1
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
2
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Protective Effects of Human Pericyte-like Adipose-Derived Mesenchymal Stem Cells on Human Retinal Endothelial Cells in an In Vitro Model of Diabetic Retinopathy: Evidence for Autologous Cell Therapy. Int J Mol Sci 2023; 24:ijms24020913. [PMID: 36674425 PMCID: PMC9860961 DOI: 10.3390/ijms24020913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1β, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-β1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-β axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.
Collapse
|
4
|
Zhang L, Li X, Feng X, Berkman T, Ma R, Du S, Wu S, Huang C, Amponsah A, Bekker A, Tao YX. E74-like factor 1 contributes to nerve trauma-induced nociceptive hypersensitivity through transcriptionally activating matrix metalloprotein-9 in dorsal root ganglion neurons. Pain 2023; 164:119-131. [PMID: 35507368 PMCID: PMC9633582 DOI: 10.1097/j.pain.0000000000002673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. We report here that peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve or unilateral fourth lumbar spinal nerve ligation led to the time-dependent increases in the levels of Elf1 mRNA and ELF1 protein in injured DRG, but not in the spinal cord. Preventing this increase through DRG microinjection of adeno-associated virus 5 expressing Elf1 shRNA attenuated the CCI-induced upregulation of matrix metallopeptidase 9 (MMP9) in injured DRG and induction and maintenance of nociceptive hypersensitivities, without changing locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking this increase through DRG microinjection of AAV5 expressing full-length Elf1 upregulated DRG MMP9 and produced enhanced responses to mechanical, heat, and cold stimuli in naive mice. Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiang Li
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tolga Berkman
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ruining Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Congcong Huang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Akwasi Amponsah
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departments of Cell Biology & Molecular Medicine and Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Ünal A, Baykal O, Öztürk N. Comparison of matrix metalloproteinase 9 and 14 levels in vitreous samples in diabetic and non-diabetic patients: a case control study. Int J Retina Vitreous 2022; 8:44. [PMID: 35729613 PMCID: PMC9210686 DOI: 10.1186/s40942-022-00394-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background MMP-9 plays a prominent role in inflammation and MMP-14 take part in angiogenesis. The objective of this study is to compare MMP-9 and MMP-14 levels between diabetic and non-diabetic patients. Methods The patients who scheduled for pars plana vitrectomy were included in our study. Patients are divided into 2 groups: the diabetic group and non-diabetic group. Age, gender, intraocular pressure(IOP), visual acuity (VA) were reported. Color fundus photography, fundus fluorescein angiography, optic coherence tomography (OCT) were performed before and after the operation. MMP-9 and MMP-14 levels in vitreous samples were analyzed with a reader device by ELISA method. Mann–Whitney U test and logistic regressions were used in statistical analysis, p < 0.05 accepted as statistically significant. Results 70 eyes of 70 patients who received pars plana vitrectomy were enrolled in the study and divided into 2 groups: 34 patients in the diabetic group, 36 patients in the non-diabetic group. The average age of diabetic patients was 60.14 ± 10.20, and non-diabetic patients was 64.22 ± 11.16, respectively. The average MMP-9 (0.67 ± 0.66 ng/ml) and MMP-14 (0.16 ± 0.45 ng/ml) values in the diabetic group were significantly higher than the average MMP-9 (0.21 ± 0.05 ng/ml) and MMP-14 (and 0.07 ± 0.02 ng/ml) values in the non-diabetic group (P < 0.01). Also, it was observed that MMP-9 and MMP-14 levels increases as the diabetic disease duration increases. The risk of diabetes incidence increased with high levels of MMP-9 and MMP-14. Conclusion Due to the higher levels of MMP-9 and MMP-14 in the pathogenesis of diabetic retinopathy, these proteins may probably be among the therapeutic targets in the prevention and treatment of retinopathy.
Collapse
Affiliation(s)
- A Ünal
- Faculty of Medicine, Department of Ophthalmology, Artvin State Hospital, Atatürk University, Çarşı District, Hospital Street, No:5, 08000, Artvin, Turkey.
| | - O Baykal
- Faculty of Medicine, Department of Ophthalmology, Ataturk University, Erzurum, Turkey
| | - N Öztürk
- Faculty of Medicine, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl Stroke Res 2021; 12:905-922. [PMID: 33423214 DOI: 10.1007/s12975-020-00883-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.
Collapse
|
8
|
Salih KS, Hamdan FB, Al-Mayah QS. Diagnostic value of matrix metalloproteinase-2 and high mobility group box 1 in patients with refractory epilepsy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
There are large numbers of inflammatory molecules and humoral mediators that can be involved in the epileptogenesis such as cytokines, matrix metalloproteinases (MMP), and high mobility group box-1 (HMGB1). We aimed to evaluate serum levels and the diagnostic value of MMP-2 and HMGB1 in Iraqi patients with epilepsy.
Methods
One hundred epileptic patients comprised 60 controlled epileptics and 40 refractory patients to treatment with multi antiepileptic drugs (AEDs). Other 50 family-unrelated age- and sex-matched healthy subjects were selected to represent the control group. Serum levels of MMP-2 and HMGB1 were estimated using ELISA. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of these markers when required.
Results
MMP-2 level was significantly higher in controls than epileptic patients in general (controlled and refractory patients). ROC curve, showed poor diagnostic value of MMP-2 in discriminating epileptics into responsive or refractory to treatment from controls (AUC = 0.679 (95% CI = 0.536-0.823), and AUC = 0.77 (95% CI = 0.637-902), respectively). Serum HMGB1 level in epileptic patients and controls was in close approximation to each other.
Conclusions
MMP-2 is significantly decreased in patients particularly those with refractory epilepsy (RE); however, it has poor diagnostic value. No difference in the serum HMGB1 level between epileptic patients and controls.
Collapse
|
9
|
Nocella C, Cammisotto V, Bartimoccia S, Castellani V, Loffredo L, Pastori D, Pignatelli P, Sanguigni V, Violi F, Carnevale R. A novel role of MMP2 in regulating platelet NOX2 activation. Free Radic Biol Med 2020; 152:355-362. [PMID: 32268176 DOI: 10.1016/j.freeradbiomed.2020.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
NOX2 has a key role for cellular production of reactive oxidant species (ROS) and although the mechanism of its activation is well known, little is known about its regulation. Metallo-proteinases (MMPs) regulate numerous protein activities both in physiological and pathological conditions but their interplay with NOX2 and ROS formation is still unclear. We performed experimental studies in human platelets and polymorphonuclear leukocytes (PMNs) to investigate the interplay of MMP2 with NOX2 activity. In collagen-stimulated platelets and in PMA-stimulated PMNs from healthy subjects, an immediate burst of ROS was detected at 10 min to then decline at 20 min. Coincidentally, sNOX2-dp, a split-off product of NOX2, increased and peaked at 10 min. ROS production was persistent whereas sNOX2dp is not released in cells treated with MMP2 inhibitor compared to other MMPs inhibitors. Western blot analysis showed the highest MMP2 expression on the cell membrane 10 min after stimulation. Moreover, the co-immunoprecipitation assay confirms the interaction between MMP2 and NOX2 that formed an active immuno-complex. Treating cells with NOX2ds-tat, an inhibitor of NADPH oxidase, significantly reduced ROS formation, sNOX2-dp, MMP2 expression and MMP2-NOX2-complex, which were all restored if cells were added with H2O2. The study provides the first evidence that MMP2 has a key role in blunting platelet NOX2 activity and eventually ROS formation.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161, Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Valerio Sanguigni
- Department of Internal Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Roberto Carnevale
- Mediterranea, Cardiocentro, 80122, Napoli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.
| |
Collapse
|
10
|
Crumbs proteins regulate layered retinal vascular development required for vision. Biochem Biophys Res Commun 2020; 521:939-946. [DOI: 10.1016/j.bbrc.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
11
|
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2019; 317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
In recent years, nanomedicines have emerged as a promising method for central nervous system drug delivery, enabling the drugs to overcome the blood-brain barrier and accumulate preferentially in the brain. Despite the current success of brain-targeted nanomedicines, limitations still exist in terms of the targeting specificity. Based on the molecular mechanism, the exact cell populations and subcellular organelles where the injury occurs and the drugs take effect have been increasingly accepted as a more specific target for the next generation of nanomedicines. Dual and multi-targeted nanoparticles integrate different targeting functionalities and have provided a paradigm for precisely delivering the drug to the pathological site inside the brain. The targeting process often involves the sequential or synchronized navigation of the targeting moieties, which allows highly controlled drug delivery compared to conventional targeting strategies. Herein, we focus on the up-to-date design of pathological site-specific nanoparticles for brain drug delivery, highlighting the dual and multi-targeting strategies that were employed and their impact on improving targeting specificity and therapeutic effects. Furthermore, the background discussion of the basic properties of a brain-targeted nanoparticle and the common lesion features classified by neurological pathology are systematically summarized.
Collapse
Affiliation(s)
- Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Gu HW, Xing F, Jiang MJ, Wang Y, Bai L, Zhang J, Li TT, Zhang W, Xu JT. Upregulation of matrix metalloproteinase-9/2 in the wounded tissue, dorsal root ganglia, and spinal cord is involved in the development of postoperative pain. Brain Res 2019; 1718:64-74. [DOI: 10.1016/j.brainres.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
13
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 819] [Impact Index Per Article: 163.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
14
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Cooper JM, Halter KA, Prosser RA. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 2018; 5:15-36. [PMID: 31236509 PMCID: PMC6584685 DOI: 10.1016/j.nbscr.2018.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/06/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023] Open
Abstract
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Collapse
Key Words
- ADAM, A disintegrin and metalloproteinase
- AMPAR, AMPA receptor
- Astrocytes
- BDNF, brain-derived neurotrophic factor
- BMAL1, Brain and muscle Arnt-like-1 protein
- Bmal1, Brain and muscle Arnt-like-1 gene
- CAM, cell adhesion molecules
- CRY, cryptochrome protein
- Cell adhesion molecules
- Circadian rhythms
- Cry, cryptochrome gene
- DD, dark-dark
- ECM, extracellular matrix
- ECS, extracellular space
- EEG, electroencephalogram
- Endo N, endoneuraminidase N
- Extracellular proteases
- GFAP, glial fibrillary acidic protein
- IL, interleukin
- Ig, immunoglobulin
- LC, locus coeruleus
- LD, light-dark
- LH, lateral hypothalamus
- LRP-1, low density lipoprotein receptor-related protein 1
- LTP, long-term potentiation
- MMP, matrix metalloproteinases
- NCAM, neural cell adhesion molecule protein
- NMDAR, NMDA receptor
- NO, nitric oxide
- NST, nucleus of the solitary tract
- Ncam, neural cell adhesion molecule gene
- Nrl, neuroligin gene
- Nrx, neurexin gene
- P2, purine type 2 receptor
- PAI-1, plasminogen activator inhibitor-1
- PER, period protein
- PPT, peduculopontine tegmental nucleus
- PSA, polysialic acid
- Per, period gene
- REMS, rapid eye movement sleep
- RSD, REM sleep disruption
- SCN, suprachiasmatic nucleus
- SWS, slow wave sleep
- Sleep-wake system
- Suprachiasmatic nucleus
- TNF, tumor necrosis factor
- TTFL, transcriptional-translational negative feedback loop
- VIP, vasoactive intestinal polypeptide
- VLPO, ventrolateral preoptic
- VP, vasopressin
- VTA, ventral tegmental area
- dNlg4, drosophila neuroligin-4 gene
- nNOS, neuronal nitric oxide synthase gene
- nNOS, neuronal nitric oxide synthase protein
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
- uPAR, uPA receptor
Collapse
|
16
|
Nalamolu KR, Chelluboina B, Magruder IB, Fru DN, Mohandass A, Venkatesh I, Klopfenstein JD, Pinson DM, Boini KM, Veeravalli KK. Post-stroke mRNA expression profile of MMPs: effect of genetic deletion of MMP-12. Stroke Vasc Neurol 2018; 3:153-159. [PMID: 30294471 PMCID: PMC6169614 DOI: 10.1136/svn-2018-000142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/03/2022] Open
Abstract
Background and purpose Recent reports from our laboratory demonstrated the post-ischaemic expression profile of various matrix metalloproteinases (MMPs) in rats and the detrimental role of MMP-12 in post-stroke brain damage. We hypothesise that the post-stroke dysregulation of MMPs is similar across species and that genetic deletion of MMP-12 would not affect the post-stroke expression of other MMPs. We tested our hypothesis by determining the pre-ischaemic and post-ischaemic expression profile of MMPs in wild-type and MMP-12 knockout mice. Methods Focal cerebral ischaemia was induced in wild-type and MMP-12 knockout mice by middle cerebral artery occlusion procedure by insertion of a monofilament suture. One hour after ischaemia, reperfusion was initiated by removing the monofilament. One day after reperfusion, ischaemic brain tissues from various groups of mice were collected, and total RNA was isolated and subjected to cDNA synthesis followed by PCR analysis. Results Although the post-stroke expression profile of MMPs in the ischaemic brain of mice is different from rats, there is a clear species similarity in the expression of MMP-12, which was found to be predominantly upregulated in both species. Further, the post-stroke induction or inhibition of various MMPs in MMP-12 knockout mice is different from their respective expression profile in wild-type mice. Moreover, the brain mRNA expression profile of various MMPs in MMP-12 knockout mice under normal conditions is also different to their expression in wild-type mice. Conclusions In the ischaemic brain, MMP-12 upregulates several fold higher than any other MMP. Mice derived with the genetic deletion of MMP-12 are constitutive and have altered MMP expression profile both under normal and ischaemic conditions.
Collapse
Affiliation(s)
- Koteswara Rao Nalamolu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Bharath Chelluboina
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Ian B Magruder
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Diane N Fru
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Adithya Mohandass
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Ishwarya Venkatesh
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Jeffrey D Klopfenstein
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA.,Department of Neurosurgery, University of Illinois College of Medicine, Peoria, Illinois, USA.,Comprehensive Stroke Center, Illinois Neurological Institute, OSF HealthCare System, Saint Francis Medical Center, Peoria, Illinois, USA
| | - David M Pinson
- Department of Pathology, University of Illinois College of Medicine, Peoria, Illinois, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, USA.,Department of Neurosurgery, University of Illinois College of Medicine, Peoria, Illinois, USA.,Department of Neurology, University of Illinois College of Medicine, Peoria, Illinois, USA
| |
Collapse
|
17
|
Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1. J Virol 2017; 91:JVI.01412-16. [PMID: 28053109 DOI: 10.1128/jvi.01412-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/24/2016] [Indexed: 12/17/2022] Open
Abstract
Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice.IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and microglia, cell types in the neurovascular unit that can secrete MMPs. Ex vivo MAV-1 infection of these cell types caused higher MMP activity than mock infection, suggesting that they may contribute to the higher MMP activity seen in vivo To our knowledge, this provides the first evidence of an encephalitic DNA virus in its natural host causing increased MMP activity in brains.
Collapse
|
18
|
Bobińska K, Szemraj J, Czarny P, Gałecki P. Role of MMP-2, MMP-7, MMP-9 and TIMP-2 in the development of recurrent depressive disorder. J Affect Disord 2016; 205:119-129. [PMID: 27434116 DOI: 10.1016/j.jad.2016.03.068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND MMPs play a role in modulating inflammation and their impact in many inflammatory diseases has been investigated. The aim of the study was to demonstrate the relationship between selected polymorphisms for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T) and TIMP-2 (G-418C) and depression, as well as between the importance of distribution of genotypes and alleles for the examined polymorphisms and the risk of depression occurrence. METHODS The examined population comprised 203 individuals suffering from depression and 99 individuals who formed a control group. Designations were carried out for MMP-2 (C-735T), MMP-7 (A-181G), MMP-9 (T-1702A, C1562T) and TIMP-2 (G-418C). The distribution of haplotypes of the MMP-9T-1702A and MMP-9 C1562T was specified for MMP-9 (T-1702A, C1562T). RESULTS In rDD group and in the control group the presence of the T-1702A polymorphism for MMP-9 increases the risk of rDD development for the T/T genotype and T allele (OR=2.191). The A/A genotype (OR=0.120) and A allele (OR=0.442) reduce the risk of disease occurrence in the examined polymorphisms for MMP-2, MMP-7 and MMP-9. The C/C genotype and C allele of the C1562T MMP-9 polymorphism increase the risk of middle-age depression, while the T allele makes this risk smaller. The incidence of rDD was greater for the C/T C-735T/MMP-2/genotype and G/G A-181G /MMP-7/genotype. A similarly high risk of incidence was confirmed for the C/T - T/T genotypes of the MMP-2C-735T and MMP-9T-1702A polymorphisms. A higher risk of incidence (OR=9.376) was confirmed in the case of a set of T/T-G/C genotypes of the MMP-9T-1702A and TIMP-2G-418C polymorphisms. For the gene-gene interactions presented above, a statistically significant difference was found between the examined group and the control group. LIMITATIONS A small group of examined patients and the need for conducting the study in other populations in order to determine the impact of the stratification factor. CONCLUSIONS 1. The evaluated polymorphisms in MMP genes have significant importance for the development of depression; they also have an impact on depression onset. 2. Further studies focused on changes of MMPs in the development of rDD are required.
Collapse
Affiliation(s)
- Kinga Bobińska
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland
| | - Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, Aleksandrowska 159, Lodz 91-229, Poland.
| |
Collapse
|
19
|
Abstract
OBJECTIVE Among the 28 metalloproteinases described so far, 23 can be found in the human organism, but only few are expressed in the human brain. The main objective of this study was to analyse the relationship between MMP-2, MMP-9 and TIMP-2 gene expression and cognitive performance. METHODS The study comprised 234 subjects: patients suffering from recurrent depressive disorder (rDD, n=139) and healthy subjects (HS, n=95). The cognitive function assessment was carried out with the help of the following tests: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. Gene expression on the mRNA and protein level was evaluated for MMP-2, MMP-9 and TIMP-2 in both groups using RNA extraction, reverse transcription and enzyme-linked immunosorbent assay. RESULTS Both mRNA and protein expression levels of all the genes were significantly lower in rDD subjects as compared with HS. Having analysed the entire experimental group (N=234), significant interrelations were found between the expression of the analysed genes and the results of the tests used to measure cognitive functions. Increased expression on both the mRNA and the protein level was associated in each case with better performance of all the tests conducted. After carrying out a separate analysis on the people from the rDD group and the HS group, similar dependencies were still observed. CONCLUSIONS The results of our study show decreased expression of MMP-2, MMP-9 and TIMP-2 genes on both mRNA and protein levels in depression. Elevated expression of MMP-2, MMP-9, TIMP-2 positively affects cognitive efficiency: working memory, executive functions, attention functions, direct and delayed auditory-verbal memory, the effectiveness of learning processes and verbal fluency. The study highlights the important role of peripheral matrix metalloproteinases genes in depression and cognitive functions.
Collapse
|
20
|
Mouse Adenovirus Type 1 Early Region 1A Effects on the Blood-Brain Barrier. mSphere 2016; 1:mSphere00079-16. [PMID: 27303733 PMCID: PMC4894691 DOI: 10.1128/msphere.00079-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 01/26/2023] Open
Abstract
Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in brains of infected mice. We investigated whether the major transcriptional regulator of adenoviruses, E1A protein, is responsible for any of the specific phenotypes that result from MAV-1 infection. For some of the functions assayed, an E1A mutant virus behaved like wild-type virus. However, expression of mRNA for one matrix metalloproteinase was higher in the virus lacking E1A protein production. This highlights the complex nature of encephalitis and suggests that E1A may have transcriptional effects on host genes important for the development of encephalitis. Mouse adenovirus type 1 (MAV-1) infects endothelial cells and disrupts the blood-brain barrier (BBB), causing encephalitis in inbred and outbred mice. Using a virus mutant that does not produce the early region 1A protein E1A, we investigated whether the activity of this known viral transcriptional regulator is needed for BBB disruption and other phenotypes associated with encephalitis. The wild-type (wt) virus and E1A mutant virus caused similar levels of permeability of sodium fluorescein in brains of infected mice. In an in vitro assay of BBB integrity, wt and mutant virus caused similar decreases in transendothelial electrical resistance in primary mouse brain endothelial cell monolayers. These results indicate that E1A protein does not contribute to disruption of BBB integrity in animals or cultured cells. Both wt and E1A mutant virus infection of mice led to similar increases in the activity of two matrix metalloproteinases known to correlate with BBB disruption, MMP2 and MMP9, while causing no increase in the steady-state expression of MMP2 or MMP9 mRNA. In contrast, the amount of MMP3 transcripts increased upon infection by both viruses and to a higher level in infections by the mutant virus lacking E1A protein production. There was no difference in the levels of steady-state expression of mRNA for tight junction proteins among mock virus, wt virus, and mutant virus infections. Thus, the MAV-1 E1A protein does not measurably affect BBB integrity in the parameters assayed, although it reduces the amount of MMP3 mRNA steady-state expression induced in brains upon infection. IMPORTANCE Encephalitis can be caused by viruses, and it is potentially life-threatening because of the vital nature of the brain and the lack of treatment options. MAV-1 produces viral encephalitis in its natural host, providing a model for investigating factors involved in development of encephalitis. MAV-1 infection disrupts the BBB and increases activity of matrix metalloproteinases in brains of infected mice. We investigated whether the major transcriptional regulator of adenoviruses, E1A protein, is responsible for any of the specific phenotypes that result from MAV-1 infection. For some of the functions assayed, an E1A mutant virus behaved like wild-type virus. However, expression of mRNA for one matrix metalloproteinase was higher in the virus lacking E1A protein production. This highlights the complex nature of encephalitis and suggests that E1A may have transcriptional effects on host genes important for the development of encephalitis.
Collapse
|
21
|
Wang R, Zeng GQ, Tong RZ, Zhou D, Hong Z. Serum matrix metalloproteinase-2: A potential biomarker for diagnosis of epilepsy. Epilepsy Res 2016; 122:114-9. [PMID: 27016865 DOI: 10.1016/j.eplepsyres.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES In this study, we evaluate the utility of serum metalloproteinase-2 (MMP-2) as a biomarker for the diagnosis of epilepsy. METHODS We assessed serum MMP-2 levels in 233 epileptic and 97 healthy control subjects. Control subjects had no complaints or signs of neurological disorders for at least 12 months prior to serum collection. Serum MMP-2 levels were determined using the Luminex technology. RESULTS Compared with controls, subjects with epilepsy had significantly lower serum MMP-2 concentrations (P<0.05). There was no significant difference between males and females in either group (P>0.05). Serum MMP-2 concentrations were highly correlated with age in both groups, and this correlation was strongest for males. When an MMP-2 cut-off value of 175.40ng/ml was used, the sensitivity for distinguishing subjects with epilepsy from controls was 71.13% and the specificity was 62.66%. CONCLUSIONS Our results reveal that serum MMP-2 may be a potential biomarker for the diagnosis of epilepsy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Guang Qun Zeng
- Department of Laboratory, Pengzhou People's Hospital, Chengdu, Sichuan, People's Republic of China.
| | - Rui Zhan Tong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6927328. [PMID: 26925194 PMCID: PMC4748094 DOI: 10.1155/2016/6927328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/26/2015] [Accepted: 12/31/2015] [Indexed: 11/18/2022]
Abstract
Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.
Collapse
|
23
|
Hill JW, Nemoto EM. Matrix-derived inflammatory mediator N-acetyl proline-glycine-proline is neurotoxic and upregulated in brain after ischemic stroke. J Neuroinflammation 2015; 12:214. [PMID: 26588897 PMCID: PMC4654865 DOI: 10.1186/s12974-015-0428-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/06/2015] [Indexed: 12/03/2022] Open
Abstract
Background N-acetyl proline-glycine-proline (ac-PGP) is a matrix-derived chemokine produced through the proteolytic destruction of collagen by matrix metalloproteinases (MMPs). While upregulation and activation of MMPs and concomitant degradation of the extracellular matrix are known to be associated with neurological injury in ischemic stroke, the production of ac-PGP in stroke brain and its effects on neurons have not been investigated. Findings We examined the effects of ac-PGP on primary cortical neurons and found that it binds neuronal CXCR2 receptors, activates extracellular signal-regulated kinase 1/2 (ERK1/2), and induces apoptosis associated with caspase-3 cleavage in a dose-dependent manner. After transient ischemic stroke in rats, ac-PGP was significantly upregulated in infarcted brain tissue. Conclusions The production of ac-PGP in brain in ischemia/reperfusion injury and its propensity to induce apoptosis in neurons may link MMP-mediated destruction of the extracellular matrix and opening of the blood-brain barrier to progressive neurodegeneration associated with the initiation and propagation of inflammation. Ac-PGP may be a novel neurotoxic inflammatory mediator involved in sustained inflammation and neurodegeneration in stroke and other neurological disorders associated with activation of MMPs.
Collapse
Affiliation(s)
- Jeff W Hill
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Edwin M Nemoto
- Department of Neurosurgery, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
24
|
Shu H, Zheng GQ, Wang X, Sun Y, Liu Y, Weaver JM, Shen X, Liu W, Jin X. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats. J Neurochem 2015; 135:357-67. [PMID: 26263395 DOI: 10.1111/jnc.13283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/29/2022]
Abstract
The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.
Collapse
Affiliation(s)
- Hui Shu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Guo-qing Zheng
- Department of Neurology, The Second Affiliated Hospital &Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yushan Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - John Michael Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xianzhi Shen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Key Laboratory of Neurosurgery, and the Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107:342-71. [PMID: 26032862 DOI: 10.1111/boc.201500011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany
| | - Ruben Colla
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|
26
|
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 2015; 1623:30-8. [PMID: 25916577 DOI: 10.1016/j.brainres.2015.04.024] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 01/14/2023]
Abstract
Matrix metalloproteinases (MMPs) are important in injury and recovery in ischemic injury. They are proteolytic enzymes that degrade all components of the extracellular matrix (ECM). They are secreted in a latent form, protecting the cell from damage, but once activated induce injury prior to rapid inactivation by four tissue inhibitors to metalloproteinases (TIMPs). Normally the constitutive enzymes, MMP-2 and membrane type MMP (MMP-14), are activated in a spatially specific manner and act close to the site of activation, while the inducible enzymes, MMP-3 and MMP-9, become active through the action of free radicals and other enzymes during neuroinflammation. Because of the complex nature of the interactions with tissues during development, injury and repair, the MMPs have multiple roles, participating in the injury process in the early stages and contributing to recovery during the later stages. This dual role complicates the planning of treatment strategies. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
27
|
Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation 2015; 12:26. [PMID: 25889169 PMCID: PMC4340283 DOI: 10.1186/s12974-015-0245-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background Minocycline reduces reperfusion injury by inhibiting matrix metalloproteinases (MMPs) and microglia activity after cerebral ischemia. Prior studies of minocycline investigated short-term neuroprotective effects during subacute stage of stroke; however, the late effects of minocycline against early reperfusion injury on neurovascular remodeling are less well studied. We have shown that spontaneous angiogenesis vessels in ischemic brain regions have high blood–brain barrier (BBB) permeability due to lack of major tight junction proteins (TJPs) in endothelial cells at three weeks. In the present study, we longitudinally investigated neurological outcome, neurovascular remodeling and microglia/macrophage alternative activation after spontaneous and minocycline-induced stroke recovery. Methods Adult spontaneously hypertensive rats had a 90 minute transient middle cerebral artery occlusion. At the onset of reperfusion they received a single dose of minocycline (3 mg/kg intravenously) or a vehicle. They were studied at multiple time points up to four weeks with magnetic resonance imaging (MRI), immunohistochemistry and biochemistry. Results Minocycline significantly reduced the infarct size and prevented tissue loss in the ischemic hemispheres compared to vehicle-treated rats from two to four weeks as measured with MRI. Cerebral blood flow measured with arterial spin labeling (ASL) showed that minocycline improved perfusion. Dynamic contrast-enhanced MRI indicated that minocycline reduced BBB permeability accompanied with higher levels of TJPs measured with Western blot. Increased MMP-2 and −3 were detected at four weeks. Active microglia/macrophage, surrounding and within the peri-infarct areas, expressed YM1, a marker of M2 microglia/macrophage activation, at four weeks. These microglia/macrophage expressed both pro-inflammatory factors tumor necrosis factors-α (TNF-α) and interleukin-1β (IL-1β) and anti-inflammatory factors transforming growth factor-β (TGF-β) and interleukin-10 (IL-10). Treatment with minocycline significantly reduced levels of TNF-α and IL-1β, and increased levels of TGF-β, IL-10 and YM1. Conclusions Early minocycline treatment against reperfusion injury significantly promotes neurovascular remodeling during stroke recovery by reducing brain tissue loss, enhancing TJP expression in ischemic brains and facilitating neuroprotective phenotype alternative activation of microglia/macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0245-4) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Wu L, Du Y, Lok J, Lo EH, Xing C. Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms. J Neurochem 2015; 132:622-8. [PMID: 25557118 DOI: 10.1111/jnc.13023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022]
Abstract
Inflammation is a key part of central nervous system pathophysiology. However, inflammatory factors are now thought to have both beneficial and deleterious effects. Here, we examine the hypothesis that lipocalin-2 (LCN2), an inflammatory molecule that can be up-regulated in the distressed central nervous system, may enhance angiogenesis in brain endothelial cells. Adding LCN2 (0.5-2.0 μg/mL) to RBE (Rat brain endothelial cells). 4 rat brain endothelial cells significantly increased matrigel tube formation and scratch migration, and also elevated levels of iron and reactive oxygen species. Co-treatment with a radical scavenger (U83836E), a Nox inhibitor (apocynin) and an iron chelating agent (deferiprone) significantly dampened the ability of LCN2 to enhance tube formation and scratch migration in brain endothelial cells. These findings provide in vitro proof of the concept that LCN2 can promote angiogenesis via iron- and reactive oxygen species-related pathways, and support the idea that LCN2 may contribute to the neurovascular recovery aspects of inflammation. Angiogenesis is an important part of stroke recovery. In the present study, we examined the hypothesis that lipocalin-2 (LCN2) may enhance angiogenesis in brain endothelial cells. LCN2 promoted tube formation and migration via iron and ROS-related pathways in rat brain endothelial cells. ROS scavengers, Nox inhibitors and iron chelators all dampened the ability of LCN2 to enhance in vitro angiogenesis. These findings support the idea that LCN2 that is released by damaged neurons may act as a 'help me' signal that promotes neurovascular recovery after stroke and brain injury.
Collapse
Affiliation(s)
- Limin Wu
- Departments of Radiology, Neurology and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA; Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
29
|
Ikonomidou C. Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr 2014; 1:6. [PMID: 26567100 PMCID: PMC4530574 DOI: 10.1186/s40348-014-0006-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/13/2014] [Indexed: 01/30/2023] Open
Abstract
Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy.
Collapse
|
30
|
Bjerke M, Jonsson M, Nordlund A, Eckerström C, Blennow K, Zetterberg H, Pantoni L, Inzitari D, Schmidt R, Wallin A. Cerebrovascular Biomarker Profile Is Related to White Matter Disease and Ventricular Dilation in a LADIS Substudy. Dement Geriatr Cogn Dis Extra 2014; 4:385-94. [PMID: 25493088 PMCID: PMC4255994 DOI: 10.1159/000366119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Small vessel disease (SVD) represents a common often progressive condition in elderly people contributing to cognitive disability. The relationship between cerebrospinal fluid (CSF) biomarkers and imaging correlates of SVD was investigated, and the findings were hypothesized to be associated with a neuropsychological profile of SVD. METHODS CSF SVD-related biomarkers [neurofilament light (NF-L), myelin basic protein (MBP), soluble amyloid precursor protein-β (sAPPβ), matrix metalloproteinases (MMPs), and tissue inhibitor of metalloproteinase (TIMP)] were analysed in 46 non-demented elderly with imaging findings of SVD. We assessed the relationship between the CSF biomarkers and white matter hyperintensity (WMH) volume, diffusion-weighted imaging and atrophy as well as their association with neuropsychological profiles. RESULTS The WMH volume correlated with ventricular dilation, which was associated with executive function and speed and attention. Increased WMH and ventricular dilation were related to increased CSF levels of TIMP-1, NF-L and MBP and to decreased sAPPβ. A positive correlation was found between the CSF biomarker MMP-9 and WMH progression. CONCLUSIONS The link between progressive WMH and MMP-9 suggests an involvement of the enzyme in white matter degeneration. CSF TIMP-1, NF-L, MBP and sAPPβ may function as biological markers of white matter damage.
Collapse
Affiliation(s)
- Maria Bjerke
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Jonsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Arto Nordlund
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Carl Eckerström
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UCL Institute of Neurology, London, UK
| | - Leonardo Pantoni
- Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy
| | - Domenico Inzitari
- Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy
| | - Reinhold Schmidt
- Department of Clinical Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
31
|
Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl 2014; 8:427-37. [PMID: 24677670 PMCID: PMC4205946 DOI: 10.1002/prca.201300105] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Proteases, including intracellular proteases, play roles at many different stages of malignant progression. Our focus here is cathepsin B, a lysosomal cysteine cathepsin. High levels of cathepsin B are found in a wide variety of human cancers, levels that often induce secretion and association of cathepsin B with the tumor cell membrane. In experimental models, such as transgenic models of murine pancreatic and mammary carcinomas, causal roles for cathepsin B have been demonstrated in initiation, growth/tumor cell proliferation, angiogenesis, invasion, and metastasis. Tumor growth in transgenic models is promoted by cathepsin B in tumor-associated cells, for example, tumor-associated macrophages, as well as in tumor cells. In transgenic models, the absence of cathepsin B has been associated with enhanced apoptosis, yet cathepsin B also has been shown to contribute to apoptosis. Cathepsin B is part of a proteolytic pathway identified in xenograft models of human glioma; targeting only cathepsin B in these tumors is less effective than targeting cathepsin B in combination with other proteases or protease receptors. Understanding the mechanisms responsible for increased expression of cathepsin B in tumors and association of cathepsin B with tumor cell membranes is needed to determine whether targeting cathepsin B could be of therapeutic benefit.
Collapse
Affiliation(s)
- Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, Ml, USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Ml, USA
| |
Collapse
|
32
|
Wan W, Chen H, Li Y. The potential mechanisms of Aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer's disease. Int J Neurosci 2013; 124:75-81. [PMID: 23855502 DOI: 10.3109/00207454.2013.825258] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand membrane receptor that has been implicated in the cytotoxicity effects of β-amyloid protein (Aβ) in AD. Positive feedback mechanism of RAGE within blood-brain barrier (BBB) and/or cells inside the brain is proposed, including interaction with Aβ stimulating activation of proinflammatory cytokines, release of reactive oxygen species (ROS), which leads to neuron damage and BBB dysfunction. RAGE is the main factor mediating Aβ cytotoxicity. Attenuation of RAGE activity may inhibit Aβ from accumulation in the cerebral blood vessels and prevent neurotoxicity. Furthermore, RAGE may serve as a therapeutic target for Alzheimer's disease by inhibiting pathophysiological consequences of Aβ-RAGE interaction. Tight junctions (TJ) are identified as the basic structure of the BBB and RAGE-mediated Aβ cytotoxicity to the brain microvascular endothelial cells (BMEC), resulting in damaged BBB structural integrity. However, the potential mechanism is poorly studied.
Collapse
Affiliation(s)
- Wenbin Wan
- Huadong Hospital, Fudan University , Shanghai , PR China
| | | | | |
Collapse
|
33
|
Omouendze PL, Henry VJ, Porte B, Dupré N, Carmeliet P, Gonzalez BJ, Marret S, Leroux P. Hypoxia-ischemia or excitotoxin-induced tissue plasminogen activator- dependent gelatinase activation in mice neonate brain microvessels. PLoS One 2013; 8:e71263. [PMID: 23940734 PMCID: PMC3735506 DOI: 10.1371/journal.pone.0071263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/26/2013] [Indexed: 12/02/2022] Open
Abstract
Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries.
Collapse
Affiliation(s)
- Priscilla L. Omouendze
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Vincent J. Henry
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Baptiste Porte
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Nicolas Dupré
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bruno J. Gonzalez
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
| | - Stéphane Marret
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
- Department of Neonatal Paediatrics and Intensive Care, Rouen University Hospital, Rouen, France
| | - Philippe Leroux
- Haute-Normandie-INSERM ERI-28, Institute for Research and Innovation in Biomedicine of Rouen University, Rouen, France
- * E-mail:
| |
Collapse
|
34
|
Abstract
The relationship between cerebral hemodynamics and cognitive performance has increasingly become recognized as a major challenge in clinical practice for older adults. Both diabetes and hypertension worsen brain perfusion and are major risk factors for cerebrovascular disease, stroke and dementia. Cerebrovascular reserve has emerged as a potential biomarker for monitoring pressure-perfusion-cognition relationships. Endothelial dysfunction and inflammation, microvascular disease, and mascrovascular disease affect cerebral hemodynamics and play an important role in pathohysiology and severity of multiple medical conditions, presenting as cognitive decline in the old age. Therefore, the identification of cerebrovascular vascular reactivity as a new therapeutic target is needed for prevention of cognitive decline late in life.
Collapse
|
35
|
Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends Microbiol 2012; 20:282-90. [PMID: 22564250 DOI: 10.1016/j.tim.2012.03.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/16/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed.
Collapse
Affiliation(s)
- Katherine R Spindler
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.
| | | |
Collapse
|
36
|
Meighan PC, Meighan SE, Rich ED, Brown RL, Varnum MD. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels. Channels (Austin) 2012; 6:181-96. [PMID: 22699690 PMCID: PMC3431585 DOI: 10.4161/chan.20904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.
Collapse
Affiliation(s)
- Peter C Meighan
- Department of Veterinary and Comparative Anatomy, Program in Neuroscience, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
37
|
Kowluru RA, Zhong Q, Santos JM. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert Opin Investig Drugs 2012; 21:797-805. [PMID: 22519597 DOI: 10.1517/13543784.2012.681043] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Diabetic retinopathy remains one of the most feared complications of diabetes. Despite extensive research in the field, the molecular mechanism responsible for the development of this slow progressing disease remains unclear. In the pathogenesis of diabetic retinopathy, mitochondria are damaged and inflammatory mediators are elevated before the histopathology associated with the disease can be observed. Matrix metalloproteinases (MMPs) regulate a variety of cellular functions including apoptosis and angiogenesis. Diabetic environment stimulates the secretion of several MMPs that are considered to participate in complications, including retinopathy, nephropathy and cardiomyopathy. Patients with diabetic retinopathy and also animal models have shown increased MMP-9 and MMP-2 in their retina and vitreous. Recent research has shown that MMPs have dual role in the development of diabetic retinopathy; in the early stages of the disease (pre-neovascularization), MMP-2 and MMP-9 facilitate the apoptosis of retinal capillary cells, possibly via damaging the mitochondria, and in the later phase, they help in neovascularization. AREAS COVERED This article reviews the literature to evaluate the role of MMPs, especially MMP-9, in the development of diabetic retinopathy, and presents existing evidence that the inhibitors targeted toward MMP-9, depending on the duration of diabetes at the times their administration could have potential to prevent the progression of this blinding disease, and protect the vision loss. EXPERT OPINION Inhibitors of MMPs could have dual role: in the early stages of the diseases, inhibit capillary cell apoptosis, and if the disease has progressed to the angiogenic stage, inhibit the growth of new vessels.
Collapse
Affiliation(s)
- Renu A Kowluru
- Wayne State University, Kresge Eye Institute, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
38
|
Abstract
At the turn of the 19th century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles.
Collapse
|
39
|
Kokjohn TA, Maarouf CL, Roher AE. Is Alzheimer's disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement 2011; 8:574-83. [PMID: 22047632 DOI: 10.1016/j.jalz.2011.05.2429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 01/21/2023]
Abstract
Here, we synthesize several lines of evidence supporting the hypothesis that at least one function of amyloid-β is to serve as a part of the acute response to brain hemodynamic disturbances intended to seal vascular leakage. Given the resilient and adhesive physicochemical properties of amyloid, an abluminal hemostatic repair system might be highly advantageous, if deployed on a limited and short-term basis, in young individuals. However, in the aged, inevitable cardiovascular dysfunction combined with brain microvascular lesions may yield global chronic hypoperfusion that may lead to continuous amyloid deposition and consequential negative effects on neuronal viability. A large body of experimental evidence supports the hypothesis of an amyloid-β rescue function gone astray. Preventing or inducing the removal of amyloid in Alzheimer's disease (AD) has been simultaneously successful and disappointing. Amyloid deposits clearly play major roles in AD, but they may not represent the preeminent factor in dementia pathogenesis. Successful application of AD preventative approaches may hinge on an accurate and comprehensive view of comorbidities, including cardiovascular disease, diabetes, and head trauma.
Collapse
Affiliation(s)
- Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | |
Collapse
|
40
|
Abstract
The International Society for Cerebral Blood Flow and Metabolism promotes research centered on furthering the understanding of neurological conditions that result from ischemia and related injuries. This previous meeting (Brain 11) focused on state-of-the-art research, which shed light on the pathophysiology of these conditions as they pertained to the cerebral vasculature - including the BBB - and angiogenesis, immune mechanisms, regeneration and repair following such insults. The meeting also covered a variety of potential therapeutic strategies ranging from cell-based therapy, induced tolerance and the targeting of specific immune or cell death pathways. In addition, there was a focus on how the peripheral circulation contributes to such types of brain injury.
Collapse
Affiliation(s)
- Midori A Yenari
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94121, USA.
| | | |
Collapse
|