1
|
El-Dairi R, Outinen O, Kankaanpää H. Anthropogenic underwater noise: A review on physiological and molecular responses of marine biota. MARINE POLLUTION BULLETIN 2024; 199:115978. [PMID: 38217911 DOI: 10.1016/j.marpolbul.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
The detrimental effects of anthropogenic underwater noise on marine organisms have garnered significant attention among scientists. This review delves into the research concerning the repercussions of underwater noise on marine species, with specific emphasis on the physiological and molecular responses of marine biota. This review investigates the sensory mechanisms, hearing sensitivity, and reaction thresholds of diverse marine organisms, shedding light on their susceptibility to underwater noise disturbances. The physiological and molecular effects of anthropogenic underwater noise on marine biota include oxidative stress, energy homeostasis, metabolism, immune function, and respiration. Additionally, changes in the gene expression profile associated with oxidative stress, metabolism, and immunological response are among the responses reported for marine biota. These effects pose a threat to animal fitness and potentially affect their survival as individuals and populations.
Collapse
Affiliation(s)
- Rami El-Dairi
- Marine and Freshwater Solutions, Finnish Environment Institute, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland.
| | - Okko Outinen
- Marine and Freshwater Solutions, Finnish Environment Institute, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Harri Kankaanpää
- Marine and Freshwater Solutions, Finnish Environment Institute, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| |
Collapse
|
2
|
Jones RA, Sills JM, Synnott M, Mulsow J, Williams R, Reichmuth C. Auditory masking in odobenid and otariid carnivoresa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1746-1756. [PMID: 37712749 DOI: 10.1121/10.0020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
As the only living species within the odobenid lineage of carnivores, walruses (Odobenus rosmarus) have no close relatives from which auditory information can be extrapolated. Sea lions and fur seals in the otariid lineage are the nearest evolutionary outgroup. To advance understanding of odobenid and otariid hearing, we conducted behavioral testing with two walruses and one California sea lion (Zalophus californianus). Detection thresholds for airborne sounds were measured from 0.08 to at least 16 kHz in ambient noise conditions and then re-measured in the presence of octave-band white masking noise. Walruses were more sensitive than the sea lion at lower frequencies and less sensitive at higher frequencies. Critical ratios for the walruses ranged from 20 dB at 0.2 kHz to 32 dB at 10 kHz, while critical ratios for the sea lion ranged from 16 dB at 0.2 kHz to 35 dB at 32 kHz. The masking values for these species are comparable to one another and to those of terrestrial carnivores, increasing by about 3 dB per octave with increasing frequency. Despite apparent differences in hearing range and sensitivity, odobenids and otariids have a similar ability to hear signals in noisy conditions.
Collapse
Affiliation(s)
- Ryan A Jones
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jillian M Sills
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Mitzi Synnott
- SeaWorld San Diego, San Diego, California 92109, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, San Diego, California 92109, USA
| | - Rob Williams
- Oceans Initiative, Seattle, Washington 98102, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
3
|
Mulsow J, Finneran JJ, Strahan MG, Houser DS, Burkard RF. Input compensation of dolphin and sea lion auditory brainstem responses using frequency-modulated up-chirps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:739-750. [PMID: 37556567 DOI: 10.1121/10.0020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Frequency-modulated "chirp" stimuli that offset cochlear dispersion (i.e., input compensation) have shown promise for increasing auditory brainstem response (ABR) amplitudes relative to traditional sound stimuli. To enhance ABR methods with marine mammal species known or suspected to have low ABR signal-to-noise ratios, the present study examined the effects of broadband chirp sweep rate and level on ABR amplitude in bottlenose dolphins and California sea lions. "Optimal" chirps were designed based on previous estimates of cochlear traveling wave speeds (using high-pass subtractive masking methods) in these species. Optimal chirps increased ABR peak amplitudes by compensating for cochlear dispersion; however, chirps with similar (or higher) frequency-modulation rates produced comparable results. The optimal chirps generally increased ABR amplitudes relative to noisebursts as threshold was approached, although this was more obvious when sound pressure level was used to equate stimulus levels (as opposed to total energy). Chirps provided progressively less ABR amplitude gain (relative to noisebursts) as stimulus level increased and produced smaller ABRs at the highest levels tested in dolphins. Although it was previously hypothesized that chirps would provide larger gains in sea lions than dolphins-due to the lower traveling wave speed in the former-no such pattern was observed.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
4
|
Moss CF, Ortiz ST, Wahlberg M. Adaptive echolocation behavior of bats and toothed whales in dynamic soundscapes. J Exp Biol 2023; 226:jeb245450. [PMID: 37161774 PMCID: PMC10184770 DOI: 10.1242/jeb.245450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
Collapse
Affiliation(s)
- Cynthia F. Moss
- Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sara Torres Ortiz
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Center, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|
5
|
Beedholm K, Ladegaard M, Madsen PT, Tyack PL. Latencies of click-evoked auditory responses in a harbor porpoise exceed the time interval between subsequent echolocation clicks. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:952. [PMID: 36859123 DOI: 10.1121/10.0017163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Most auditory evoked potential (AEP) studies in echolocating toothed whales measure neural responses to outgoing clicks and returning echoes using short-latency auditory brainstem responses (ABRs) arising a few ms after acoustic stimuli. However, little is known about longer-latency cortical AEPs despite their relevance for understanding echo processing and auditory stream segregation. Here, we used a non-invasive AEP setup with low click repetition rates on a trained harbor porpoise to test the long-standing hypothesis that echo information from distant targets is completely processed before the next click is emitted. We reject this hypothesis by finding reliable click-related AEP peaks with latencies of 90 and 160 ms, which are longer than 99% of click intervals used by echolocating porpoises, demonstrating that some higher-order echo processing continues well after the next click emission even during slow clicking. We propose that some of the echo information, such as range to evasive prey, is used to guide vocal-motor responses within 50-100 ms, but that information used for discrimination and auditory scene analysis is processed more slowly, integrating information over many click-echo pairs. We conclude by showing theoretically that the identified long-latency AEPs may enable hearing sensitivity measurements at frequencies ten times lower than current ABR methods.
Collapse
Affiliation(s)
- K Beedholm
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - M Ladegaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - P T Madsen
- Zoophysiology, Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| | - P L Tyack
- School of Biology, University of St Andrews, St Andrews KY16 9ST, Scotland
| |
Collapse
|
6
|
Is Human underwater hearing mediated by bone conduction? Hear Res 2022; 420:108484. [DOI: 10.1016/j.heares.2022.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
|
7
|
Mulsow J, Finneran JJ, Houser DS, Burkard RF, Strahan MG, Jones R. The offset auditory brainstem response in bottlenose dolphins (Tursiops truncatus): Evidence for multiple underlying processes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3163. [PMID: 34241086 DOI: 10.1121/10.0004830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The auditory brainstem response (ABR) to stimulus onset has been extensively used to investigate dolphin hearing. The mechanisms underlying this onset response have been thoroughly studied in mammals. In contrast, the ABR evoked by sound offset has received relatively little attention. To build upon previous observations of the dolphin offset ABR, a series of experiments was conducted to (1) determine the cochlear places responsible for response generation and (2) examine differences in response morphologies when using toneburst versus noiseburst stimuli. Measurements were conducted with seven bottlenose dolphins (Tursiops truncatus) using tonebursts and spectrally "pink" broadband noisebursts, with highpass noise used to limit the cochlear regions involved in response generation. Results for normal-hearing and hearing-impaired dolphins suggest that the offset ABR contains contributions from at least two distinct responses. One type of response (across place) might arise from the activation of neural units that are shifted basally relative to stimulus frequency and shares commonalities with the onset ABR. A second type of response (within place) appears to represent a "true" offset response from afferent centers further up the ascending auditory pathway from the auditory nerve, and likely results from synchronous activity beginning at or above the cochlear nucleus.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Ryan Jones
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| |
Collapse
|
8
|
Branstetter BK, Felice M, Robeck T. Auditory masking in killer whales (Orcinus orca): Critical ratios for tonal signals in Gaussian noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2109. [PMID: 33810769 DOI: 10.1121/10.0003923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Masked detection thresholds were measured for two killer whales (Orcinus orca) using a psychoacoustic, adaptive-staircase procedure. Noise bands were 1-octave wide continuous Gaussian noise. Tonal signals extended between 500 Hz and 80 kHz. Resulting critical ratios increased with the signal frequency from 15 dB at 500 Hz up to 32 dB at 80 kHz. Critical ratios for killer whales were similar to those of other odontocetes despite considerable differences in size, hearing morphology, and hearing sensitivity between species.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #204, San Diego, California 92106, USA
| | - Michael Felice
- SeaWorld San Diego, 500 SeaWorld Drive, San Diego, California 92109, USA
| | - Todd Robeck
- SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, Florida 21821, USA
| |
Collapse
|
9
|
Mooney TA, Castellote M, Jones I, Rouse N, Rowles T, Mahoney B, Goertz CEC. Audiogram of a Cook Inlet beluga whale (Delphinapterus leucas). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3141. [PMID: 33261390 DOI: 10.1121/10.0002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Noise is a stressor to wildlife, yet the precise sound sensitivity of individuals and populations is often unknown or unmeasured. Cook Inlet, Alaska belugas (CIBs) are a critically endangered and declining marine mammal population. Anthropogenic noise is a primary threat to these animals. Auditory evoked potentials were used to measure the hearing of a wild, stranded CIB as part of its rehabilitation assessment. The beluga showed broadband (4-128 kHz) and sensitive hearing (<80 dB) for a wide-range of frequencies (16-80 kHz), reflective of a healthy odontocete auditory system. Data were similar to healthy, adult belugas from the comparative Bristol Bay population (the only other published data set of healthy, wild marine mammal hearing). Repeated October and December 2017 measurements were similar, showing continued auditory health of the animal throughout the rehabilitation period. Hearing data were compared to pile-driving and container-ship noise measurements made in Cook Inlet, two sources of concern, suggesting masking is likely at ecologically relevant distances. These data provide the first empirical hearing data for a CIB allowing for estimations of sound-sensitivity in this population. The beluga's sensitive hearing and likelihood of masking show noise is a clear concern for this population struggling to recover.
Collapse
Affiliation(s)
- T Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Manuel Castellote
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue Northeast, Seattle, Washington 98105, USA
| | - Ian Jones
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | | | - Teri Rowles
- Marine Mammal Health and Stranding Response Program, Office of Protected Resources, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, Maryland 20910, USA
| | - Barbara Mahoney
- Protected Resources Division, Alaska Regional Office, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Anchorage, Alaska 99513, USA
| | | |
Collapse
|
10
|
Ramírez T, Sacchini S, Paz Y, Rosales RS, Câmara N, Andrada M, Arbelo M, Fernández A. Comparison of Methods for the Histological Evaluation of Odontocete Spiral Ganglion Cells. Animals (Basel) 2020; 10:E683. [PMID: 32295193 PMCID: PMC7222732 DOI: 10.3390/ani10040683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 04/10/2020] [Indexed: 01/24/2023] Open
Abstract
Cetaceans greatly depend on their hearing system to perform many vital activities. The spiral ganglion is an essential component of the auditory pathway and can even be associated with injuries caused by anthropogenic noise. However, its anatomical location, characterized by surrounding bony structures, makes the anatomical and anatomopathological study of the spiral ganglion a difficult task. In order to obtain high-quality tissue samples, a perfect balance between decalcification and the preservation of neural components must be achieved. In this study, different methodologies for spiral ganglion sample preparation and preservation were evaluated. Hydrochloric acid had the shortest decalcification time but damaged the tissue extensively. Both formic acid and EDTA decalcification solutions had a longer decalcification time but exhibited better preservation of the neurons. However, improved cell morphology and staining were observed on ears pretreated with EDTA solution. Therefore, we suggest that decalcifying methodologies based on EDTA solutions should be used to obtain the highest quality samples for studying cell morphology and antigenicity in cetacean spiral ganglion neurons.
Collapse
Affiliation(s)
- Tania Ramírez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Yania Paz
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Rubén S. Rosales
- Veterinary Epidemiology and Preventive Medicine, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain;
| | - Nakita Câmara
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Arucas, 35416 Las Palmas de Gran Canaria, Spain; (S.S.); (Y.P.); (N.C.); (M.A.); (A.F.)
| |
Collapse
|
11
|
Mulsow J, Finneran JJ, Accomando AW, Burkard RF. Auditory brainstem responses during aerial testing with bottlenose dolphins (Tursiops truncatus): Effects of electrode and jawphone locations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2525. [PMID: 32359296 DOI: 10.1121/10.0001123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Transmission of sound to dolphins during electrophysiological hearing screening is conducted out of water in certain cases (e.g., strandings). This necessitates that sound be delivered using a contact transducer either pressed against the skin or affixed to the jaw using a suction cup (i.e., "jawphones"). This study examined how bottlenose dolphin (Tursiops truncatus, n = 3) auditory brainstem responses (ABRs) varied with electrode and jawphone location during aerial testing. Stimuli were tone bursts with center frequencies of 28 to 160 kHz. Regression-based thresholds were lowest with the jawphone on the posterior and middle parts of the mandible. Thresholds based on later ABR peaks-recorded using an electrode immediately behind the blowhole-suggested more similarity between the thresholds for the anterior tip of the rostrum and the posterior/middle mandible than those based on earlier monaural waves recorded near the meatus. This was likely a result of a summation of responses from both ears as opposed to a more efficient acoustic pathway to the ear. These patterns were independent of frequency. These findings provide guidance for jawphone and electrode locations when examining dolphin hearing and when interpreting relative acoustic sensitivity of the head in similar testing situations.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| | - Alyssa W Accomando
- National Marine Mammal Foundation, 2240 Shelter Island Drive #200, San Diego, California 92106, USA
| | - Robert F Burkard
- Department of Rehabilitation Science, State University of New York, University at Buffalo, 626 Kimball Tower, Buffalo, New York 14214, USA
| |
Collapse
|
12
|
Popov VV, Supin AY, Nechaev DI, Lemazina AA, Sysueva EV. Position of an acoustic window in a beluga whale: Computation based on auditory evoked potential latencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:3578. [PMID: 31255112 DOI: 10.1121/1.5111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
In a beluga whale, the positions of sound receiving areas on the head surface were determined by comparing the acoustic delays from different sound source positions. For this investigation, auditory evoked potentials (AEPs) in response to short tone pips were recorded. Latencies of the first AEP wave that presumably reflected the activity of the auditory nerve were measured at different sound source azimuths. For AEPs of equal amplitudes, the difference in AEP latencies was attributed to the difference in the acoustic delays. These delay differences were used to compute the azimuths of sound receiving points. Measurements were conducted at frequencies from 22.5 to 90 kHz in half-octave steps. At all stimulus frequencies, the receiving points were located 24-38 cm caudal of the melon tip, which is near a proximal part of the lower jaw. Thus, the results indicated the latero-mandibular acoustic window. Possible causes for not finding a lateral or ventro-mandibular window are discussed.
Collapse
Affiliation(s)
- V V Popov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - A Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - D I Nechaev
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - A A Lemazina
- Max Plank Institute for Ornitology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - E V Sysueva
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| |
Collapse
|
13
|
Mooney TA, Smith A, Larsen ON, Hansen KA, Wahlberg M, Rasmussen MH. Field-based hearing measurements of two seabird species. J Exp Biol 2019; 222:222/4/jeb190710. [DOI: 10.1242/jeb.190710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Hearing is a primary sensory modality for birds. For seabirds, auditory data is challenging to obtain and hearing data are limited. Here, we present methods to measure seabird hearing in the field, using two Alcid species: the common murre Uria aalge and the Atlantic puffin Fratercula arctica. Tests were conducted in a portable semi-anechoic crate using physiological auditory evoked potential (AEP) methods. The crate and AEP system were easily transportable to northern Iceland field sites, where wild birds were caught, sedated, studied and released. The resulting data demonstrate the feasibility of a field-based application of an established neurophysiology method, acquiring high quality avian hearing data in a relatively quiet setting. Similar field methods could be applied to other seabirds, and other bird species, resulting in reliable hearing data from a large number of individuals with a modest field effort. The results will provide insights into the sound sensitivity of species facing acoustic habitat degradation.
Collapse
Affiliation(s)
- T. Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Adam Smith
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Ole Naesbye Larsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Magnus Wahlberg
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
14
|
Racicot RA, Darroch SAF, Kohno N. Neuroanatomy and inner ear labyrinths of the narwhal, Monodon monoceros, and beluga, Delphinapterus leucas (Cetacea: Monodontidae). J Anat 2018; 233:421-439. [PMID: 30033539 PMCID: PMC6131972 DOI: 10.1111/joa.12862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 10/28/2022] Open
Abstract
Narwhals (Monodon monoceros) and belugas (Delphinapterus leucas) are the only extant members of the Monodontidae, and are charismatic Arctic-endemic cetaceans that are at risk from global change. Investigating the anatomy and sensory apparatuses of these animals is essential to understanding their ecology and evolution, and informs efforts for their conservation. Here, we use X-ray CT scans to compare aspects of the endocranial and inner ear labyrinth anatomy of extant monodontids and use the overall morphology to draw larger inferences about the relationship between morphology and ecology. We show that differences in the shape of the brain, vasculature, and neural canals of both species may relate to differences in diving and other behaviors. The cochleae are similar in morphology in the two species, signifying similar hearing ranges and a close evolutionary relationship. Lastly, we compare two different methods for calculating 90var - a calculation independent of body size that is increasingly being used as a proxy for habitat preference. We show that a 'direct' angular measurement method shows significant differences between Arctic and other habitat preferences, but angle measurements based on planes through the semicircular canals do not, emphasizing the need for more detailed study and standardization of this measurement. This work represents the first comparative internal anatomical study of the endocranium and inner ear labyrinths of this small clade of toothed whales.
Collapse
Affiliation(s)
- Rachel A. Racicot
- Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleTNUSA
- The Dinosaur InstituteNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Simon A. F. Darroch
- Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleTNUSA
| | - Naoki Kohno
- Department of Geology and PaleontologyNational Museum of Nature and ScienceTokyoJapan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
15
|
Reinwald M, Grimal Q, Marchal J, Catheline S, Boschi L. Bone-conducted sound in a dolphin's mandible: Experimental investigation of elastic waves mediating information on sound source position. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2213. [PMID: 30404511 DOI: 10.1121/1.5063356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Mammals use binaural or monaural (spectral) cues to localize acoustic sources. While the sensitivity of terrestrial mammals to changes in source elevation is relatively poor, the accuracy achieved by the odontocete cetaceans' biosonar is high, independently of where the source is. Binaural/spectral cues are unlikely to account for this remarkable skill. In this paper, bone-conducted sound in a dolphin's mandible is studied, investigating its possible contribution to sound localization. Experiments are conducted in a water tank by deploying, on the horizontal and median planes of the skull, ultrasound sources that emit synthetic clicks between 45 and 55 kHz. Elastic waves propagating through the mandible are measured at the pan bones and used to localize source positions via either binaural cues or a correlation-based full-waveform algorithm. Exploiting the full waveforms and, most importantly, reverberated coda, it is possible to enhance the accuracy of source localization in the vertical plane and achieve similar resolution of horizontal- vs vertical-plane sources. The results noted in this paper need to be substantiated by further experimental work, accounting for soft tissues and making sure that the data are correctly mediated to the internal ear. If confirmed, the results would favor the idea that dolphin's echolocation skills rely on the capability to analyze the coda of biosonar echoes.
Collapse
Affiliation(s)
- Michael Reinwald
- Sorbonne Université, CNRS, INSERM, Laboratoire d' Imagerie Biomédicale, LIB, F-75006, Paris, France
| | - Quentin Grimal
- Sorbonne Université, CNRS, INSERM, Laboratoire d' Imagerie Biomédicale, LIB, F-75006, Paris, France
| | - Jacques Marchal
- Sorbonne Université, CNRS, Institut Jean le Rond d'Alembert, F-78210, Saint-Cyr-l'École, France
| | - Stefan Catheline
- LabTAU, INSERM, Centre Léon Bèrard, Université Lyon 1, University of Lyon, F-69003, Lyon, France
| | - Lapo Boschi
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France
| |
Collapse
|
16
|
Mooney TA, Castellote M, Jones IT, Quakenbush L, Hobbs R, Gaglione E, Goertz C. Local acoustic habitat relative to hearing sensitivities in beluga whales (Delphinapterus leucas). ACTA ACUST UNITED AC 2018. [DOI: 10.22261/jea.qzd9z5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background noise can have a substantial effect on communication signals, however far less is known about how natural soundscapes may influence hearing sensitivity. Here we compare the audiograms of 26 wild beluga whales measured in their natural environment to a series of ecoacoustic measurements within a primary portion of their Bristol Bay summer habitat, the Nushagak Estuary in Bristol Bay, AK, USA. Environmental acoustic measurements were made during 2012 and 2016 using two different methods: a moored recorder and drifter buoys. Environmental noise curves varied substantially. Drifter recordings from the middle of Nushgak Estuary had the highest spectrum levels during ebb tides with acoustic energy from sediment transport extending well into higher frequencies (ca. 60 kHz), likely due to rapidly moving tidal flow and shifting sediment in that location. Drifter recordings near the estuary mouth and shallow tidal flats were lower amplitude. Noise levels generally varied during drifts (in one case up to ca. 6 dB) reflecting acoustic cues available to the local belugas. The moored recorder showed a substantially different spectral profile, especially at lower frequencies, perhaps due to its attachment to a pier piling and subsequent pier noise. Hearing sensitivity varied by individual and thresholds often fell above 1/3 octave-band noise levels, but not overall noise spectral density. Audiograms of the most sensitive animals closely paralleled the lowest ambient noise power spectral density curves, suggesting that an animal’s auditory dynamic range may extend to include its habitat’s quietest conditions. These data suggest a cautious approach is necessary when estimating the sound-sensitivity of odontocetes found in quiet environments as they may have sensitive auditory abilities that allow for hearing within the lowest noise-level conditions. Further, lower level ambient noise conditions could provide a conservative estimate of the maximal sensitivity of some cetacean populations within specific environments.
Collapse
|
17
|
Mooney TA, Castellote M, Quakenbush L, Hobbs R, Gaglione E, Goertz C. Variation in hearing within a wild population of beluga whales (Delphinapterus leucas). J Exp Biol 2018; 221:221/9/jeb171959. [DOI: 10.1242/jeb.171959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
ABSTRACT
Documenting hearing abilities is vital to understanding a species’ acoustic ecology and for predicting the impacts of increasing anthropogenic noise. Cetaceans use sound for essential biological functions such as foraging, navigation and communication; hearing is considered to be their primary sensory modality. Yet, we know little regarding the hearing of most, if not all, cetacean populations, which limits our understanding of their sensory ecology, population level variability and the potential impacts of increasing anthropogenic noise. We obtained audiograms (5.6–150 kHz) of 26 wild beluga whales to measure hearing thresholds during capture–release events in Bristol Bay, AK, USA, using auditory evoked potential methods. The goal was to establish the baseline population audiogram, incidences of hearing loss and general variability in wild beluga whales. In general, belugas showed sensitive hearing with low thresholds (<80 dB) from 16 to 100 kHz, and most individuals (76%) responded to at least 120 kHz. Despite belugas often showing sensitive hearing, thresholds were usually above or approached the low ambient noise levels measured in the area, suggesting that a quiet environment may be associated with hearing sensitivity and that hearing thresholds in the most sensitive animals may have been masked. Although this is just one wild population, the success of the method suggests that it should be applied to other populations and species to better assess potential differences. Bristol Bay beluga audiograms showed substantial (30–70 dB) variation among individuals; this variation increased at higher frequencies. Differences among individual belugas reflect that testing multiple individuals of a population is necessary to best describe maximum sensitivity and population variance. The results of this study quadruple the number of individual beluga whales for which audiograms have been conducted and provide the first auditory data for a population of healthy wild odontocetes.
Collapse
Affiliation(s)
- T. Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Manuel Castellote
- Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA 98105, USA
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
| | - Lori Quakenbush
- Alaska Department of Fish and Game, Fairbanks, AK 99701, USA
| | - Roderick Hobbs
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
| | | | | |
Collapse
|
18
|
Ladich F, Winkler H. Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol 2017; 220:2306-2317. [DOI: 10.1242/jeb.132944] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sound propagates much faster and over larger distances in water than in air, mainly because of differences in the density of these media. This raises the question of whether terrestrial (land mammals, birds) and (semi-)aquatic animals (frogs, fishes, cetaceans) differ fundamentally in the way they communicate acoustically. Terrestrial vertebrates primarily produce sounds by vibrating vocal tissue (folds) directly in an airflow. This mechanism has been modified in frogs and cetaceans, whereas fishes generate sounds in quite different ways mainly by utilizing the swimbladder or pectoral fins. On land, vertebrates pick up sounds with light tympana, whereas other mechanisms have had to evolve underwater. Furthermore, fishes differ from all other vertebrates by not having an inner ear end organ devoted exclusively to hearing. Comparing acoustic communication within and between aquatic and terrestrial vertebrates reveals that there is no ‘aquatic way’ of sound communication, as compared with a more uniform terrestrial one. Birds and mammals display rich acoustic communication behaviour, which reflects their highly developed cognitive and social capabilities. In contrast, acoustic signaling seems to be the exception in fishes, and is obviously limited to short distances and to substrate-breeding species, whereas all cetaceans communicate acoustically and, because of their predominantly pelagic lifestyle, exploit the benefits of sound propagation in a dense, obstacle-free medium that provides fast and almost lossless signal transmission.
Collapse
Affiliation(s)
- Friedrich Ladich
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Hans Winkler
- Konrad Lorenz-Institute of Comparative Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna 1160, Austria
| |
Collapse
|
19
|
Audition and Hemispheric Specialization in Songbirds and New Evidence from Australian Magpies. Symmetry (Basel) 2017. [DOI: 10.3390/sym9070099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Branstetter BK, St Leger J, Acton D, Stewart J, Houser D, Finneran JJ, Jenkins K. Killer whale (Orcinus orca) behavioral audiograms. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:2387. [PMID: 28464669 DOI: 10.1121/1.4979116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Killer whales (Orcinus orca) are one of the most cosmopolitan marine mammal species with potential widespread exposure to anthropogenic noise impacts. Previous audiometric data on this species were from two adult females [Szymanski, Bain, Kiehl, Pennington, Wong, and Henry (1999). J. Acoust. Soc. Am. 108, 1322-1326] and one sub-adult male [Hall and Johnson (1972). J. Acoust. Soc. Am. 51, 515-517] with apparent high-frequency hearing loss. All three killer whales had best sensitivity between 15 and 20 kHz, with thresholds lower than any odontocete tested to date, suggesting this species might be particularly sensitive to acoustic disturbance. The current study reports the behavioral audiograms of eight killer whales at two different facilities. Hearing sensitivity was measured from 100 Hz to 160 kHz in killer whales ranging in age from 12 to 52 year. Previously measured low thresholds at 20 kHz were not replicated in any individual. Hearing in the killer whales was generally similar to other delphinids, with lowest threshold (49 dB re 1 μPa) at approximately 34 kHz, good hearing (i.e., within 20 dB of best sensitivity) from 5 to 81 kHz, and low- and high-frequency hearing cutoffs (>100 dB re μPa) of 600 Hz and 114 kHz, respectively.
Collapse
Affiliation(s)
- Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106, USA
| | - Judy St Leger
- Sea World San Diego, 500 Sea World Drive, San Diego, California 92109, USA
| | - Doug Acton
- Sea World San Antonio, 10500 Sea World Drive, San Antonio, Texas 78251, USA
| | - John Stewart
- Sea World San Diego, 500 Sea World Drive, San Diego, California 92109, USA
| | - Dorian Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Keith Jenkins
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
21
|
Wahlberg M, Delgado-García L, Kristensen JH. Precocious hearing in harbour porpoise neonates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:121-132. [DOI: 10.1007/s00359-017-1145-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
|
22
|
Carroll AG, Przeslawski R, Duncan A, Gunning M, Bruce B. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. MARINE POLLUTION BULLETIN 2017; 114:9-24. [PMID: 27931868 DOI: 10.1016/j.marpolbul.2016.11.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
Marine seismic surveys produce high intensity, low-frequency impulsive sounds at regular intervals, with most sound produced between 10 and 300Hz. Offshore seismic surveys have long been considered to be disruptive to fisheries, but there are few ecological studies that target commercially important species, particularly invertebrates. This review aims to summarise scientific studies investigating the impacts of low-frequency sound on marine fish and invertebrates, as well as to critically evaluate how such studies may apply to field populations exposed to seismic operations. We focus on marine seismic surveys due to their associated unique sound properties (i.e. acute, low-frequency, mobile source locations), as well as fish and invertebrates due to the commercial value of many species in these groups. The main challenges of seismic impact research are the translation of laboratory results to field populations over a range of sound exposure scenarios and the lack of sound exposure standardisation which hinders the identification of response thresholds. An integrated multidisciplinary approach to manipulative and in situ studies is the most effective way to establish impact thresholds in the context of realistic exposure levels, but if that is not practical the limitations of each approach must be carefully considered.
Collapse
Affiliation(s)
- A G Carroll
- National Earth and Marine Observations Branch, Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia.
| | - R Przeslawski
- National Earth and Marine Observations Branch, Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia
| | - A Duncan
- Centre for Marine Science and Technology, Curtin University, GPO Box U1987, Perth WA 6845, Australia
| | - M Gunning
- Energy Systems Branch, Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia
| | - B Bruce
- Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart TAS 7001, Australia
| |
Collapse
|
23
|
Racicot RA, Gearty W, Kohno N, Flynn JJ. Comparative anatomy of the bony labyrinth of extant and extinct porpoises (Cetacea: Phocoenidae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rachel A. Racicot
- The Dinosaur Institute; Natural History Museum of Los Angeles County; Los Angeles CA USA
- Smithsonian Institution; P. O. Box 37012 MRC 121 Washington DC 20013-7012 USA
| | - William Gearty
- Department of Geological Sciences; Stanford University; Stanford CA USA
| | - Naoki Kohno
- Department of Geology and Paleontology; Division of Biotic Evolution; National Museum of Nature and Science; Tokyo Japan
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Japan
| | - John J. Flynn
- Department of Vertebrate Paleontology; Division of Paleontology; American Museum of Natural History; New York NY USA
- Richard Gilder Graduate School; American Museum of Natural History; New York NY USA
| |
Collapse
|
24
|
Friedlaender AS, Hazen EL, Goldbogen JA, Stimpert AK, Calambokidis J, Southall BL. Prey-mediated behavioral responses of feeding blue whales in controlled sound exposure experiments. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1075-1085. [PMID: 27509749 DOI: 10.1002/15-0783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Behavioral response studies provide significant insights into the nature, magnitude, and consequences of changes in animal behavior in response to some external stimulus. Controlled exposure experiments (CEEs) to study behavioral response have faced challenges in quantifying the importance of and interaction among individual variability, exposure conditions, and environmental covariates. To investigate these complex parameters relative to blue whale behavior and how it may change as a function of certain sounds, we deployed multi-sensor acoustic tags and conducted CEEs using simulated mid-frequency active sonar (MFAS) and pseudo-random noise (PRN) stimuli, while collecting synoptic, quantitative prey measures. In contrast to previous approaches that lacked such prey data, our integrated approach explained substantially more variance in blue whale dive behavioral responses to mid-frequency sounds (r2 = 0.725 vs. 0.14 previously). Results demonstrate that deep-feeding whales respond more clearly and strongly to CEEs than those in other behavioral states, but this was only evident with the increased explanatory power provided by incorporating prey density and distribution as contextual covariates. Including contextual variables increases the ability to characterize behavioral variability and empirically strengthens previous findings that deep-feeding blue whales respond significantly to mid-frequency sound exposure. However, our results are only based on a single behavioral state with a limited sample size, and this analytical framework should be applied broadly across behavioral states. The increased capability to describe and account for individual response variability by including environmental variables, such as prey, that drive foraging behavior underscores the importance of integrating these and other relevant contextual parameters in experimental designs. Our results suggest the need to measure and account for the ecological dynamics of predator-prey interactions when studying the effects of anthropogenic disturbance in feeding animals.
Collapse
|
25
|
Erbe C, Reichmuth C, Cunningham K, Lucke K, Dooling R. Communication masking in marine mammals: A review and research strategy. MARINE POLLUTION BULLETIN 2016; 103:15-38. [PMID: 26707982 DOI: 10.1016/j.marpolbul.2015.12.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 05/12/2023]
Abstract
Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals.
Collapse
Affiliation(s)
- Christine Erbe
- Centre for Marine Science & Technology, Curtin University, PO Box U1987, Perth, WA 6845, Australia.
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Kane Cunningham
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| | - Klaus Lucke
- Centre for Marine Science & Technology, Curtin University, PO Box U1987, Perth, WA 6845, Australia.
| | - Robert Dooling
- University of Maryland, 2123D Biology-Psychology Building, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Veirs S, Veirs V, Wood JD. Ship noise extends to frequencies used for echolocation by endangered killer whales. PeerJ 2016; 4:e1657. [PMID: 27004149 PMCID: PMC4800784 DOI: 10.7717/peerj.1657] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/13/2016] [Indexed: 11/20/2022] Open
Abstract
Combining calibrated hydrophone measurements with vessel location data from the Automatic Identification System, we estimate underwater sound pressure levels for 1,582 unique ships that transited the core critical habitat of the endangered Southern Resident killer whales during 28 months between March, 2011, and October, 2013. Median received spectrum levels of noise from 2,809 isolated transits are elevated relative to median background levels not only at low frequencies (20-30 dB re 1 µPa(2)/Hz from 100 to 1,000 Hz), but also at high frequencies (5-13 dB from 10,000 to 96,000 Hz). Thus, noise received from ships at ranges less than 3 km extends to frequencies used by odontocetes. Broadband received levels (11.5-40,000 Hz) near the shoreline in Haro Strait (WA, USA) for the entire ship population were 110 ± 7 dB re 1 µPa on average. Assuming near-spherical spreading based on a transmission loss experiment we compute mean broadband source levels for the ship population of 173 ± 7 dB re 1 µPa 1 m without accounting for frequency-dependent absorption. Mean ship speed was 7.3 ± 2.0 m/s (14.1 ± 3.9 knots). Most ship classes show a linear relationship between source level and speed with a slope near +2 dB per m/s (+1 dB/knot). Spectrum, 1/12-octave, and 1/3-octave source levels for the whole population have median values that are comparable to previous measurements and models at most frequencies, but for select studies may be relatively low below 200 Hz and high above 20,000 Hz. Median source spectrum levels peak near 50 Hz for all 12 ship classes, have a maximum of 159 dB re 1 µPa(2)/Hz @ 1 m for container ships, and vary between classes. Below 200 Hz, the class-specific median spectrum levels bifurcate with large commercial ships grouping as higher power noise sources. Within all ship classes spectrum levels vary more at low frequencies than at high frequencies, and the degree of variability is almost halved for classes that have smaller speed standard deviations. This is the first study to present source spectra for populations of different ship classes operating in coastal habitats, including at higher frequencies used by killer whales for both communication and echolocation.
Collapse
Affiliation(s)
- Scott Veirs
- Beam Reach Marine Science and Sustainability School, Seattle, WA, United States
| | - Val Veirs
- Department of Physics, Colorado College, Colorado Springs, CO, United States
| | | |
Collapse
|
27
|
Measuring Hearing in Wild Beluga Whales. THE EFFECTS OF NOISE ON AQUATIC LIFE II 2016; 875:729-35. [DOI: 10.1007/978-1-4939-2981-8_88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Li S, Wang D, Wang K, Hoffmann-Kuhnt M, Fernando N, Taylor EA, Lin W, Chen J, Ng T. Likely Age-Related Hearing Loss (Presbycusis) in a Stranded Indo-Pacific Humpback Dolphin (Sousa chinensis). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 875:623-9. [PMID: 26611012 DOI: 10.1007/978-1-4939-2981-8_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The hearing of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, was measured. The age of this animal was estimated to be ~40 years. The animal's hearing was measured using a noninvasive auditory evoked potential (AEP) method. The results showed that the high-frequency hearing cutoff frequency of the studied dolphin was ~30-40 kHz lower than that of a conspecific younger individual ~13 year old. The lower high-frequency hearing range in the older dolphin was explained as a likely result of age-related hearing loss (presbycusis).
Collapse
Affiliation(s)
- Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Matthias Hoffmann-Kuhnt
- Tropical Marine Science Institute, National University of Singapore, Singapore, 119227, Singapore.
| | | | - Elizabeth A Taylor
- Tropical Marine Science Institute, National University of Singapore, Singapore, 119227, Singapore.
| | - Wenzhi Lin
- The Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai, 519080, China.
| | - Jialin Chen
- The Pearl River Estuary Chinese White Dolphin National Nature Reserve, Zhuhai, 519080, China.
| | - Timothy Ng
- Ocean Park Conservation Foundation Hong Kong, Ocean Park, Aberdeen, Hong Kong.
| |
Collapse
|
29
|
Mulsow J, Schlundt CE, Brandt L, Finneran JJ. Equal latency contours for bottlenose dolphins (Tursiops truncatus) and California sea lions (Zalophus californianus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2678-2691. [PMID: 26627745 DOI: 10.1121/1.4932015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Loudness perception by non-human animals is difficult to study directly. Previous research efforts have instead focused on estimating loudness perception using simple reaction time (RT) data. These data are used to generate equal latency contours that serve as a proxy for equal loudness contours. To aid the design of auditory weighting functions for marine mammals, equal latency contours were generated using RT data for two marine mammal species that are representative of broader functional hearing groups: the bottlenose dolphin (under water) and California sea lion (in air). In all cases, median RT decreased with increasing tone sound pressure level (SPL). The equal latency contours corresponding to near-threshold SPLs were similar to audiograms for both species. The sea lion contours showed some compression at frequencies below 1 kHz; however, a similar pattern was not apparent in the more variable data for dolphins. Equal latency contours for SPLs greater than approximately 40 dB above threshold diverged from predicted equal loudness contours, likely due to the asymptotic nature of RT at the highest tested SPLs. The results suggest that auditory threshold data, potentially augmented with compression at low frequencies, may provide a useful way forward when designing auditory weighting functions for marine mammals.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, #200, San Diego, California 92106, USA
| | | | - Lacey Brandt
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
30
|
Kastelein RA, Schop J, Hoek L, Covi J. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for narrow-band sweeps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2508-2512. [PMID: 26520333 DOI: 10.1121/1.4932024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hearing sensitivity of a 2-yr-old male harbor porpoise was measured using a standard psycho-acoustic technique under low ambient noise conditions. Auditory sensitivity was measured for narrow-band 1 s sweeps (center frequencies: 0.125-150 kHz). The audiogram was U-shaped; range of best hearing (within 10 dB of maximum sensitivity) was from 13 to ∼140 kHz. Maximum sensitivity (threshold: ∼39 dB re 1 μPa) occurred at 125 kHz at the peak frequency of echolocation pulses produced by harbor porpoises. Reduced sensitivity occurred at 32 and 63 kHz. Sensitivity fell by ∼10 dB per octave below 16 kHz and declined sharply above 125 kHz. Apart from this individual's ca. 10 dB higher sensitivity at 0.250 kHz, ca. 10 dB lower sensitivity at 32 kHz, and ca. 59 dB lower sensitivity at 150 kHz, his audiogram is similar to that of two harbor porpoises tested previously with a similar psycho-acoustic technique.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
31
|
Yamato M, Khidas K, Pyenson ND, Fordyce RE, Mead JG. Extensively remodeled, fractured cetacean tympanic bullae show that whales can survive traumatic injury to the ears. J Anat 2015; 228:125-36. [PMID: 26391309 DOI: 10.1111/joa.12385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
Abstract
Underwater human activities and anthropogenic noise in our oceans may be a major source of habitat degradation for marine life. This issue was highlighted by the opening of the United States Eastern Seaboard for seismic oil and gas exploration in 2014, which generated massive media coverage and widespread concern that seismic surveys could kill or deafen whales. We discovered 11 new specimens of fractured and healed cetacean ear bones, out of a survey of 2127 specimens housed in museum collections. This rare condition has been previously reported only in two specimens of blue whales (Balaenoptera musculus) from the early 1900s, summarized by Fraser & Purves (1953). All of our new specimens are represented by species for which this condition had never been reported previously, including both baleen and toothed whales. The baleen whale specimens (Balaenoptera physalus, Balaenoptera borealis, Balaenoptera acutorostrata) were collected during Canadian commercial whaling operations in the Atlantic Ocean in the 1970s; the specimens include ear bones with well-healed fractures, demonstrating that baleen whales are capable of overcoming traumatic injury to the ears. The toothed whale specimens (Delphinus sp., Berardius bairdii) were found dead on beaches in 1972 and 2001, respectively, with less remodeled fractures. Thus, ear injuries may be more lethal to the echolocating toothed whales, which rely on hearing for navigation and foraging. We explore several hypotheses regarding how these injuries could have occurred, and conclude that the most parsimonious explanations appear to be both direct and indirect effects of lytic processes from disease or calcium depletion, or damage from external pressure waves. Although further research is required to confirm whether the fractures resulted from natural or human-induced events, this study underscores the importance of museum collections and the work of stranding networks in understanding the potential effects of modern human activities on marine mammal health.
Collapse
Affiliation(s)
- Maya Yamato
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| | - R Ewan Fordyce
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Geology, University of Otago, Dunedin, New Zealand
| | - James G Mead
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
32
|
Mooney TA, Yang WC, Yu HY, Ketten DR, Jen IF. Hearing abilities and sound reception of broadband sounds in an adult Risso’s dolphin (Grampus griseus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:751-61. [DOI: 10.1007/s00359-015-1011-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 11/29/2022]
|
33
|
McDonald M, Vapniarsky-Arzi N, Verstraete F, Staszyk C, Leale D, Woolard K, Arzi B. Characterization of the temporomandibular joint of the harbour porpoise (Phocoena phocoena) and Risso's dolphin (Grampus griseus). Arch Oral Biol 2015; 60:582-92. [DOI: 10.1016/j.archoralbio.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
34
|
Yamato M, Pyenson ND. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans. PLoS One 2015; 10:e0118582. [PMID: 25760328 PMCID: PMC4356564 DOI: 10.1371/journal.pone.0118582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.
Collapse
Affiliation(s)
- Maya Yamato
- Departments of Vertebrate Zoology and Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
| | - Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, United States of America
- Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Antunes R, Kvadsheim PH, Lam FPA, Tyack PL, Thomas L, Wensveen PJ, Miller PJO. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas). MARINE POLLUTION BULLETIN 2014; 83:165-80. [PMID: 24820645 DOI: 10.1016/j.marpolbul.2014.03.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/13/2014] [Accepted: 03/29/2014] [Indexed: 05/23/2023]
Abstract
The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources.
Collapse
Affiliation(s)
- R Antunes
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland KY16 8LB, UK.
| | - P H Kvadsheim
- Norwegian Defence Research Establishment, Maritime Systems, N-3191 Horten, Norway
| | - F P A Lam
- Acoustics & Sonar Research Group, Netherlands Organization for Applied Scientific Research (TNO), Oude Waalsdorperweg 63, 2597 AK The Hague, The Netherlands
| | - P L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland KY16 8LB, UK; Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 94305, USA
| | - L Thomas
- CREEM Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews, Scotland KY16 9LZ, UK
| | - P J Wensveen
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland KY16 8LB, UK
| | - P J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Scotland KY16 8LB, UK
| |
Collapse
|
36
|
Castellote M, Mooney TA, Quakenbush L, Hobbs R, Goertz C, Gaglione E. Baseline hearing abilities and variability in wild beluga whales (Delphinapterus leucas). J Exp Biol 2014; 217:1682-91. [DOI: 10.1242/jeb.093252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While hearing is the primary sensory modality for odontocetes, there are few data addressing variation within a natural population. This work describes the hearing ranges (4–150 kHz) and sensitivities of seven apparently healthy, wild beluga whales (Delphinapterus leucas) during a population health assessment project that captured and released belugas in Bristol Bay, Alaska. The baseline hearing abilities and subsequent variations were addressed. Hearing was measured using auditory evoked potentials (AEPs). All audiograms showed a typical cetacean U-shape; substantial variation (>30 dB) was found between most and least sensitive thresholds. All animals heard well, up to at least 128 kHz. Two heard up to 150 kHz. Lowest auditory thresholds (35–45 dB) were identified in the range 45–80 kHz. Greatest differences in hearing abilities occurred at both the high end of the auditory range and at frequencies of maximum sensitivity. In general, wild beluga hearing was quite sensitive. Hearing abilities were similar to those of belugas measured in zoological settings, reinforcing the comparative importance of both settings. The relative degree of variability across the wild belugas suggests that audiograms from multiple individuals are needed to properly describe the maximum sensitivity and population variance for odontocetes. Hearing measures were easily incorporated into field-based settings. This detailed examination of hearing abilities in wild Bristol Bay belugas provides a basis for a better understanding of the potential impact of anthropogenic noise on a noise-sensitive species. Such information may help design noise-limiting mitigation measures that could be applied to areas heavily influenced and inhabited by endangered belugas.
Collapse
Affiliation(s)
- Manuel Castellote
- National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
- North Gulf Oceanic Society, Homer, AK 99603, USA
| | - T. Aran Mooney
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Lori Quakenbush
- Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701, USA
| | - Roderick Hobbs
- National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98115, USA
| | | | - Eric Gaglione
- Georgia Aquarium, 225 Baker Street NW, Atlanta, GA 30313, USA
| |
Collapse
|
37
|
Modeling the utility of binaural cues for underwater sound localization. Hear Res 2014; 312:103-13. [PMID: 24727491 DOI: 10.1016/j.heares.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 11/24/2022]
Abstract
The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2°), and lower resolution toward the periphery (9°). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances.
Collapse
|
38
|
Li S, Wang D, Wang K, Hoffmann-Kuhnt M, Fernando N, Taylor EA, Lin W, Chen J, Ng T. Possible age-related hearing loss (presbycusis) and corresponding change in echolocation parameters in a stranded Indo-Pacific humpback dolphin. J Exp Biol 2013; 216:4144-53. [DOI: 10.1242/jeb.091504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The hearing and echolocation clicks of a stranded Indo-Pacific humpback dolphin (Sousa chinensis) in Zhuhai, China, were studied. This animal had been repeatedly observed in the wild before it was stranded and its age was estimated to be ~40 years. The animal's hearing was measured using a non-invasive auditory evoked potential (AEP) method. Echolocation clicks produced by the dolphin were recorded when the animal was freely swimming in a 7.5 m (width)×22 m (length)×4.8 m (structural depth) pool with a water depth of ~2.5 m. The hearing and echolocation clicks of the studied dolphin were compared with those of a conspecific younger individual, ~13 years of age. The results suggested that the cut-off frequency of the high-frequency hearing of the studied dolphin was ~30–40 kHz lower than that of the younger individual. The peak and centre frequencies of the clicks produced by the older dolphin were ~16 kHz lower than those of the clicks produced by the younger animal. Considering that the older dolphin was ~40 years old, its lower high-frequency hearing range with lower click peak and centre frequencies could probably be explained by age-related hearing loss (presbycusis).
Collapse
Affiliation(s)
- Songhai Li
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology of the Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology of the Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology of the Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, China
| | - Matthias Hoffmann-Kuhnt
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227
| | - Nimal Fernando
- Ocean Park Corporation, 180 Wong Chuk Hang Road, Aberdeen, Hong Kong SAR, China
| | - Elizabeth A. Taylor
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227
| | - Wenzhi Lin
- The Pearl River Estuary Chinese White Dolphin National Nature Reserve, 23 South Road Zhuhai Tangjia, Guangdong, 519080, China
| | - Jialin Chen
- The Pearl River Estuary Chinese White Dolphin National Nature Reserve, 23 South Road Zhuhai Tangjia, Guangdong, 519080, China
| | - Timothy Ng
- Ocean Park Conservation Foundation, Hong Kong, 180 Wong Chuk Hang Road, Aberdeen, Hong Kong SAR, China
| |
Collapse
|
39
|
Goldbogen JA, Southall BL, DeRuiter SL, Calambokidis J, Friedlaender AS, Hazen EL, Falcone EA, Schorr GS, Douglas A, Moretti DJ, Kyburg C, McKenna MF, Tyack PL. Blue whales respond to simulated mid-frequency military sonar. Proc Biol Sci 2013; 280:20130657. [PMID: 23825206 PMCID: PMC3712439 DOI: 10.1098/rspb.2013.0657] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Mid-frequency military (1–10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.
Collapse
Affiliation(s)
- Jeremy A Goldbogen
- Cascadia Research Collective, 218 1/2 W. 4th Avenue, Olympia, WA 98501, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Reichmuth C, Holt MM, Mulsow J, Sills JM, Southall BL. Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:491-507. [PMID: 23563644 DOI: 10.1007/s00359-013-0813-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 11/25/2022]
Abstract
Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.
Collapse
Affiliation(s)
- Colleen Reichmuth
- Long Marine Laboratory, Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| | | | | | | | | |
Collapse
|
41
|
Mooney TA, Li S, Ketten D, Wang K, Wang D. Hearing pathways in the Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. J Exp Biol 2013; 217:444-52. [PMID: 24143026 DOI: 10.1242/jeb.093773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
How an animal receives sound may influence its use of sound. While "jaw hearing" is well supported for odontocetes, examining how sound is received across the head work has been limited to a few representative species. The substantial variation in jaw and head morphology among odontocetes suggests variation in sound reception. Here we address how a divergent subspecies, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) hears low, mid, and high frequency tones, as well as broadband clicks, comparing sounds presented at different locations across the head. Hearing was measured using auditory evoked potentials (AEPs). Click and tone stimuli (8, 54, and 120 kHz) were presented at nine locations on the head and body using a suction-cup transducer. Threshold differences were compared between frequencies and locations, and referenced to the underlying anatomy using computed tomography (CT) imaging of deceased animals of the same subspecies. The best hearing locations with minimum thresholds were found adjacent to a mandibular fat pad and overlying the auditory bulla. Mean thresholds were not substantially different at locations from the rostrum tip to the ear (11.6 dB). This contrasts with tests with bottlenose dolphins and beluga whales, in which 30-40 dB threshold differences were found across the animals' heads. Response latencies increased with decreasing response amplitudes, which suggests that both latency and sensitivity are interrelated when considering sound reception across the odontocete head. The results suggest that there are differences among odontocetes in the anatomy related to receiving sound, and porpoises may have relatively less acoustic "shadowing".
Collapse
Affiliation(s)
| | - Songhai Li
- Chinese Academy of Sciences, People's Republic of China
| | | | - Kexiong Wang
- Chinese Academy of Sciences, People's Republic of China
| | - Ding Wang
- Chinese Academy of Sciences, People's Republic of China
| |
Collapse
|