1
|
Tian Y, Zhu M, Hu T, Liu C. Natural deep eutectic solvent-A novel green solvent for protein stabilization. Int J Biol Macromol 2023; 247:125477. [PMID: 37336377 DOI: 10.1016/j.ijbiomac.2023.125477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Natural deep eutectic solvents (NADESs) have been explored to provide a favorable environment for protein stabilization. In this context, NADESs were prepared with the molar ratio of trehalose to betaine ranging from 1:3 to 1:9 (NADES 1-3 to NADES 1-9). There was a strong hydrogen bond interaction between trehalose and betaine, and the interaction weakened with the reduction of trehalose. The NADES 1-7 had good thermal stability (-60-100 °C), low viscosity, and suitable pH (around 7). Trypsin had the highest relative enzyme activity in 50 % (v/v) NADES 1-7 under different temperatures, pH, and storage time. Furthermore, the changes in kinetic parameters indicated that the hydrogen bond environment of 50 % NADES 1-7 increased the contact between the substrate and the trypsin, speeding up the enzymatic reaction rate. This stabilizing effect mainly derived from the virtue of NADES 1-7 itself rather than the superposition of individual components. Additionally, spectral analysis revealed that the NADES 1-7 promoted trypsin conformational folding, effectively protecting the natural structure of trypsin. Importantly, the NADES 1-7 had good biocompatibility, further expanding its application.
Collapse
Affiliation(s)
- Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China
| | - Manman Zhu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China
| | - Tiantian Hu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
2
|
Adhel E, Ha Duong NT, Vu TH, Taverna D, Ammar S, Serradji N. Interaction between carbon dots from folic acid and their cellular receptor: a qualitative physicochemical approach. Phys Chem Chem Phys 2023; 25:14324-14333. [PMID: 37183591 DOI: 10.1039/d3cp01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
According to the World Health Organization, the number of cancers (all cancers, both sexes, all ages and worldwide) in 2020 reached a total of 19 292 789 new cases leading to 9 958 133 deaths during the same period. Many cancers could be cured if detected early. Preventing cancer and detecting it early are two essential strategies for controlling this pathology. For this purpose, several strategies have been described for imaging cancer cells. One of them is based on the use of carbon nanoparticles called carbon dots, tools of physical chemistry. The literature describes that cancer cells can be imaged using carbon dots obtained from folic acid and that the in cellulo observed photoluminescence probably results from the interaction of these nanoparticles with the folic acid-receptor, a cell surface protein overexpressed in many malignant cells. However, this interaction has never been directly demonstrated yet. We investigated it, for the first time, using (i) freshly synthesized and fully characterized carbon dots, (ii) folate binding protein, a folic acid-receptor model protein and (iii) fluorescence spectroscopy and isothermal titration calorimetry, two powerful methods for detecting molecular interactions. Our results even highlight a selective interaction between these carbon made nano-objects and their biological target.
Collapse
Affiliation(s)
- Erika Adhel
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | | | - Thi Huyen Vu
- University of Engineering and Technology, Vietnam National University, Hanoi (VNUH), Vietnam
| | - Dario Taverna
- Sorbonne Université, CNRS, IMPMC, F-75005 Paris, France
| | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Nawal Serradji
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| |
Collapse
|
3
|
Bellou MG, Patila M, Fotiadou R, Spyrou K, Yan F, Rudolf P, Gournis DP, Stamatis H. Tyrosinase Magnetic Cross-Linked Enzyme Aggregates: Biocatalytic Study in Deep Eutectic Solvent Aqueous Solutions. Biomolecules 2023; 13:biom13040643. [PMID: 37189390 DOI: 10.3390/biom13040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
In the field of biocatalysis, the implementation of sustainable processes such as enzyme immobilization or employment of environmentally friendly solvents, like Deep Eutectic Solvents (DESs) are of paramount importance. In this work, tyrosinase was extracted from fresh mushrooms and used in a carrier-free immobilization towards the preparation of both non-magnetic and magnetic cross-linked enzyme aggregates (CLEAs). The prepared biocatalyst was characterized and the biocatalytic and structural traits of free tyrosinase and tyrosinase magnetic CLEAs (mCLEAs) were evaluated in numerous DES aqueous solutions. The results showed that the nature and the concentration of the DESs used as co-solvents significantly affected the catalytic activity and stability of tyrosinase, while the immobilization enhanced the activity of the enzyme in comparison with the non-immobilized enzyme up to 3.6-fold. The biocatalyst retained the 100% of its initial activity after storage at -20 °C for 1 year and the 90% of its activity after 5 repeated cycles. Tyrosinase mCLEAs were further applied in the homogeneous modification of chitosan with caffeic acid in the presence of DES. The biocatalyst demonstrated great ability in the functionalization of chitosan with caffeic acid in the presence of 10% v/v DES [Bet:Gly (1:3)], enhancing the antioxidant activity of the films.
Collapse
Affiliation(s)
- Myrto G Bellou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dimitrios P Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Ceramics and Composites Laboratory, Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Sokolov P, Nifontova G, Samokhvalov P, Karaulov A, Sukhanova A, Nabiev I. Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15030946. [PMID: 36986807 PMCID: PMC10052755 DOI: 10.3390/pharmaceutics15030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Multiplexed fluorescent immunohistochemical analysis of breast cancer (BC) markers and high-resolution 3D immunofluorescence imaging of the tumor and its microenvironment not only facilitate making the disease prognosis and selecting effective anticancer therapy (including photodynamic therapy), but also provides information on signaling and metabolic mechanisms of carcinogenesis and helps in the search for new therapeutic targets and drugs. The characteristics of imaging nanoprobe efficiency, such as sensitivity, target affinity, depth of tissue penetration, and photostability, are determined by the properties of their components, fluorophores and capture molecules, and by the method of their conjugation. Regarding individual nanoprobe components, fluorescent nanocrystals (NCs) are widely used for optical imaging in vitro and in vivo, and single-domain antibodies (sdAbs) are well established as highly specific capture molecules in diagnostic and therapeutic applications. Moreover, the technologies of obtaining functionally active sdAb–NC conjugates with the highest possible avidity, with all sdAb molecules bound to the NC in a strictly oriented manner, provide 3D-imaging nanoprobes with strong comparative advantages. This review is aimed at highlighting the importance of an integrated approach to BC diagnosis, including the detection of biomarkers of the tumor and its microenvironment, as well as the need for their quantitative profiling and imaging of their mutual location, using advanced approaches to 3D detection in thick tissue sections. The existing approaches to 3D imaging of tumors and their microenvironment using fluorescent NCs are described, and the main comparative advantages and disadvantages of nontoxic fluorescent sdAb–NC conjugates as nanoprobes for multiplexed detection and 3D imaging of BC markers are discussed.
Collapse
Affiliation(s)
- Pavel Sokolov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Rajasekar M, Ranjitha V, Rajasekar K. Recent Advances in Fluorescent-based Cation Sensors for Biomedical Applications. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
6
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
7
|
Chan JC, Zhang B, Martinez M, Kuruba B, Brozik J, Kang C, Zhang X. Structural studies of Myceliophthora Thermophila Laccase in the presence of deep eutectic solvents. Enzyme Microb Technol 2021; 150:109890. [PMID: 34489043 DOI: 10.1016/j.enzmictec.2021.109890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
In this work, we elucidated the interactions between Myceliophthora thermophila laccase and deep eutectic solvent (DES) by crystallographic and kinetics analyses. Four types of DESs with different hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), including lactic acid: betaine, glycerol: choline chloride, lactic acid: choline chloride and glycerol: betaine was used. The results revealed that different DES have different effects on laccase activity. Lactic acid-betaine (2:1) DES has shown to enhance laccase activity up to 300 % at a concentration ranged from 2% to 8% v/v, while glycerol: choline chloride and lactic acid: choline chloride DES choline chloride-based DES have found to possess inhibitory effects on laccase under the same concentration range. Detailed kinetic study showed that glycerol: choline chloride DES is a S-parabolic-I-parabolic mixed non-competitive inhibitor, where conformational changes can occur. The crystal structures of laccase with lactic acid: choline chloride DES (LCDES) were obtained at 1.6 Å. Crystallographic analysis suggested that the addition of LCDES causes changes in the laccase active site, but the increase in water molecules observed in the resulting crystal prevented laccase from experiencing drastic structural change. Fluorescence and circular dichroism spectroscopies were also applied to determine the effects of DES on the structural conformation of laccase. The results have confirmed that the presence of DES can trigger changes in the local environments of the amino acids in the active site of laccase which contributes to the changes in its activity and stability.
Collapse
Affiliation(s)
- Jou Chin Chan
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Michael Martinez
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Balaganesh Kuruba
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - James Brozik
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA.
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering - Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA; Pacific Northwest National Laboratory - 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA, 99352, USA.
| |
Collapse
|
8
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
9
|
Comparison between the enzymatic activity, structure and substrate binding of mouse and human lecithin retinol acyltransferase. Biochem Biophys Res Commun 2019; 519:832-837. [PMID: 31561851 DOI: 10.1016/j.bbrc.2019.09.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/22/2022]
Abstract
Lecithin retinol acyltransferase (LRAT) is involved in the visual cycle where it catalyzes the formation of all-trans retinyl ester. The mouse animal model has been widely used to study LRAT. Primary sequence alignment shows 80% identity and 90% similarity between human and mouse LRAT. However, human LRAT has a proline at position 173 (hLRAT (P173)) while an arginine can be found at this position for the mouse protein (mLRAT (R173)). Moreover, residue 173 is important for the human protein since a substitution mutation of this residue to a leucine (P173L-hLRAT) caused night blindness in a patient. The present study was thus undertaken to determine whether mouse and human LRAT have a similar enzymatic activity, structure and substrate binding affinity using a truncated form of LRAT (tLRAT). The enzymatic activity and binding affinity to the substrate, all-trans retinol, of mtLRAT (R173) were found to be 2.7- and 3.9-fold lower, respectively, than that of htLRAT (P173). Moreover, the enzymatic activity of P173L-htLRAT is 6.3-fold lower compared to that of htLRAT (P173). Furthermore, a significant difference was observed between the intrinsic fluorescence emission as well as between the circular dichroism spectra of mtLRAT (R173) and htLRAT (P173). In addition, mtLRAT proteins are less thermostable than htLRAT proteins, which suggests that structural differences exist between the mouse and human proteins. Altogether, these data strongly suggest that the much lower catalytic activity of mtLRAT (R173) compared to that of htLRAT (P173) mostly results from differences between their structure, predominantly revealed by their dissimilar thermal stability, as well as their efficiency to bind all-trans retinol. Therefore, conclusions regarding the behavior of human LRAT based on measurements performed with mouse LRAT must be made with caution. Also, the much lower enzymatic activity of P173L-htLRAT compared to that of htLRAT (P173) might explain the night blindness of a patient carrying this mutation.
Collapse
|
10
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
11
|
Oliveira-Souza WP, Bronze F, Broos J, Marcondes MF, Oliveira V. On the efficient bio-incorporation of 5-hydroxy-tryptophan in recombinant proteins expressed in Escherichia coli with T7 RNA polymerase-based vectors. Biochem Biophys Res Commun 2017; 492:343-348. [DOI: 10.1016/j.bbrc.2017.08.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022]
|
12
|
Raju BR, Gonçalves MST, Coutinho PJG. Fluorescent probes based on side-chain chlorinated benzo[a]phenoxazinium chlorides: Studies of interaction with DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:1-9. [PMID: 27450866 DOI: 10.1016/j.saa.2016.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
The interaction of DNA with six water soluble benzo[a]phenoxazinium chlorides mono- or di-substituted with 3-chloropropyl groups at the O and N of 2- and 9-positions, along with methyl, hydroxyl and amine terminal groups at 5-positions, was investigated by photophysical techniques. The results indicated that almost all compounds intercalated in DNA base pairs at phosphate to dye ratio higher than 5. At lower values of this ratio, electrostatic binding mode with DNA was observed. Groove binding was detected mainly for the benzo[a]phenoxazinium dye with NH2·HBr terminal. The set of six benzo[a]phenoxazinium chlorides proved successful to label the migrating DNA in agarose gel electrophoresis assays. These finding proves the ability of these benzo[a]phenoxazinium dyes to strongly interact with DNA.
Collapse
Affiliation(s)
- B Rama Raju
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Sameiro T Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Paulo J G Coutinho
- Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|