains reveal an age-dependent, programmed breakdown in beta selection checkpoint enforcement. At 5-8 wk of age, even in the absence of TCRbeta expression, CD4+ and CD4+CD8+ blasts appear spontaneously. However, these breakthrough cells fail to restore normal thymic cellularity. The breakthrough phenotype is recessive in hybrid (NODxB6)F1-scid and -Rag1null mice. The breakthrough cells show a mosaic phenotype with respect to components of the beta selection program. They mimic normal beta selection by up-regulating germline TCR-Calpha transcripts, CD2, and Bcl-xL and down-regulating Bcl-2. However, they fail to down-regulate transcription factors HEB-alt and Hes1 and initially express aberrantly high levels of Spi-B, c-kit (CD117), and IL-7Ralpha. Other genes examined distinguish this form of breakthrough from previously reported models. Some of the abnormalities appear first in a cohort of postnatal thymocytes as early as the double-negative 2/double-negative 3 transitional stage. Thus, our results reveal an NOD genetic defect in T cell developmental programming and checkpoint control that permits a subset of the normal outcomes of pre-TCR signaling to proceed even in the absence of TCRbeta rearrangement. Furthermore, this breakthrough may initiate thymic lymphomagenesis that occurs with high frequency in both NOD-scid and -Rag1null mice.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- CD2 Antigens/biosynthesis
- CD2 Antigens/genetics
- CD4 Antigens/biosynthesis
- Cell Cycle/genetics
- Cell Cycle/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Gene Expression Regulation/immunology
- Genes, RAG-1
- Genes, Recessive
- Genes, T-Cell Receptor alpha
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-kit/biosynthesis
- Receptors, Interleukin-7/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Transcription, Genetic
- Up-Regulation/immunology
- bcl-X Protein
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
22
|
Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N, Aublin A, Maryanski JL, Zúñiga-Pflücker JC. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5230-9. [PMID: 15100261 DOI: 10.4049/jimmunol.172.9.5230] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first checkpoint during T cell development, known as beta selection, requires the successful rearrangement of the TCR-beta gene locus. Notch signaling has been implicated in various stages during T lymphopoiesis. However, it is unclear whether Notch receptor-ligand interactions are necessary during beta selection. Here, we show that pre-TCR signaling concurrent with Notch receptor and Delta-like-1 ligand interactions are required for the survival, proliferation, and differentiation of mouse CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. Furthermore, we address the minimal signaling requirements underlying beta selection and show a hierarchical positioning of key proximal signaling molecules. Collectively, our results demonstrate an essential role for Notch receptor-ligand interactions in enabling the autonomous signaling capacity of the pre-TCR complex.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q, Ferrando AA, Levin SD, Geng Y, von Boehmer H, Sicinski P. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4:451-61. [PMID: 14706337 DOI: 10.1016/s1535-6108(03)00301-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The D-type cyclins (cyclins D1, D2, and D3) are components of the core cell cycle machinery in mammalian cells. Cyclin D3 gene is rearranged and the protein is overexpressed in several human lymphoid malignancies. In order to determine the function of cyclin D3 in development and oncogenesis, we generated and analyzed cyclin D3-deficient mice. We found that cyclin D3(-/-) animals fail to undergo normal expansion of immature T lymphocytes and show greatly reduced susceptibility to T cell malignancies triggered by specific oncogenic pathways. The requirement for cyclin D3 also operates in human malignancies, as knock-down of cyclin D3 inhibited proliferation of acute lymphoblastic leukemias deriving from immature T lymphocytes. These studies point to cyclin D3 as a potential target for therapeutic intervention in specific human malignancies.
Collapse
Affiliation(s)
- Ewa Sicinska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Denzel A, Hare KJ, Zhang C, Shokat K, Jenkinson EJ, Anderson G, Hayday A. Cutting edge: a chemical genetic system for the analysis of kinases regulating T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:519-23. [PMID: 12847211 DOI: 10.4049/jimmunol.171.2.519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To understand the regulatory activities of kinases in vivo requires their study across a biologically relevant window of activity. To this end, ATP analog-sensitive kinase alleles (ASKAs) specifically sensitive to a competitive inhibitor have been developed. This article tests whether ASKA technology can be applied to complex immunological systems, such as lymphoid development. The results show that when applied to reaggregate thymic organ culture, novel p56(Lck) ASKAs readily expose a dose-dependent correlation of thymocyte development with a range of p56(Lck) activity. By regulating kinase activity, rather than amounts of RNA or protein, ASKA technology offers a general means for assessing the quantitative contributions to immunology of numerous kinases emerging from genomics analyses. It can obviate the generation of multiple lines of mice expressing different levels of kinase transgenes and should permit specific biological effects to be associated with defined biochemical activities.
Collapse
Affiliation(s)
- Angela Denzel
- Department of Immunobiology, New Guy's House, Guy's, King's and St. Thomas's School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
25
|
Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S, Kominami R. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 2003; 4:533-9. [PMID: 12717433 DOI: 10.1038/ni927] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 03/19/2003] [Indexed: 01/19/2023]
Abstract
The gene Bcl11b, which encodes zinc finger proteins, and its paralog, Bcl11a, are associated with immune-system malignancies. We have generated Bcl11b-deficient mice that show a block at the CD4-CD8- double-negative stage of thymocyte development without any impairment in cells of B- or gammadelta T cell lineages. The Bcl11b-/- thymocytes showed unsuccessful recombination of V(beta) to D(beta) and lacked the pre-T cell receptor (TCR) complex on the cell surface, owing to the absence of Tcrb mRNA expression. In addition, we saw profound apoptosis in the thymus of neonatal Bcl11b-/- mice. These results suggest that Bcl11b is a key regulator of both differentiation and survival during thymocyte development.
Collapse
Affiliation(s)
- Yuichi Wakabayashi
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi 1-757, Niigata 951-8122, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L. Thymic selection revisited: how essential is it? Immunol Rev 2003; 191:62-78. [PMID: 12614352 DOI: 10.1034/j.1600-065x.2003.00010.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intrathymic T cell development represents one of the best studied paradigms of mammalian development. Lymphoid committed precursors enter the thymus and the Notch1 receptor plays an essential role in committing them to the T cell lineages. The pre-T cell receptor (TCR), as an autonomous cell signaling receptor, commits cells to the alphabeta lineage while its rival, the gammadeltaTCR, is involved in generating the gammadelta lineage of T cells. Positive and negative selection of immature alphabetaTCR-expressing cells are essential mechanisms for generating mature T cells, committing them to the CD4 and CD8 lineages and avoiding autoimmunity. Additional lineages of alphabetaT cells, such as the natural killer T cell lineage and the CD25+ regulatory T cell lineage, are formed when the alphabetaTCR encounters specific ligands in suitable microenvironments. Thus, positive selection and receptor-instructed lineage commitment represent a hallmark of the thymus. Ectopically expressed organ-specific antigens contribute to thymic self-nonself discrimination, which represents an essential feature for the evolutionary fitness of mammalian species.
Collapse
Affiliation(s)
- Harald von Boehmer
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The specificity of the adaptive immune response is, in part, dependent on the clonal expression of the mature T cell receptor (TCR) on T lymphocytes. One mechanism regulating the clonality of the TCR occurs at the level of TCR-beta gene rearrangements during lymphocyte development. Expression of a nascent TCR-beta chain together with pre-Talpha (pTalpha) and CD3 molecules to form the pre-TCR complex, represents a critical checkpoint in T cell differentiation known as beta-selection. Indeed, failure to generate a functionally rearranged TCR-beta chain at this stage of development results in apoptosis. Signals derived from the pre-TCR complex trigger a maturation program within developing thymocytes that includes: rescue from apoptosis; inhibition of further DNA recombination at the TCR-beta gene locus (allowing for the clonality of antigen receptor expression; allelic exclusion); and induction of proliferation and differentiation. The signaling mechanisms that control this developmental program remain largely undefined. Here, we discuss recent evidence investigating the molecular mechanisms that regulate thymocyte differentiation downstream of pre-TCR formation.
Collapse
Affiliation(s)
- Alison M Michie
- Department of Immunology and Bacteriology, Western Infirmary, University of Glasgow, Glasgow, Scotland, G11 6NT, UK
| | | |
Collapse
|
28
|
Engel I, Murre C. Disruption of pre-TCR expression accelerates lymphomagenesis in E2A-deficient mice. Proc Natl Acad Sci U S A 2002; 99:11322-7. [PMID: 12172006 PMCID: PMC123255 DOI: 10.1073/pnas.162373999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The helix-loop-helix proteins E47 and E12, which are encoded by the E2A gene, regulate several stages of T cell development. In addition, mice deficient for E2A are highly susceptible to thymic lymphoma. Here we report that the development of lymphoma in E2A-deficient mice did not require pre- and recombinase-activating gene expression. Rather, we found that, whereas illegitimate DNA rearrangement did not play a major role in the development of these lymphomas, defects that prevented pre-T cell antigen receptor expression tended to accelerate lymphomagenesis in E2A-deficient mice. These data and previous observations also provide insight into the role of Notch in lymphoma development. Specifically, we propose that Notch activation indirectly modulates E2A activity through induction of pre-Talpha expression, ultimately leading to the development of lymphoma.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Genes, T-Cell Receptor beta
- Genotype
- Homeodomain Proteins/genetics
- Homozygote
- Lymphatic Metastasis/immunology
- Lymphoma/genetics
- Lymphoma/immunology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Thymus Neoplasms/genetics
- Thymus Neoplasms/immunology
- Transcription Factors/deficiency
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Isaac Engel
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0366, USA
| | | |
Collapse
|
29
|
Abstract
This review examines the value of transgenic studies in mice for the genetic dissection of signal-transduction pathways relevant to thymus development. T-cell development in the thymus is controlled by an ordered sequence of differentiation and proliferation checkpoints that culminate in the production of correctly selected, non-autoreactive, peripheral T lymphocytes. Work in transgenic mice has been fundamental for the preparation of genetic maps of signal-transduction pathways that control T-cell development. This review discusses how tyrosine kinases, guanine-nucleotide-binding proteins and transcription factors converge to control T-cell differentiation and proliferation in the immune system.
Collapse
Affiliation(s)
- Doreen A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK.
| |
Collapse
|
30
|
Abstract
To investigate the signaling function of the Src-family protein tyrosine kinase Lck in mature T cells, we generated transgenic mice that expressed Lck in thymocytes but not in peripheral lymphocytes. We compared the phenotype and signaling capacity of Lck-deficient T cells with T cells from mice expressing a dominant inhibitory form of Lck and found that both mouse strains have diminished numbers of mature CD8(+) T cells and respond poorly to CD28 costimulation. However, while T cells that lack Lck fail to mobilize Ca(2+) after stimulation, those expressing the dominant negative protein do so normally. Our data demonstrate that Lck plays several unique roles in mature lymphocyte signaling.
Collapse
Affiliation(s)
- P A Trobridge
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
31
|
Vasseur F, Le Campion A, Pénit C. Scheduled kinetics of cell proliferation and phenotypic changes during immature thymocyte generation. Eur J Immunol 2001; 31:3038-47. [PMID: 11592080 DOI: 10.1002/1521-4141(2001010)31:10<3038::aid-immu3038>3.0.co;2-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Precursor CD4-CD8- (DN) thymocytes rearrange their TCR-beta genes, and only those which succeed in beta-selection subsequently expand and differentiate into immature CD4+CD8+ (DP) thymocytes. The cell subsets corresponding to the successive steps of this transition can be defined in terms of CD44 and CD25 expression. We partially synchronized the differentiation process by eliminating cycling cells with the anti-mitotic agent demecolcine. Using in vivo pulse labeling with bromodeoxyuridine, we determined the order of entry into DNA synthesis of the different DN and transitory (CD4-/lo CD8+) cell subsets. Two independent proliferation phases were identified. The first cells to enter the cell cycle were CD44-CD25lo, and CD4/CD8/TCR-/BrdU four-color staining showed that they all expressed a low density of the TCR-beta chain, an element of the pre-TCR (the TCR-alpha locus is still in germ-line configuration at this stage). Cycling of CD44+CD25+ cells was detected later, and no starting point was observed at the CD44-CD25hi stage. CD8 expression was immediately detectable in cycling cells, but they took 24 h to reach the DP stage. The study of TCR-Calpha-deficient mice showed that beta gene rearrangement occurred once proliferation had ceased at the DP stage, and that it had no influence on the DN-DP transition. These data show that precursor thymocytes undergo two independent waves of expansion, and that the second wave is restricted to cells capable of pre-TCR expression.
Collapse
Affiliation(s)
- F Vasseur
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 345, Institut Necker, Paris, France
| | | | | |
Collapse
|
32
|
Engel I, Johns C, Bain G, Rivera RR, Murre C. Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med 2001; 194:733-45. [PMID: 11560990 PMCID: PMC2195962 DOI: 10.1084/jem.194.6.733] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The E2A gene encodes the E47 and E12 basic helix-loop-helix (bHLH) transcription factors. T cell development in E2A-deficient mice is partially arrested before lineage commitment. Here we demonstrate that E47 expression becomes uniformly high at the point at which thymocytes begin to commit towards the T cell lineage. E47 protein levels remain high until the double positive developmental stage, at which point they drop to relatively moderate levels, and are further downregulated upon transition to the single positive stage. However, stimuli that mimic pre-T cell receptor (TCR) signaling in committed T cell precursors inhibit E47 DNA-binding activity and induce the bHLH inhibitor Id3 through a mitogen-activated protein kinase kinase-dependent pathway. Consistent with these observations, a deficiency in E2A proteins completely abrogates the developmental block observed in mice with defects in TCR rearrangement. Thus E2A proteins are necessary for both initiating T cell differentiation and inhibiting development in the absence of pre-TCR expression. Mechanistically, these data link pre-TCR mediated signaling and E2A downstream target genes into a common pathway.
Collapse
Affiliation(s)
- Isaac Engel
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - Carol Johns
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - Gretchen Bain
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - Richard R. Rivera
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| | - Cornelis Murre
- Department of Biology, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
33
|
Allman D, Karnell FG, Punt JA, Bakkour S, Xu L, Myung P, Koretzky GA, Pui JC, Aster JC, Pear WS. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 2001; 194:99-106. [PMID: 11435476 PMCID: PMC2193437 DOI: 10.1084/jem.194.1.99] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4(+)CD8(+) double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2(-/)-) or Src homology 2 domain--containing leukocyte protein of 76 kD (SLP-76)(-/)- mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2(-/)- progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3 epsilon and pre-T alpha mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2(-/)- mice with a TCR beta transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell-specific signals associated with development of DP thymocytes.
Collapse
MESH Headings
- Animals
- Bone Marrow/physiology
- Cell Lineage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Hematopoietic Stem Cells/physiology
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Leukemia, T-Cell/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Cell Surface
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Signal Transduction
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Transcription Factors
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Fredrick G. Karnell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | | | - Sonia Bakkour
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Lanwei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Peggy Myung
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Gary A. Koretzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - John C. Pui
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| | - Jon C. Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104
- Institute of Medicine and Engineering, University of Pennsylvania Medical Center, Philadelphia, PA 19104
| |
Collapse
|
34
|
Basson MA, Zamoyska R. Insights into T-cell development from studies using transgenic and knockout mice. Mol Biotechnol 2001; 18:11-23. [PMID: 11439696 DOI: 10.1385/mb:18:1:11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of immunocompetent lymphocytes is a complex process that utilizes a multitude of cell surface receptors and intracellular signaling pathways. Moreover, specific cell-cell interactions and specialized microenvironments are required, so that purely in vitro experimental systems are limited in their ability to explain the complexity of T-cell development. In vivo models have been used extensively in the study of T-cell development. In the present review we summarize but a few of the seminal discoveries that have been made in this field using transgenic and knockout mouse models. In addition to demonstrating the wealth of information that can be gained, we also discuss some of the present limitations of this technology. Novel advances that allow the conditional and inducible modification of the genome and knock-in mutations promise to lead to an even more rapid advancement in our knowledge of T-cell development.
Collapse
Affiliation(s)
- M A Basson
- Derald H. Ruttenberg Cancer Center, Mount Sinai Schol of Medicine, Box 1130, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
35
|
Schmedt C, Tarakhovsky A. Autonomous maturation of alpha/beta T lineage cells in the absence of COOH-terminal Src kinase (Csk). J Exp Med 2001; 193:815-26. [PMID: 11283154 PMCID: PMC2193374 DOI: 10.1084/jem.193.7.815] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The deletion of COOH-terminal Src kinase (Csk), a negative regulator of Src family protein tyrosine kinases (PTKs), in immature thymocytes results in the development of alpha/beta T lineage cells in T cell receptor (TCR) beta-deficient or recombination activating gene (rag)-1-deficient mice. The function of Csk as a repressor of Lck and Fyn activity suggests activation of these PTKs is solely responsible for the phenotype observed in csk-deficient T lineage cells. We provide genetic evidence for this notion as alpha/beta T cell development is blocked in lck(-/)-fyn(-/)- csk-deficient mice. It remains unclear whether activation of Lck and Fyn in the absence of Csk uncouples alpha/beta T cell development entirely from engagement of surface-expressed receptors. We show that in mice expressing the alpha/beta TCR on csk-deficient thymocytes, positive selection is biased towards the CD4 lineage and does not require the presence of major histocompatibility complex (MHC) class I and II. Furthermore, the introduction of an MHC class I-restricted transgenic TCR into a csk-deficient background results in the development of mainly CD4 T cells carrying the transgenic TCR both in selecting and nonselecting MHC background. Thus, TCR-MHC interactions have no impact on positive selection and commitment to the CD4 lineage in the absence of Csk. However, TCR-mediated negative selection of csk-deficient, TCR transgenic cells is normal. These data suggest a differential involvement of the Csk-mediated regulation of Src family PTKs in positive and negative selection of developing thymocytes.
Collapse
Affiliation(s)
- C Schmedt
- Laboratory for Lymphocyte Signaling, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
36
|
Sohn SJ, Forbush KA, Pan XC, Perlmutter RM. Activated p56lck directs maturation of both CD4 and CD8 single-positive thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2209-17. [PMID: 11160274 DOI: 10.4049/jimmunol.166.4.2209] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
p56(lck) is a protein tyrosine kinase expressed throughout T cell development. It associates noncovalently with the cytoplasmic domains of the CD4 and CD8 coreceptor molecules and has been implicated in TCR signaling in mature T cells. Its role in early thymocyte differentiation has been demonstrated in vivo, both by targeted gene disruption and by transgene expression. Previously, we showed that expression of a dominant-negative form of p56(lck) in double-positive thymocytes inhibits positive selection. We now demonstrate that expression of constitutively activated p56(lck) (p56(lck)F505) accelerates the transition from the double-positive to the single-positive stage. Importantly, p56(lck)F505 drives survival and lineage commitment of thymocytes in the absence of TCR engagement by appropriate MHC molecules. These results indicate that activation of p56(lck) constitutes an early step in conveying maturational signals after TCR ligation by a positively selecting ligand. Our study provides direct in vivo evidence for the role of p56(lck) in regulating TCR signaling.
Collapse
Affiliation(s)
- S J Sohn
- Department of Immunology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
37
|
Shimizu C, Kawamoto H, Yamashita M, Kimura M, Kondou E, Kaneko Y, Okada S, Tokuhisa T, Yokoyama M, Taniguchi M, Katsura Y, Nakayama T. Progression of T cell lineage restriction in the earliest subpopulation of murine adult thymus visualized by the expression of lck proximal promoter activity. Int Immunol 2001; 13:105-17. [PMID: 11133839 DOI: 10.1093/intimm/13.1.105] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proximal promoter of lck directs gene expression exclusively in T cells. To investigate the developmental regulation of the lck proximal promoter activity and its relationship to T cell lineage commitment, a green fluorescence protein (GFP) transgenic (Tg) mouse in which the GFP expression is under the control of the proximal promoter of lck was created. In the adult GFP-Tg mice, >90% of CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes, and the majority of CD4(-)CD8(+) and CD4(-)CD8(-) [double-negative (DN)] thymocytes were highly positive for GFP. Slightly lower but substantial levels of expression of GFP was also observed in mature splenic T cells. No GFP(+) cells was detected in non-T lineage subsets, including mature and immature B cells, CD5(+) B cells, and NK cells, indicating a preserved tissue specificity of the promoter. The earliest GFP(+) cells detected were found in the CD44(+)CD25(-) DN thymocyte subpopulation. The developmental potential of GFP(-) and GFP(+) cells in the CD44(+)CD25(-) DN fraction was examined using in vitro culture systems. The generation of substantial numbers of alphabeta and gammadelta T cells as well as NK cells was demonstrated from both GFP(-) and GFP(+) cells. However, no development of B cells or dendritic cells was detected from GFP(+) CD44(+)CD25(-) DN thymocytes. These results suggest that the progenitors expressing lck proximal promoter activity in the CD44(+)CD25(-) DN thymocyte subset have lost most of the progenitor potential for the B and dendritic cell lineage. Thus, progression of T cell lineage restriction in the earliest thymic population can be visualized by lck proximal promoter activity, suggesting a potential role of Lck in the T cell lineage commitment.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cells, Cultured
- Dendritic Cells/cytology
- Gene Expression Regulation/immunology
- Green Fluorescent Proteins
- Hyaluronan Receptors/biosynthesis
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/biosynthesis
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Promoter Regions, Genetic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Interleukin-2/biosynthesis
- Scyphozoa
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/enzymology
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
Affiliation(s)
- C Shimizu
- CREST (Core Research for Evolution Science and Technology) Project, Japan Science and Technology Corporation (JST), and Department of Molecular Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kruisbeek AM, Haks MC, Carleton M, Michie AM, Zúñiga-Pflücker JC, Wiest DL. Branching out to gain control: how the pre-TCR is linked to multiple functions. IMMUNOLOGY TODAY 2000; 21:637-44. [PMID: 11114425 DOI: 10.1016/s0167-5699(00)01744-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
How is signaling specificity achieved by the pre-TCR during selection of T-cell fate? Like the TCR, this receptor controls many functions, and recent studies define which pathways couple the pre-TCR to the molecular events controlling survival, proliferation, allelic exclusion at the TCRbeta locus, and further differentiation.
Collapse
Affiliation(s)
- A M Kruisbeek
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Transgenic mice expressing a T-cell-specific dominant interfering allele (MEnT) of the c-Myb transcription factor have a pronounced block in CD4(-)CD8(-) (DN) development. In this study we show that differentiation of DN MEnT thymocytes is blocked due to the failure of cells to enter the cell cycle following beta-selection, the process by which productive rearrangement of the T-cell receptor (TCR) beta-chain permits maturation of cells into CD4(+)CD8(+) (DP) thymocytes. c-myb mRNA continues to be expressed in DN cells in mice lacking a functional pre-TCR signalling pathway, implying that its transcriptional regulation is independent of the signalling events regulating beta-selection. It is also expressed in the absence of cytokine signalling. However, we show that c-Myb protein is required for the function in beta-selection of its known upstream activator, the serine/threonine kinase Pim1: MEnT expression inhibits the cell cycle in Pim1 transgenic DN thymocytes and prevents Pim1-mediated rescue of a RAG1(-/-) developmental block. Super activation of c-Myb by Pim1 may therefore be required for beta-selection.
Collapse
Affiliation(s)
- R Pearson
- CRC Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
40
|
Jacobs H. TCR-independent T cell development mediated by gain-of-oncogene function or loss-of-tumor-suppressor gene function. Semin Immunol 2000; 12:487-502. [PMID: 11085181 DOI: 10.1006/smim.2000.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that govern differentiation of T cell precursors during intrathymic development bridge an interdisciplinary research field of immunology, oncology and developmental biology. Critical checkpoints controlling early thymic T cell development and homeostasis are set by the proper signaling function of the IL-7 receptor, c-Kit receptor, and the pre-T cell antigen receptor (pre-TCR). Given the intimate link between cell cycle control and differentiation in T cell development, proto-oncogenes and tumor suppressors participate as physiological effectors downstream of these receptors not only to influence the cell cycle but also to determine differentiation and survival. Gain- or loss-of-function mutations of these downstream effectors uncouples partially or completely T cell precursors from these checkpoints, providing a selective advantage and enabling aberrant development. These effectors can be identified by provirus tagging in normal mice and more readily by complementation tagging in mice with a predefined block in T cell differentiation.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
41
|
Baker M, Gamble J, Tooze R, Higgins D, Yang FT, O'Brien PC, Coleman N, Pingel S, Turner M, Alexander DR. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J 2000; 19:4644-54. [PMID: 10970857 PMCID: PMC302076 DOI: 10.1093/emboj/19.17.4644] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CD45 tyrosine phosphatase lowers T-cell antigen receptor signalling thresholds by its positive actions on p56(lck) tyrosine kinase function. We now show that mice expressing active lck(F505) at non-oncogenic levels develop aggressive thymic lymphomas on a CD45(-/-) background. CD45 suppresses the tumorigenic potential of the kinase by dephosphorylation of the Tyr394 autophosphorylation site. In CD45(-/-) thymocytes the kinase is switched to a hyperactive oncogenic state, resulting in increased resistance to apoptosis. Transformation occurs in early CD4(-)CD8(-) thymocytes during the process of TCR-beta chain rearrangement by a recombinase-independent mechanism. Our findings represent the first example in which a tyrosine phosphatase in situ prevents the oncogenic actions of a SRC: family tyrosine kinase.
Collapse
Affiliation(s)
- M Baker
- Laboratory of Lymphocyte Signalling and Development, Programme of Molecular Immunology, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barndt RJ, Dai M, Zhuang Y. Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol Cell Biol 2000; 20:6677-85. [PMID: 10958665 PMCID: PMC86175 DOI: 10.1128/mcb.20.18.6677-6685.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphocyte development and differentiation are regulated by the basic helix-loop-helix (bHLH) transcription factors encoded by the E2A and HEB genes. These bHLH proteins bind to E-box enhancers in the form of homodimers or heterodimers and, consequently, activate transcription of the target genes. E2A homodimers are the predominant bHLH proteins present in B-lineage cells and are shown genetically to play critical roles in B-cell development. E2A-HEB heterodimers, the major bHLH dimers found in thymocyte extracts, are thought to play a similar role in T-cell development. However, disruption of either the E2A or HEB gene led to only partial blocks in T-cell development. The exact role of E2A-HEB heterodimers and possibly the E2A and HEB homodimers in T-cell development cannot be distinguished in simple disruption analysis due to a functional compensation from the residual bHLH homodimers. To further define the function of E2A-HEB heterodimers, we generated and analyzed a dominant negative allele of HEB, which produces a physiological amount of HEB proteins capable of forming nonfunctional heterodimers with E2A proteins. Mice carrying this mutation show a stronger and earlier block in T-cell development than HEB complete knockout mice. The developmental block is specific to the alpha/beta T-cell lineage at a stage before the completion of V(D)J recombination at the TCRbeta gene locus. This defect is intrinsic to the T-cell lineage and cannot be rescued by expression of a functional T-cell receptor transgene. These results indicate that E2A-HEB heterodimers play obligatory roles both before and after TCRbeta gene rearrangement during the alpha/beta lineage T-cell development.
Collapse
Affiliation(s)
- R J Barndt
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
43
|
Wack A, Coles M, Norton T, Hostert A, Kioussis D. Early onset of CD8 transgene expression inhibits the transition from DN3 to DP thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1236-42. [PMID: 10903721 DOI: 10.4049/jimmunol.165.3.1236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper we show that the effects of transgenic coreceptor expression on thymocyte development depend on the onset of transgene expression. Thus, a CD8 transgene expressed on CD44+CD25+ (DN2) and CD44-CD25+ (DN3) cells causes a partial block at the stage when TCRbeta selection takes place and diminishes expansion at the subsequent developmental stages, resulting in increased DN3 and markedly reduced double-positive (DP) thymocyte numbers. This effect is evident on a polyclonal TCR repertoire as well as in TCR-transgenic mice (F5). By contrast, a CD8 transgene that leads to the same degree of overexpression on DP thymocytes, but is not expressed on double-negative subsets, has no effect on thymus size or composition. Therefore, the reduction of DP thymocyte numbers in CD8 TCRtg mice can be attributed to interferences at early developmental stages rather than to increased negative selection of DP cells.
Collapse
MESH Headings
- Animals
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Crosses, Genetic
- Flow Cytometry
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Humans
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- A Wack
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Verkoczy LK, Guinn BA, Berinstein NL. Characterization of the human B cell RAG-associated gene, hBRAG, as a B cell receptor signal-enhancing glycoprotein dimer that associates with phosphorylated proteins in resting B cells. J Biol Chem 2000; 275:20967-79. [PMID: 10749872 DOI: 10.1074/jbc.m001866200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Affinity-purified polyclonal antibodies against the hBRAG (human B cell RAG-associated gene) protein were generated to characterize hBRAG at the biochemical level. Immunoblotting and immunoprecipitation experiments with these antibody reagents demonstrate that this protein can be expressed in B cells as a membrane-integrated glycoprotein disulfide-linked dimer. However, both glycosylated and unglycosylated isoforms of hBRAG are detectable with these reagents. Additionally, their use in cell surface biotinylation and flow cytometry reveals subcellular hBRAG pools both at cell surface and intracellular locations. Co-immunoprecipitation experiments with hBRAG antisera detected the association of hBRAG with phosphorylated proteins in resting B cells, including the protein tyrosine kinase Hck, which is subsequently dephosphorylated upon B cell receptor (BCR) ligation. Consistent with its cell surface expression and possible link to BCR signaling, experiments in which alpha-hBRAG antibodies were used to generate early activation signals suggest a modest but specific element of tyrosine phosphorylation occurring through a putative hBRAG receptor. Additional experiments also suggest that hBRAG may be involved in positively enhancing BCR ligation-mediated early activation events. Collectively, these results are consistent with a function for hBRAG as a B cell surface signaling receptor molecule. Coupled with the earlier observation that hBRAG expression correlates with early and late B cell-specific RAG expression, we submit that hBRAG may mediate regulatory signals key to B cell development and/or regulation of B cell-specific RAG expression.
Collapse
Affiliation(s)
- L K Verkoczy
- Department of Immunology, University of Toronto, Toronto M4N 3N5, Ontario, Canada
| | | | | |
Collapse
|
45
|
Hernández-Hoyos G, Sohn SJ, Rothenberg EV, Alberola-Ila J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 2000; 12:313-22. [PMID: 10755618 DOI: 10.1016/s1074-7613(00)80184-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thymocytes carrying MHC class I-restricted TCRs differentiate into CD8 T cells, while those recognizing MHC class II become CD4 T cells. The mechanisms underlying how MHC class recognition, coreceptor expression, and effector function are coordinated are not well understood. Since the tyrosine kinase Lck binds with more affinity to CD4 than CD8, it has been proposed as a candidate to mediate this process. By using transgenic mice with altered Lck activity, we show that thymocytes carrying a class II-restricted TCR develop into functional CD8 T cells when Lck activity is reduced. Conversely, thymocytes carrying a class I-restricted TCR develop into functional CD4 T cells when Lck activity is increased. These results directly show that quantitative differences in the Lck signal control the CD4/CD8 lineage decision.
Collapse
Affiliation(s)
- G Hernández-Hoyos
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
46
|
Lin K, Longo NS, Wang X, Hewitt JA, Abraham KM. Lck domains differentially contribute to pre-T cell receptor (TCR)- and TCR-alpha/beta-regulated developmental transitions. J Exp Med 2000; 191:703-16. [PMID: 10684862 PMCID: PMC2195836 DOI: 10.1084/jem.191.4.703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Maturational changes at the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition are dependent on signals generated via the pre-T cell receptor (TCR) and the nonreceptor protein tyrosine kinase p56(lck) (Lck). How Lck activities are stimulated or relayed after pre-TCR formation remains obscure. Our structure-function mapping of Lck thymopoietic properties reveals that the noncatalytic domains of Lck are specialized to signal efficient cellular expansion at DN to DP transition. Moreover, although substitution of the Lck catalytic domain with FynT sequences minimally impacts DP development, single positive thymocytes are most efficiently produced in the presence of kinases containing both the NH(2)-terminal and catalytic regions of Lck. These findings demonstrate that the Lck structure is uniquely adapted to mediate signals at both major transitions in thymopoiesis.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Catalytic Domain
- Cell Differentiation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/deficiency
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transfection
Collapse
Affiliation(s)
- Kui Lin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nancy S. Longo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Xin Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Judy A. Hewitt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kristin M. Abraham
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
47
|
Michie AM, Trop S, Wiest DL, Zúñiga-Pflücker JC. Extracellular signal-regulated kinase (ERK) activation by the pre-T cell receptor in developing thymocytes in vivo. J Exp Med 1999; 190:1647-56. [PMID: 10587355 PMCID: PMC2195734 DOI: 10.1084/jem.190.11.1647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/1999] [Accepted: 09/29/1999] [Indexed: 12/17/2022] Open
Abstract
The first checkpoint in T cell development occurs between the CD4(-)CD8(-) and CD4(+)CD8(+) stages and is associated with formation of the pre-T cell receptor (TCR). The signaling mechanisms that drive this progression remain largely unknown. Here, we show that extracellular signal-regulated kinases (ERKs)-1/2 are activated upon engagement of the pre-TCR. Using a novel experimental system, we demonstrate that expression of the pre-TCR by developing thymocytes induces ERK-1/2 activation within the thymus. In addition, the activation of this pre-TCR signaling cascade is mediated through Lck. These findings directly link pre-TCR complex formation with specific downstream signaling components in vivo.
Collapse
Affiliation(s)
- Alison M. Michie
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sébastien Trop
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - David L. Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | |
Collapse
|
48
|
Abstract
T lymphocytes express two Src tyrosine kinases, Lck and Fyn. While thymocyte and T cell subsets are largely normal in fyn(-/-) mice, animals lacking Lck have impaired T cell development. Here, it is shown that Fyn is required for the rapid burst of interleukin (IL)-4 and IL-13 synthesis, which occurs promptly after T cell receptor activation. The lack of cytokine induction in fyn mutant mice is due to a block in natural killer (NK) T cell development. Studies using bone marrow chimeras indicate that the defect behaves in a cell-autonomous manner, and the lack of NK T cells is probably not caused by inappropriate microenvironmental cues. Both NK T cells and conventional T cells express similar levels of Lck, implying that Fyn and Lck have distinct roles in regulating NK T cell ontogeny. The fyn mutation defines the first signaling molecule that is selectively required for NK T cell, but not for T lymphocyte or NK cell development.
Collapse
Affiliation(s)
- Paul Gadue
- Graduate Program in Immunology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Neil Morton
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Paul L. Stein
- The Wistar Institute, Philadelphia, Pennsylvania 19104
| |
Collapse
|
49
|
Jacobs H, Krimpenfort P, Haks M, Allen J, Blom B, Démollière C, Kruisbeek A, Spits H, Berns A. PIM1 reconstitutes thymus cellularity in interleukin 7- and common gamma chain-mutant mice and permits thymocyte maturation in Rag- but not CD3gamma-deficient mice. J Exp Med 1999; 190:1059-68. [PMID: 10523604 PMCID: PMC2195657 DOI: 10.1084/jem.190.8.1059] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The majority of lymphomas induced in Rag-deficient mice by Moloney murine leukemia virus (MoMuLV) infection express the CD4 and/or CD8 markers, indicating that proviral insertions cause activation of genes affecting the development from CD4(-)8(-) pro-T cells into CD4(+)8(+) pre-T cells. Similar to MoMuLV wild-type tumors, 50% of CD4(+)8(+) Rag-deficient tumors carry a provirus near the Pim1 protooncogene. To study the function of PIM proteins in T cell development in a more controlled setting, a Pim1 transgene was crossed into mice deficient in either cytokine or T cell receptor (TCR) signal transduction pathways. Pim1 reconstitutes thymic cellularity in interleukin (IL)-7- and common gamma chain-deficient mice. In Pim1-transgenic Rag-deficient mice but notably not in CD3gamma-deficient mice, we observed slow expansion of the CD4(+)8(+) thymic compartment to almost normal size. Based on these results, we propose that PIM1 functions as an efficient effector of the IL-7 pathway, thereby enabling Rag-deficient pro-T cells to bypass the pre-TCR-controlled checkpoint in T cell development.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, CH-4005 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barndt R, Dai MF, Zhuang Y. A Novel Role for HEB Downstream or Parallel to the Pre-TCR Signaling Pathway During αβ Thymopoiesis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
TCR gene rearrangement and expression are central to the development of clonal T lymphocytes. The pre-TCR complex provides the first signal instructing differentiation and proliferation events during the transition from CD4−CD8−TCR− double negative (DN) stage to CD4+CD8+ double positive (DP) stage. How the pre-TCR signal leads to downstream gene expression is not known. HeLa E-box binding protein (HEB), a basic helix-loop-helix transcription factor, is abundantly detected in thymocytes and is thought to regulate E-box sites present in many T cell-specific gene enhancers, including TCR-α, TCR-β, and CD4. Targeted disruption of HEB results in a 5- to 10-fold reduction in thymic cellularity that can be accounted for by a developmental block at the DN to DP stage transition. Specifically, a dramatic increase in the CD4low/−CD8+CD5lowHSA+TCRlow/− immature single positive population and a concomitant decrease in the subsequent DP population are observed. Adoptive transfer test shows that this defect is cell-autonomous and restricted to the αβ T cell lineage. Introduction of an αβ TCR transgene into the HEBko/ko background is not sufficient to rescue the developmental delay. In vivo CD3 cross-linking analysis of thymocytes indicates that TCR signaling pathway in the HEBko/ko mice appears intact. These findings suggest an essential function of HEB in early T cell development, downstream or parallel to the pre-TCR signaling pathway.
Collapse
Affiliation(s)
- Robert Barndt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Mei-Fang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|