1
|
Chen J, Liu L, Xie Y, Yu G, Zhang X. Acupoint Stimulation for Pain Control in Enhanced Recovery After Surgery: Systematic Review and Meta-Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:493-506. [PMID: 38153965 DOI: 10.1089/jicm.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Introduction: Postoperative pain control is a challenge in enhanced recovery after surgery (ERAS). The current study reviewed the efficacy and safety of incorporating acupoint stimulation for postoperative pain control in ERAS. Methods: Ten databases for relevant randomized controlled trials (RCTs) published in English or Mandarin Chinese were searched from 1997 to 2022. The quality of each article was appraised using the Cochrane Collaboration Risk of Bias Criteria and the modified Jadad Scale. The primary outcome was pain control, measured using the visual analog scale 24 h after surgery. Results: Eleven trials met the eligibility criteria and were included in the study. Acupoint stimulation was found more effective than control treatments in terms of pain intensity (standardized mean difference [SMD] -0.94; 95% confidence interval [CI] -1.35 to -0.53), analgesic drug consumption (SMD -1.87; 95% CI -2.98 to -0.75), postoperative nausea (PON; SMD 0.31; 95% CI 0.13 to 0.73), postoperative vomiting (POV; SMD 0.57; 95% CI 0.11 to 2.92), and PON and POV (PONV; SMD 0.29; 95% CI 0.16 to 0.53). The Zusanli (ST36) and Neiguan (PC6) were the most-used acupoints in the included trials (8/11). The reported adverse reaction was only one case of bruising. Discussion: Acupoint stimulation improved pain control in patients undergoing ERAS more than control treatments. The findings provide an evidence-based premise for incorporating acupoint stimulation into ERAS strategies. More rigorous RCTs are needed in the future.
Collapse
Affiliation(s)
- Jiu Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Li Liu
- Department of Library, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Guoyou Yu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
2
|
Luebke L, von Selle J, Adamczyk WM, Knorr MJ, Carvalho GF, Gouverneur P, Luedtke K, Szikszay TM. Differential Effects of Thermal Stimuli in Eliciting Temporal Contrast Enhancement: A Psychophysical Study. THE JOURNAL OF PAIN 2024; 25:228-237. [PMID: 37591481 DOI: 10.1016/j.jpain.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Offset analgesia (OA) is observed when pain relief is disproportional to the reduction of noxious input and is based on temporal contrast enhancement (TCE). This phenomenon is believed to reflect the function of the inhibitory pain modulatory system. However, the mechanisms contributing to this phenomenon remain poorly understood, with previous research focusing primarily on painful stimuli and not generalizing to nonpainful stimuli. Therefore, the aim of this study was to investigate whether TCE can be induced by noxious as well as innocuous heat and cold stimuli. Asymptomatic subjects (n = 50) were recruited to participate in 2 consecutive experiments. In the first pilot study (n = 17), the parameters of noxious and innocuous heat and cold stimuli were investigated in order to implement them in the main study. In the second (main) experiment, subjects (n = 33) participated in TCE paradigms consisting of 4 different modalities, including noxious heat (NH), innocuous heat (IH), noxious cold (NC), and innocuous cold (IC). The intensity of the sensations of each thermal modality was assessed using an electronic visual analog scale. TCE was confirmed for NH (P < .001), NC (P = .034), and IC (P = .002). Conversely, TCE could not be shown for IH (P = 1.00). No significant correlation between TCE modalities was found (r < .3, P > .05). The results suggest that TCE can be induced by both painful and nonpainful thermal stimulation but not by innocuous warm temperature. The exact underlying mechanisms need to be clarified. However, among other potential mechanisms, this may be explained by a thermo-specific activation of C-fiber afferents by IH and of A-fiber afferents by IC, suggesting the involvement of A-fibers rather than C-fibers in TCE. More research is needed to confirm a peripheral influence. PERSPECTIVE: This psychophysical study presents the observation of temporal contrast enhancement during NH, NC, and innocuous cold stimuli but not during stimulation with innocuous warm temperatures in healthy volunteers. A better understanding of endogenous pain modulation mechanisms might be helpful in explaining the underlying aspects of pain disorders.
Collapse
Affiliation(s)
- Luisa Luebke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Janne von Selle
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Wacław M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Schlesien, Poland; Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Moritz J Knorr
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Gabriela F Carvalho
- Department of Physiotherapy, Faculty of Health, Safety and Society, Furtwangen University, Furtwangen, Germany
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Lübeck, Schleswig-Holstein, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Schleswig-Holstein, Germany
| |
Collapse
|
3
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Tsuji K, Tsujimura T, Sakai S, Suzuki T, Yoshihara M, Nagoya K, Magara J, Satoh Y, Inoue M. Involvement of capsaicin-sensitive nerves in the initiation of swallowing evoked by carbonated water in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2020; 319:G564-G572. [PMID: 32878469 DOI: 10.1152/ajpgi.00233.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Capsaicin powerfully evokes the swallowing reflex and is a known therapeutic agent for improving dysphagia and preventing aspiration pneumonia. However, the role of capsaicin-sensitive nerves in the initiation of swallowing evoked by various natural stimuli remains unclear. To explore this question, we blocked laryngeal capsaicin-sensitive nerves following the coapplication of QX-314 and capsaicin (QX/Cap), and investigated the effects on swallowing evoked by mechanical and chemical stimulation in anesthetized rats. Swallows were evoked by capsaicin, carbonated water (CW), distilled water (DW), and punctate mechanical stimulation using von Frey filaments applied topically to the larynx. Swallows were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles. The initiation of swallowing by capsaicin was strongly suppressed at 5 min following QX/Cap treatment and returned in a time-dependent manner. CW-evoked swallows at 5 min following QX/Cap treatment were significantly diminished compared with before and 30 min after treatment. In contrast, DW-evoked and mechanically evoked swallows were unchanged by QX/Cap treatment. Furthermore, CW-evoked swallows were virtually abolished by transection of the superior laryngeal nerves and significantly decreased by the topical application of acid-sensing ion channel-3 (ASIC3) inhibitor APETx2, but they were not affected by the nonselective transient receptor potential channel inhibitor ruthenium red or the ASIC1 inhibitor mambalgin-1. Taken together, we speculate that capsaicin-sensitive nerves play an important role in the initiation of CW-evoked swallows.NEW & NOTEWORTHY The initiation of swallowing evoked by laryngeal capsaicin and carbonated water application was diminished by the coapplication of QX-314 and capsaicin. Carbonated water-evoked swallows were also abolished by transection of the superior laryngeal nerves and were inhibited by the acid-sensing ion channel-3 inhibitor. Capsaicin-sensitive nerves are involved in the initiation of carbonated water-evoked swallows.
Collapse
Affiliation(s)
- Kojun Tsuji
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan.,Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Shogo Sakai
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Yoshihide Satoh
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, Chuo-ku, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
5
|
The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. J Neurosci 2020; 40:9346-9363. [PMID: 33115929 DOI: 10.1523/jneurosci.1546-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity.SIGNIFICANCE STATEMENT Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.
Collapse
|
6
|
Goldstein RH, Barkai O, Íñigo-Portugués A, Katz B, Lev S, Binshtok AM. Location and Plasticity of the Sodium Spike Initiation Zone in Nociceptive Terminals In Vivo. Neuron 2019; 102:801-812.e5. [PMID: 30926280 DOI: 10.1016/j.neuron.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 11/18/2022]
Abstract
Nociceptive terminals possess the elements for detecting, transmitting, and modulating noxious signals, thus being pivotal for pain sensation. Despite this, a functional description of the transduction process by the terminals, in physiological conditions, has not been fully achieved. Here, we studied how nociceptive terminals in vivo convert noxious stimuli into propagating signals. By monitoring noxious-stimulus-induced Ca2+ dynamics from mouse corneal terminals, we found that initiation of Na+ channel (Nav)-dependent propagating signals takes place away from the terminal and that the starting point for Nav-mediated propagation depends on Nav functional availability. Acute treatment with the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) resulted in a shift of the location of Nav involvement toward the terminal, thus increasing nociceptive excitability. Moreover, a shift of Nav involvement toward the terminal occurs in corneal hyperalgesia resulting from acute photokeratitis. This dynamic change in the location of Nav-mediated propagation initiation could underlie pathological pain hypersensitivity.
Collapse
Affiliation(s)
- Robert H Goldstein
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9112001 Jerusalem, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9112001 Jerusalem, Israel
| | - Almudena Íñigo-Portugués
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9112001 Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9112001 Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University, 9112001 Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, 9112001 Jerusalem, Israel.
| |
Collapse
|
7
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
8
|
Goldstein RH, Katz B, Lev S, Binshtok AM. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76010. [PMID: 28715544 DOI: 10.1117/1.jbo.22.7.076010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Pain signals are detected by terminals of nociceptive peripheral fibers situated among the keratinocytes and epithelial cells. Despite being key structures for pain-related stimuli detection and transmission, little is known about the functional organization of terminals. This is mainly due to their minute size, rendering them largely inaccessible by conventional experimental approaches. Here, we report the implementation of an ultrafast optical recording approach for studying cultured neurite terminals, which are readily accessible for assay manipulations. Using this approach, we were able to study capsaicin-induced calcium and sodium dynamics in the nociceptive processes, at a near-action potential time resolution. The approach was sensitive enough to detect differences in latency, time-to-peak, and amplitude of capsaicin-induced ion transients along the terminal neurites. Using this approach, we found that capsaicin evokes distinctive calcium signals along the neurite. At the terminal, the signal was insensitive to voltage-gated sodium channel blockers, and showed slower kinetics and smaller signal amplitudes, compared with signals that were measured further up the neurite. These latter signals were mainly abolished by sodium channel blockers. We propose this ultrafast optical recording approach as a model for studying peripheral terminal signaling, forming a basis for studying pain mechanisms in normal and pathological states.
Collapse
Affiliation(s)
- Robert H Goldstein
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ben Katz
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Shaya Lev
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Alexander M Binshtok
- The Hebrew University, Institute for Medical Research Israel Canada, Faculty of Medicine, Department of Medical Neurobiology, Jerusalem, IsraelbThe Hebrew University, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| |
Collapse
|
9
|
Vardeh D, Mannion RJ, Woolf CJ. Toward a Mechanism-Based Approach to Pain Diagnosis. THE JOURNAL OF PAIN 2016; 17:T50-69. [PMID: 27586831 PMCID: PMC5012312 DOI: 10.1016/j.jpain.2016.03.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The past few decades have witnessed a huge leap forward in our understanding of the mechanistic underpinnings of pain, in normal states where it helps protect from injury, and also in pathological states where pain evolves from a symptom reflecting tissue injury to become the disease itself. However, despite these scientific advances, chronic pain remains extremely challenging to manage clinically. Although the number of potential treatment targets has grown substantially and a strong case has been made for a mechanism-based and individualized approach to pain therapy, arguably clinicians are not much more advanced now than 20 years ago, in their capacity to either diagnose or effectively treat their patients. The gulf between pain research and pain management is as wide as ever. We are still currently unable to apply an evidence-based approach to chronic pain management that reflects mechanistic understanding, and instead, clinical practice remains an empirical and often unsatisfactory journey for patients, whose individual response to treatment cannot be predicted. In this article we take a common and difficult to treat pain condition, chronic low back pain, and use its presentation in clinical practice as a framework to highlight what is known about pathophysiological pain mechanisms and how we could potentially detect these to drive rational treatment choice. We discuss how present methods of assessment and management still fall well short, however, of any mechanism-based or precision medicine approach. Nevertheless, substantial improvements in chronic pain management could be possible if a more strategic and coordinated approach were to evolve, one designed to identify the specific mechanisms driving the presenting pain phenotype. We present an analysis of such an approach, highlighting the major problems in identifying mechanisms in patients, and develop a framework for a pain diagnostic ladder that may prove useful in the future, consisting of successive identification of 3 steps: pain state, pain mechanism, and molecular target. Such an approach could serve as the foundation for a new era of individualized/precision pain medicine. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION)-American Pain Society (APS) Pain Taxonomy (AAPT) includes pain mechanisms as 1 of the 5 dimensions that need to be considered when making a diagnostic classification. The diagnostic ladder proposed in this article is consistent with and an extension of the AAPT. PERSPECTIVE We discuss how identifying the specific mechanisms that operate in the nervous system to produce chronic pain in individual patients could provide the basis for a targeted and rational precision medicine approach to controlling pain, using chronic low back pain as our example.
Collapse
Affiliation(s)
- Daniel Vardeh
- Division of Pain Neurology, Department of Neurology and Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard J Mannion
- Department of Academic Neurosurgery, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Lithwick A, Lev S, Binshtok AM. Chronic pain-related remodeling of cerebral cortex - 'pain memory': a possible target for treatment of chronic pain. Pain Manag 2014; 3:35-45. [PMID: 24645930 DOI: 10.2217/pmt.12.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SUMMARY Chronic pain is a major health problem worldwide, yet its management is nonspecific and often insufficient. In order to be able to alleviate chronic pain, it is crucial to understand the profound and comprehensive mechanisms by which chronic pain is triggered and processed in higher brain areas. Painful stimuli are processed by an intricate axis of peripheral and central components. Adding to the inherent complexity, the system is highly dynamic, undergoing constant plastic changes that often lead to perpetuation of pain. Given the key role that the cerebral cortex plays in sensory perception, understanding pain-related changes in cortical areas allocated to pain sensation is crucial. This review aims to summarize present research on pain-related plastic changes in the cerebral cortex.
Collapse
Affiliation(s)
- Avigail Lithwick
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | | | |
Collapse
|
12
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
Franz-Montan M, Cereda CMS, Gaspari A, da Silva CMG, de Araújo DR, Padula C, Santi P, Narvaes E, Novaes PD, Groppo FC, de Paula E. Liposomal-benzocaine gel formulation: correlation between in vitro assays and in vivo topical anesthesia in volunteers. J Liposome Res 2012; 23:54-60. [PMID: 23245380 DOI: 10.3109/08982104.2012.742536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to characterize a liposome-based benzocaine (BZC) formulation designed for topical use on the oral mucosa and to evaluate its in vitro retention and permeation using the Franz-type diffusion cells through pig esophagus mucosa. To predict the effectiveness of new designed formulations during preclinical studies, a correlation between in vitro assays and in vivo efficacy was performed. Liposomal BZC was characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and morphology. Liposomal BZC (BL10) was incorporated into gel formulation and its performances were compared to plain BZC gel (B10) and the commercially available BZC gel (B20). BL10 and B10 presented higher flux and retention on pig esophagus mucosa with a shorter lag time, when compared to B20. BZC flux was strongly correlated with in vivo anesthetic efficacy, but not with topical anesthesia duration. The retention studies did not correlate with any of the in vivo efficacy parameters. Thus, in vitro permeation study can be useful to predict anesthetic efficacy during preclinical tests, because a correlation between flux and anesthetic efficacy was observed. Therefore, in vitro assays, followed by in vivo efficacy, are necessary to confirm anesthetic performance.
Collapse
Affiliation(s)
- Michelle Franz-Montan
- Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zakir HM, Mostafeezur RM, Suzuki A, Hitomi S, Suzuki I, Maeda T, Seo K, Yamada Y, Yamamura K, Lev S, Binshtok AM, Iwata K, Kitagawa J. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS One 2012; 7:e44023. [PMID: 22962595 PMCID: PMC3433461 DOI: 10.1371/journal.pone.0044023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023] Open
Abstract
Increased expression of the transient receptor potential vanilloid 1 (TRPV1) channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP) - induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN) transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG) neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect dynamic changes in TRPV1 expression, in various pathological conditions.
Collapse
Affiliation(s)
- Hossain Md. Zakir
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rahman Md. Mostafeezur
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akiko Suzuki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ikuko Suzuki
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kenji Seo
- Division of Dental Anesthesiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiaki Yamada
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Alexander M. Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Center for Research on Pain, The Hebrew University Medical School, Jerusalem, Israel
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Junichi Kitagawa
- Division of Oral Physiology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| |
Collapse
|