1
|
Synthesis, antitumor, and apoptosis-inducing activities of novel 5-arylidenethiazolidine-2,4-dione derivatives: Histone deacetylases inhibitory activity and molecular docking study. Eur J Med Chem 2022; 244:114827. [DOI: 10.1016/j.ejmech.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
2
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hamdi A, El-Shafey HW, Othman DI, El-Azab AS, AlSaif NA, A.-M. Abdel-Aziz A. Design, synthesis, antitumor, and VEGFR-2 inhibition activities of novel 4-anilino-2-vinyl-quinazolines: Molecular modeling studies. Bioorg Chem 2022; 122:105710. [DOI: 10.1016/j.bioorg.2022.105710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 02/25/2022] [Indexed: 01/21/2023]
|
4
|
Hassan A, Badr M, Hassan HA, Abdelhamid D, Abuo-Rahma GEDA. Novel 4-(piperazin-1-yl)quinolin-2(1H)-one bearing thiazoles with antiproliferative activity through VEGFR-2-TK inhibition. Bioorg Med Chem 2021; 40:116168. [PMID: 33962153 DOI: 10.1016/j.bmc.2021.116168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
A new series of 2-(4-(2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide derivatives were synthesized and evaluated for anticancer activity. All target compounds showed anticancer activity higher than that of their 2-oxo-4-piperazinyl-1,2-dihydroquinolin-2(1H)-one precursors. Multidose testing of target compounds was performed against breast cancer T-47D cell line. Five compounds showed higher cytotoxic activity than Staurosporine. The dihalogenated derivative showed the best cytotoxic activity with IC50 2.73 ± 0.16 µM. In addition, the VEGFR-2 inhibitory activity of all synthetic compounds was evaluated. Two compounds of 6-fluoro-4-(piperazin-1-yl)quinolin-2(1H)-ones showed inhibitory activity comparable to sorafenib with IC50 46.83 ± 2.4, 51.09 ± 2.6 and 51.41 ± 2.3 nM, respectively. The cell cycle analysis of two compounds namely, 2-(4-(6-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide and N-(4-(4-chlorophenyl)thiazol-2-yl)-2-(4-(2-oxo-1-phenyl-1,2-dihydroquinolin-4-yl)piperazin-1-yl)acetamide revealed that the arrest of cell cycle occurred at S phase. In apoptosis assay, the same two compounds were able to induce significant levels of early and late apoptosis. In a similar manner to Sorafenib, docking of target compounds with VEGFR-2 protein 4ASD showed HB with Cys919 in hinge region of enzyme and HB with both Glu885 and Asp1046 in gate area. Using SwissADME, all target compounds were predicted to be highly absorbed from gastrointestinal tract with no BBB permeability. It is clear that the two compounds are promising antiproliferative candidates that require further optimization.
Collapse
Affiliation(s)
- Abdelfattah Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt; Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
5
|
Wu Y, Cheng G, Chen H, Wang J, Wang J, Wang W. IL-17 predicts the effect of TACE combined with apatinib in hepatocellular carcinoma. Clin Hemorheol Microcirc 2021; 77:37-47. [PMID: 32651310 DOI: 10.3233/ch-200857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE IL-17 is considered to be a cancer-promoting gene in hepatocellular carcinoma (HCC). Here, we explored the effect of IL-17 in predicting the therapeutic effect of transcatheter arterial chemoembolization (TACE) combined with apartinib in patients with HCC in this study. METHODS Established of IL-17 knockdown SK-Hep1 cells for studying the effects of IL-17 expression on the invasion and migration of human HCC cells in vitro by transwell assay and tumor angiogenesis in nude mouse. Immunohistochemistry was used to detect the expression of IL-17, E-cadherin, Vimentin and CD34 protein in 175 cases of human HCC tumor tissues. Kaplan-Meier was used to analyze the prognostic significance of TACE combined with apatinib treatment in HCC patients. RESULTS n SK-Hep1 cells, IL-17 knockdown could increase E-cadherin protein expression, reduce vimentin protein expression, inhibit cell invasion and migration in vitro, and inhibit angiogenesis of tumor and decrease plasma VEGF level in nude mouse. In tumor tissues of HCC patients, IL-17 protein expression was negatively correlated with E-cadherin protein expression (r = -0.622, P < 0.001), positively correlated with Vimentin protein expression (r = 0.540, P < 0.001), and was positively correlated with MVD of HCC tumor tissues (r = 0.564, P < 0.001). Compared with adjuvant TACE alone, patients with low-expression of IL-17 treated combined with apatinib have a higher 5-year overall survival. However, additional apatinib treatment did not significantly improve 5-year overall survival in HCC patients with high IL-17 expression. CONCLUSION IL-17 had a pivotal role in the invasion and angiogenesis of HCC and contribute to the selection of patients who may benefit from adjuvant TACE combined with apatinib.
Collapse
Affiliation(s)
- Yongjuan Wu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Guangyuan Cheng
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Hui Chen
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Jingzhong Wang
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Jiangtao Wang
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Wanbi Wang
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
6
|
El-Adl K, El-Helby AGA, Sakr H, Ayyad RR, Mahdy HA, Nasser M, Abulkhair HS, El-Hddad SSA. Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5-[(4-chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione derivatives as VEGFR-2 inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000279. [PMID: 33073374 DOI: 10.1002/ardp.202000279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. MCF-7 was the most sensitive cell line to the cytotoxicity of the new derivatives. In particular, compounds 18, 12, 17, and 16 were found to be the most potent derivatives over all the tested compounds against the cancer cell lines HepG2, HCT116, and MCF-7, with IC50 = 9.16 ± 0.9, 8.98 ± 0.7, 5.49 ± 0.5 µM; 9.19 ± 0.5, 8.40 ± 0.7, 6.10 ± 0.4 µM; 10.78 ± 1.2, 8.87 ± 1.5, 7.08 ± 1.6 µM; and 10.87 ± 0.8, 9.05 ± 0.7, 7.32 ± 0.4 µM, respectively. Compounds 18 and 12 have nearly the same activities as sorafenib (IC50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively), against HepG2 cells, but slightly lower activity against HCT116 cells and slightly higher activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against HepG2 and HCT-116 cells but higher activity against MCF-7 cells (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). In contrast, compounds 17 and 16 exhibited lower activities than sorafenib against HepG2 and HCT116 cells, but nearly equipotent activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against the three cell lines. All the synthesized derivatives 7-18 were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to medium inhibitory activity, with IC50 values ranging from 0.17 ± 0.02 to 0.27 ± 0.03 µM. Compounds 18, 12, 17, and 16 potently inhibited VEGFR-2 at IC50 values of 0.17 ± 0.02, 0.17 ± 0.02, 0.18 ± 0.02, and 0.18 ± 0.02 µM, respectively, which are nearly more than half of that of the IC50 value for sorafenib (0.10 ± 0.02 µM).
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Helmy Sakr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Nasser
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Sanadelaslam S A El-Hddad
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
El-Adl K, Sakr H, Nasser M, Alswah M, Shoman FMA. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch Pharm (Weinheim) 2020; 353:e2000079. [PMID: 32515896 DOI: 10.1002/ardp.202000079] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
A novel series of 5-(4-methoxybenzylidene)thiazolidine-2,4-dione derivatives, 5a-g and 7a-f, was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT116, and MCF-7 cells. HepG2 and HCT116 were the most sensitive cell lines to the influence of the new derivatives. In particular, compounds 7f, 7e, 7d, and 7c were found to be the most potent derivatives of all the tested compounds against the HepG2, HCT116, and MCF-7 cancer cell lines. Compound 7f (IC50 = 6.19 ± 0.5, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively) exhibited a higher activity than sorafenib (IC50 = 9.18 ± 0.6, 8.37 ± 0.7, and 5.10 ± 0.4 µM, respectively) against HepG2 and MCF-7, cells but a lower activity against HCT116 cancer cells, respectively. Also, this compound displayed a higher activity than doxorubicin (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively) against HepG2 and MCF-7 cells, but nearly the same activity against HCT116 cells, respectively. All derivatives, 5a-g and 7a-f, were evaluated for their inhibitory activities against vascular endothelial growth factor receptor-2 (VEGFR-2). Among them, compound 7f was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.12 ± 0.02 µM, which is nearly the same as that of sorafenib (IC50 = 0.10 ± 0.02 µM). Compounds 7e, 7d, 7c, and 7b exhibited the highest activity, with IC50 values of 0.13 ± 0.02, 0.14 ± 0.02, 0.14 ± 0.02, and 0.18 ± 0.03 µM, respectively, which are more than the half of that of sorafenib. Furthermore, molecular docking was performed to investigate their binding mode and affinities toward the VEGFR-2 receptor. The data obtained from the docking studies highly correlated with those obtained from the biological screening.
Collapse
Affiliation(s)
- Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Nasser
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fatma M A Shoman
- Department of Clinical Pathology, Blood Bank Specialist, Blood Bank Directorate, Ministry of Health, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
El‐Adl K, El‐Helby AA, Sakr H, El‐Hddad SSA. Design, synthesis, molecular docking, and anticancer evaluations of 1‐benzylquinazoline‐2,4(1
H
,3
H
)‐dione bearing different moieties as VEGFR‐2 inhibitors. Arch Pharm (Weinheim) 2020; 353:e2000068. [DOI: 10.1002/ardp.202000068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Khaled El‐Adl
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of PharmacyHeliopolis University for Sustainable Development Cairo Egypt
| | | | - Helmy Sakr
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAl‐Azhar University Cairo Egypt
| | | |
Collapse
|
9
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
10
|
Liver regeneration microenvironment of hepatocellular carcinoma for prevention and therapy. Oncotarget 2018; 8:1805-1813. [PMID: 27655683 PMCID: PMC5352100 DOI: 10.18632/oncotarget.12101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Research on liver cancer prevention and treatment has mainly focused on the liver cancer cells themselves. Currently, liver cancers are no longer viewed as only collections of genetically altered cells but as aberrant organs with a plastic stroma, matrix, and vasculature. Improving the microenvironment of the liver to promote liver regeneration and repair by affecting immune function, inflammation and vasculature can regulate the dynamic imbalance between normal liver regeneration and repair and abnormal liver regeneration, thus improving the microenvironment of liver regeneration for the prevention and treatment of liver cancer. This review addresses the basic theory of the liver regeneration microenvironment, including the latest findings on immunity, inflammation and vasculature. Attention is given to the potential design of molecular targets in the microenvironment of hepatocellular carcinoma (HCC). In an effort to improve the liver regeneration microenvironment of HCC, researchers have extensively utilized the enhancement of immunity, anti-inflammation and the vasculature niche, which are discussed in detail in this review. In addition, the authors summarize the latest pro-fibrotic transition characteristics of the vascular niche and review potential cell therapies for liver disease.
Collapse
|
11
|
Shi YN, Zhu N, Liu C, Wu HT, Gui Y, Liao DF, Qin L. Wnt5a and its signaling pathway in angiogenesis. Clin Chim Acta 2017. [DOI: 10.1016/j.cca.2017.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Guerin M, Qian C, Zhong Q, Cui Q, Guo Y, Bei J, Shao J, Zhu X, Huang W, Wu J, Liu R, Liu Q, Wang J, Jia W, Zheng X, Zeng Y. Translational oncology toward benefiting cancer patients: the Sun Yat-sen University Cancer Center experience. SCIENCE CHINA-LIFE SCIENCES 2017; 59:1057-1062. [PMID: 23132500 DOI: 10.1007/s11427-012-4398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mathilde Guerin
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chaonan Qian
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qian Cui
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yunmiao Guo
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinxin Bei
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianyong Shao
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaofeng Zhu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ranyi Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiang Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weihua Jia
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohui Zheng
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
The Pleiotropic Role of L1CAM in Tumor Vasculature. Int J Mol Sci 2017; 18:ijms18020254. [PMID: 28134764 PMCID: PMC5343790 DOI: 10.3390/ijms18020254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM), a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.
Collapse
|
14
|
Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 2016; 19:191-200. [DOI: 10.1007/s10456-016-9500-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023]
|
15
|
Diebel KW, Zhou K, Clarke AB, Bemis LT. Beyond the Ribosome: Extra-translational Functions of tRNA Fragments. Biomark Insights 2016; 11:1-8. [PMID: 26843810 PMCID: PMC4734663 DOI: 10.4137/bmi.s35904] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 01/05/2023] Open
Abstract
High-throughput sequencing studies of small RNAs reveal a complex milieu of noncoding RNAs in biological samples. Early data analysis was often limited to microRNAs due to their regulatory nature and potential as biomarkers; however, many more classes of noncoding RNAs are now being recognized. A class of fragments initially excluded from analysis were those derived from transfer RNAs (tRNAs) because they were thought to be degradation products. More recently, critical cellular function has been attributed to tRNA fragments (tRFs), and their conservation across all domains of life has propelled them into an emerging area of scientific study. The biogenesis of tRFs is currently being elucidated, and initial studies show that a diverse array of tRFs are generated from all parts of a tRNA molecule. The goal of this review was to present what is currently known about tRFs and their potential as biomarkers for the earlier detection of disease.
Collapse
Affiliation(s)
- Kevin W Diebel
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Kun Zhou
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Aaron B Clarke
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| | - Lynne T Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth campus, Duluth, MN, USA
| |
Collapse
|
16
|
Revisiting tumor angiogenesis: vessel co-option, vessel remodeling, and cancer cell-derived vasculature formation. CHINESE JOURNAL OF CANCER 2016; 35:10. [PMID: 26747273 PMCID: PMC4706692 DOI: 10.1186/s40880-015-0070-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Tumor growth and metastasis depend on the establishment of tumor vasculature to provide oxygen, nutrients, and other essential factors. The well-known vascular endothelial growth factor (VEGF) signaling is crucial for
sprouting angiogenesis as well as recruitment of circulating progenitor endothelial cells to tumor vasculature, which has become therapeutic targets in clinical practice. However, the survival benefits gained from targeting VEGF signaling have been very limited, with the inevitable development of treatment resistance. In this article, we discuss the most recent findings and understanding on how solid tumors evade VEGF-targeted therapy, with a special focus on vessel co-option, vessel remodeling, and tumor cell-derived vasculature establishment. Vessel co-option may occur in tumors independently of sprouting angiogenesis, and sprouting angiogenesis is not always required for tumor growth. The differences between vessel-like structure and tubule-like structure formed by tumor cells are also introduced. The exploration of the underlying mechanisms of these alternative angiogenic approaches would not only widen our knowledge of tumor angiogenesis but also provide novel therapeutic targets for better controlling cancer growth and metastasis.
Collapse
|
17
|
Tang Y, Bhandaru M, Cheng Y, Lu J, Li G, Ong CJ. The role of the metastasis suppressor gene KAI1 in melanoma angiogenesis. Pigment Cell Melanoma Res 2015. [PMID: 26199094 DOI: 10.1111/pcmr.12399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tetraspan protein KAI1 (CD82) has been previously shown to have important roles in cell migration, invasion, and melanoma prognosis. In this study, we investigated the role of KAI1 regarding melanoma angiogenesis. KAI1 overexpression strongly suppressed the growth of the human umbilical vein endothelial cells and their tubular structure formation in vitro. Also, KAI1 was able to inhibit both interleukin-6 (IL-6) and VEGF at mRNA and protein levels. Using nude mice in the in vivo study, we showed that KAI1, through the regulation of ING4, inhibited blood vessel formation in matrigel plugs along with the downregulation of IL-6 and VEGF, and the recruitment of CD31-positive cells. Finally, we found that KAI1 was able to suppress the activity of a serine/threonine kinase Akt by suppressing Akt phosphorylation (Ser473). Taken together, our results suggested that KAI1 was able to suppress melanoma angiogenesis by downregulating IL-6 and VEGF expression, and the restoration of KAI1 functionality offered a new approach in human melanoma treatment.
Collapse
Affiliation(s)
- Yun Tang
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Madhuri Bhandaru
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Jing Lu
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada.,Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Li
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Affiliation(s)
- Houda Haouas
- Department of Biological and Chemical EngineeringNational Institute of Applied Sciences and Technology, Tunis, Tunisia
| |
Collapse
|
19
|
Kaessmeyer S, Bhoola K, Baltic S, Thompson P, Plendl J. Lung cancer neovascularisation: Cellular and molecular interaction between endothelial and lung cancer cells. Immunobiology 2013; 219:308-14. [PMID: 24355365 DOI: 10.1016/j.imbio.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/14/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND Novel vascular-independent conduits have been observed in some cancers. These have been variously described as vasculogenic mimicry, mosaic vessel formation, vascular co-option and intratumour embryonic-like vasculogenesis. Despite lung cancer being the most common cancer worldwide, there is little information on its neovascularisation or the pathways involved. METHODS An in vitro model involving co-cultures of microvascular lung endothelial cells and squamous or adenocarcinoma lung cancer cells was developed to assess their angiogenic interaction. Cells were incubated and examined by phase contrast microscopy and by immunocytochemistry in both mono- and co-cultures. Cultured cells and lung cancer tissue sections were assessed for new tumour vessel formation, expression of the endothelial marker CD31 and morphology. RESULTS Lung tumour cells and endothelial cells interacted morphologically via pseudopodia and used alternative pathways to generate new vessels. Co-culturing microvascular endothelial and squamous carcinoma cells led to endothelial cells surrounding tumour cells and the tumour cells being incorporated into vessel walls. Co-culturing endothelial and adenocarcinoma cells resulted in cellular contact and the formation of tumour cell bridges around clusters of endothelial cells. These adencocarcinoma cells became strongly positive for CD31. Tumour tissue section studies supported the in vitro findings. CONCLUSION Lung carcinoma cells when co-cultured with lung endothelial cells modify their cellular and molecular features that encourage alternative means of providing blood supply. The mechanisms underpinning these non-angiogenic processes need to be further investigated and should be considered when anti-tumour therapeutic interventions are being considered.
Collapse
Affiliation(s)
- Sabine Kaessmeyer
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Kanti Bhoola
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Svetlana Baltic
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Philip Thompson
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany
| |
Collapse
|
20
|
Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, Yip A, Martinka M, Dong Z, Zhou J, Xu J, Li G. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis 2013; 34:2778-88. [PMID: 24064223 DOI: 10.1093/carcin/bgt318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma is the deadliest cutaneous malignancy because of its high incidence of metastasis. Melanoma growth and metastasis relies on sustained angiogenesis; therefore, inhibiting angiogenesis is a promising approach to treat metastatic melanoma. JWA is a novel microtubule-associated protein and our previous work revealed that JWA inhibited melanoma cell invasion and metastasis. However, the role of JWA in melanoma angiogenesis and the prognostic value are still unknown. Here, we report that JWA in melanoma cells significantly inhibited the tube formation of endothelial cells. In addition, JWA regulated integrin-linked kinase (ILK) through integrin αVβ3 and such regulation was achieved through the transcription factor Sp1. Notably, both in vitro and in vivo angiogenesis assays revealed that JWA dramatically suppressed melanoma angiogenesis by inhibiting ILK signaling. Furthermore, we examined the expression of JWA protein in a large set of melanocytic lesions (n = 505) at different stages by tissue microarray and found an inverse correlation between JWA expression and melanoma progression (P = 5 × 10(-6)). Importantly, reduced JWA expression was correlated with a poorer overall, and disease-specific 5 year survival of patients (P = 0.001 and 0.007, respectively). Multivariate Cox regression analyses indicated that JWA was an independent prognostic marker for melanoma patients. Moreover, we found a significant negative correlation between JWA and ILK in melanoma biopsies, and their concomitant expression was closely correlated with melanoma patient survival (P = 0.004), further indicating the regulation of ILK expression by JWA is critical in melanoma. Taken together, our data highlight the function of JWA in melanoma angiogenesis and reveal the clinical prognostic value of JWA.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, 828 West 10th Avenue, Vancouver, British Columbia, V5Z 1L8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta Rev Cancer 2013; 1836:273-86. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Vascular remodeling in cancer. Oncogene 2013; 33:3496-505. [PMID: 23912450 DOI: 10.1038/onc.2013.304] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
The growth and dissemination of tumors rely on an altered vascular network, which supports their survival and expansion and provides accessibility to the vasculature and a route of transport for metastasizing tumor cells. The remodeling of vascular structures through generation of new vessels (for example, via tumor angiogenesis) is a well studied, even if still quite poorly understood, process in human cancer. Antiangiogenic therapies have provided insight into the contribution of angiogenesis to the biology of human tumors, yet have also revealed the ease with which resistance to antiangiogenic drugs can develop, presumably involving alterations to vascular signaling mechanisms. Furthermore, cellular and/or molecular changes to pre-existing vessels could represent subtle pre-metastatic alterations to the vasculature, which are important for cancer progression. These changes, and associated molecular markers, may forecast the behavior of individual tumors and contribute to the early detection, diagnosis and prognosis of cancer. This review, which primarily focuses on the blood vasculature, explores current knowledge of how tumor vessels can be remodeled, and the cellular and molecular events responsible for this process.
Collapse
|
23
|
High circulating VEGF level predicts poor overall survival in lung cancer. J Cancer Res Clin Oncol 2013; 139:1157-67. [PMID: 23552871 DOI: 10.1007/s00432-013-1425-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/22/2013] [Indexed: 01/25/2023]
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) is considered as the best-validated key regulator of angiogenesis, while the prognostic role of circulating VEGF in lung cancer remains controversial. We conducted a meta-analysis to evaluate the prognostic role of circulating VEGF. METHODS Nineteen studies with a total number of 2,890 patients were analyzed in our meta-analysis. Hazard ratios (HRs) and their 95 % confidence intervals (CIs) were used to quantify the predictive ability of circulating VEGF on survival. RESULTS The pooled HR of all 17 studies evaluating overall survival (OS) was 1.29 (95 % CI 1.19-1.40, p < 0.001), indicating high circulating VEGF predicted poor OS. When grouped by disease stages, the pooled HRs were 0.97 (95 % CI 0.47-1.47, p < 0.001) for operable stage and 1.34 (95 % CI 1.18-1.49, p < 0.001) for inoperable stage. The pooled HRs were 1.28 (95 % CI 1.15-1.42, p < 0.001) for serum and 1.31 (95 % CI 1.13-1.49, p < 0.001) for plasma, when categorized by blood sample. Meta-analysis of circulating VEGF related to progression-free survival (PFS) was performed in 7 studies, and the pooled HR was 1.03 (95 % CI 0.96-1.09). CONCLUSIONS Our results indicate that high level of circulating VEGF predicts poor OS in lung cancer, yet it does not predict poor PFS.
Collapse
|
24
|
|
25
|
Stacker SA, Achen MG. The VEGF signaling pathway in cancer: the road ahead. CHINESE JOURNAL OF CANCER 2013; 32:297-302. [PMID: 23419196 PMCID: PMC3845619 DOI: 10.5732/cjc.012.10319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vascular endothelial growth factor (VEGF) family of soluble protein growth factors consists of key mediators of angiogenesis and lymphangiogenesis in the context of tumor biology. The members of the family, VEGF-A (also known as VEGF), VEGF-B, VEGF-C, VEGF-D, and placenta growth factor (PIGF), play important roles in vascular biology in both normal physiology and pathology. The generation of a humanized neutralizing antibody to VEGF-A (bevacizumab, also known as Avastin) and the demonstration of its benefit in numerous human cancers have confirmed the merit of an anti-angiogenesis approach to cancer treatment and have validated the VEGF-A signaling pathway as a therapeutic target. Other members of the VEGF family are now being targeted, and their relevance to human cancer and the development of resistance to anti-VEGF-A treatment are being evaluated in the clinic. Here, we discuss the potential of targeting VEGF family members in the diagnosis and treatment of cancer.
Collapse
|
26
|
Modeling intercellular transfer of biomolecules through tunneling nanotubes. Bull Math Biol 2013; 75:1400-16. [PMID: 23417627 DOI: 10.1007/s11538-013-9819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Tunneling nanotubes (TNTs) have previosly been observed as long and thin transient structures forming between cells and intercellular protein transfer through them has been experimentally verified. It is hypothesized that this may be a physiologically important means of cell-cell communication. This paper attempts to give a simple model for the rates of transfer of molecules across these TNTs at different distances. We describe the transfer of both cytosolic and membrane bound molecules between neighboring populations of cells and argue how the lifetime of the TNT, the diffusion rate, distance between cells, and the size of the molecules may affect their transfer. The model described makes certain predictions and opens a number of questions to be explored experimentally.
Collapse
|
27
|
Chen ZY, Shi M, Peng LX, Wei W, Li XJ, Guo ZX, Li SH, Zhong C, Qian CN, Guo RP. Dovitinib preferentially targets endothelial cells rather than cancer cells for the inhibition of hepatocellular carcinoma growth and metastasis. J Transl Med 2012; 10:245. [PMID: 23228017 PMCID: PMC3552726 DOI: 10.1186/1479-5876-10-245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/19/2012] [Indexed: 01/15/2023] Open
Abstract
Background Dovitinib is a receptor tyrosine kinase (RTK) inhibitor targeting vascular endothelial growth factor receptors, fibroblast growth factor receptors and platelet-derived growth factor receptor β. Dovitinib is currently in clinical trials for the treatment of hepatocellular carcinoma (HCC). Method In this study, we used five HCC cell lines and five endothelial cell lines to validate molecular and cellular targets of dovitinib. Results Tumor growth and pulmonary metastasis were significantly suppressed in an orthotopic HCC model. Immunoblotting revealed that among known dovitinib targets, only PDGFR-β was expressed in two HCC cell lines, while four of five endothelial lines expressed PDGFR-β, FGFR-1, and VEGFR-2. Dovitinib inhibited endothelial cell proliferation and motility at 0.04 μmol/L, a pharmacologically relevant concentration; it was unable to inhibit the proliferation or motility of HCC cells at the same concentration. Immunohistochemical analyses showed that dovitinib significantly decreased the microvessel density of xenograft tumors, inhibiting proliferation and inducing apoptosis in HCC cells. Conclusion Our findings indicate that dovitinib inhibits HCC growth and metastasis preferentially through an antiangiogenic mechanism, not through direct targeting of HCC cells.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cao Y, Zhang ZL, Zhou M, Elson P, Rini B, Aydin H, Feenstra K, Tan MH, Berghuis B, Tabbey R, Resau JH, Zhou FJ, Teh BT, Qian CN. Pericyte coverage of differentiated vessels inside tumor vasculature is an independent unfavorable prognostic factor for patients with clear cell renal cell carcinoma. Cancer 2012; 119:313-24. [PMID: 22811049 DOI: 10.1002/cncr.27746] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the effect of pericyte coverage (PC) of differentiated tumor microvessels on the prognosis of patients with clear cell renal cell carcinoma (CCRCC). METHODS Samples from 2 cohorts of patients with CCRCC (101 Asian patients and 524 US patients) were prepared using 2 different histologic approaches: routine sectioning versus tissue microarray. Then, the samples were immunohistochemically doubled-stained for a pericyte marker (alpha smooth muscle actin [α-SMA]) and a differentiated vessel marker (cluster of differentiation 34 [CD34]), followed by multispectral image capturing and computerized image analyses to quantify the microvessel density (MVD) and the PC of differentiated vessels. The correlations of PC and the MVD:PC ratio with clinicopathologic characteristics were analyzed. RESULTS There was an inverse correlation between differentiated MVD and PC. Higher PC correlated with more aggressive clinicopathologic characteristics of CCRCC in both cohorts, including more advanced T-classification, higher pathologic grades, and the occurrence of tumor necrosis. The MVD:PC ratio was an independent favorable prognostic factor for overall and recurrence-free survival in the Asian cohort and for recurrence-free survival in the US cohort. PC also was an independent prognostic factor, with higher PC predicting a poorer outcome. The combination of PC and MVD was better at distinguishing the outcome of patients with CCRCC. PC combined with differentiated MVD or with the MVD:PC ratio provided additional, independent prognostic information to the Leibovich risk model, and that information was used to generate improved risk models. CONCLUSIONS The authors consistently observed that higher PC was correlated with more aggressive clinicopathologic characteristics. PC was an independent unfavorable prognostic factor. The authors concluded that pericytes should be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Yun Cao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|