1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Durin Z, Layotte A, Morelle W, Houdou M, Folcher A, Legrand D, Lefeber D, Prevarskaya N, Von Blume J, Cormier-Daire V, Foulquier F. SLC10A7 regulates O-GalNAc glycosylation and Ca 2+ homeostasis in the secretory pathway: insights into SLC10A7-CDG. Cell Mol Life Sci 2025; 82:40. [PMID: 39779512 PMCID: PMC11711720 DOI: 10.1007/s00018-024-05551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented. The emergence of CDG resulting from defects in ER/ Golgi homeostasis makes this even more difficult. SLC10A7 belongs to the SLC10 protein family, known as bile acid and steroid transport family, exhibiting a unique structure. It shows a ubiquitous expression and is linked to negative calcium regulation in cells. The mechanisms by which SLC10A7 deficiency leads to Golgi glycosylation abnormalities are unknown. The present study identifies major O-glycosylation defects in both SLC10A7 KO HAP1 cells and SLC10A7-CDG patient fibroblasts and reveals an increased ER and Golgi calcium contents. We also show that the abundance of COSMC and C1GALT1 is altered in SLC10A7-CDG patient cells, as well as the subcellular Golgi localization of the Ca2+-binding Cab45 protein. Finally, we demonstrate that supraphysiological manganese supplementation suppresses the deficient electrophoretic mobility of TGN46 by an aberrant transfer of GalNAc residues, and reveal COSMC Mn2+ sensitivity. These findings provide novel insights into the mechanisms of Golgi glycosylation defects in SLC10A7-deficient cells. They show that SLC10A7 is a key Golgi transmembrane protein maintaining the tight regulation of Ca2+ homeostasis in the ER and Golgi compartments, both essential for glycosylation.
Collapse
Affiliation(s)
- Zoé Durin
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| | - Aurore Layotte
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| | - Willy Morelle
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| | - Marine Houdou
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| | - Antoine Folcher
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée Par La Ligue Nationale Contre Le Cancer, GIS ONCO Lille, University of Lille, Lille, France
| | - Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| | - Dirk Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée Par La Ligue Nationale Contre Le Cancer, GIS ONCO Lille, University of Lille, Lille, France
| | - Julia Von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Valérie Cormier-Daire
- INSERM UMR1163, Institut Imagine, Université de Paris, Paris, France
- Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
| |
Collapse
|
3
|
Elbahnsi A, Dudas B, Callebaut I, Hinzpeter A, Miteva MA. ATP-Binding Cassette and Solute Carrier Transporters: Understanding Their Mechanisms and Drug Modulation Through Structural and Modeling Approaches. Pharmaceuticals (Basel) 2024; 17:1602. [PMID: 39770445 PMCID: PMC11676857 DOI: 10.3390/ph17121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters play pivotal roles in cellular transport mechanisms, influencing a wide range of physiological processes and impacting various medical conditions. Recent advancements in structural biology and computational modeling have provided significant insights into their function and regulation. This review provides an overview of the current knowledge of human ABC and SLC transporters, emphasizing their structural and functional relationships, transport mechanisms, and the contribution of computational approaches to their understanding. Current challenges and promising future research and methodological directions are also discussed.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Balint Dudas
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| | - Isabelle Callebaut
- Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie—IMPMC, Sorbonne Université, 75005 Paris, France
| | - Alexandre Hinzpeter
- CNRS, INSERM, Institut Necker Enfants Malades—INEM, Université Paris Cité, 75015 Paris, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CiTCoM UMR 8038 CNRS, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
4
|
Zhu Y, Zhang Q, Pan J, Li T, Wang H, Liu J, Qian L, Zhu T, Pang Y, Li Q, Chi Y. Evolutionary analysis of SLC10 family members and insights into function and expression regulation of lamprey NTCP. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1109-1122. [PMID: 38429619 DOI: 10.1007/s10695-024-01324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.
Collapse
Affiliation(s)
- Yingying Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qipeng Zhang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jilong Pan
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Tiesong Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jindi Liu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lei Qian
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yan Chi
- College of Life Sciences, Liaoning Normal University, Dalian116081, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
5
|
Lu X, Huang J. Molecular mechanisms of Na +-driven bile acid transport in human NTCP. Biophys J 2024; 123:1195-1210. [PMID: 38544409 PMCID: PMC11140467 DOI: 10.1016/j.bpj.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Human Na+ taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na+ binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na+-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na+-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.
Collapse
Affiliation(s)
- Xiaoli Lu
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jing Huang
- Westlake AI Therapeutics Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
7
|
Wang Y, Guo D, Winkler R, Lei X, Wang X, Messina J, Luo J, Lu H. Development of novel liver-targeting glucocorticoid prodrugs. MEDICINE IN DRUG DISCOVERY 2024; 21:100172. [PMID: 38390434 PMCID: PMC10883687 DOI: 10.1016/j.medidd.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Background Glucocorticoids (GCs) are widely used in the treatment of inflammatory liver diseases and sepsis, but GC's various side effects on extrahepatic tissues limit their clinical benefits. Liver-targeting GC therapy may have multiple advantages over systemic GC therapy. The purpose of this study was to develop novel liver-targeting GC prodrugs as improved treatment for inflammatory liver diseases and sepsis. Methods A hydrophilic linker or an ultra-hydrophilic zwitterionic linker carboxylic betaine (CB) was used to bridge cholic acid (CA) and dexamethasone (DEX) to generate transporter-dependent liver-targeting GC prodrugs CA-DEX and the highly hydrophilic CA-CB-DEX. The efficacy of liver-targeting DEX prodrugs and DEX were determined in primary human hepatocytes (PHH), macrophages, human whole blood, and/or mice with sepsis induced by cecal ligation and puncture. Results CA-DEX was moderately water soluble, whereas CA-CB-DEX was highly water soluble. CA-CB-DEX and CA-DEX displayed highly transporter-dependent activities in reporter assays. Data mining found marked dysregulation of many GR-target genes important for lipid catabolism, cytoprotection, and inflammation in patients with severe alcoholic hepatitis. These key GR-target genes were similarly and rapidly (within 6 h) induced or down-regulated by CA-CB-DEX and DEX in PHH. CA-CB-DEX had much weaker inhibitory effects than DEX on endotoxin-induced cytokines in mouse macrophages and human whole blood. In contrast, CA-CB-DEX exerted more potent anti-inflammatory effects than DEX in livers of septic mice. Conclusions CA-CB-DEX demonstrated good hepatocyte-selectivity in vitro and better anti-inflammatory effects in vivo. Further test of CA-CB-DEX as a novel liver-targeting GC prodrug for inflammatory liver diseases and sepsis is warranted.
Collapse
Affiliation(s)
- Yazheng Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaohong Lei
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Xiaojing Wang
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Jennifer Messina
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, United States
| |
Collapse
|
8
|
Wannowius M, Karakus E, Aktürk Z, Breuer J, Geyer J. Role of the Sodium-Dependent Organic Anion Transporter (SOAT/SLC10A6) in Physiology and Pathophysiology. Int J Mol Sci 2023; 24:9926. [PMID: 37373074 DOI: 10.3390/ijms24129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The sodium-dependent organic anion transporter (SOAT, gene symbol SLC10A6) specifically transports 3'- and 17'-monosulfated steroid hormones, such as estrone sulfate and dehydroepiandrosterone sulfate, into specific target cells. These biologically inactive sulfo-conjugated steroids occur in high concentrations in the blood circulation and serve as precursors for the intracrine formation of active estrogens and androgens that contribute to the overall regulation of steroids in many peripheral tissues. Although SOAT expression has been detected in several hormone-responsive peripheral tissues, its quantitative contribution to steroid sulfate uptake in different organs is still not completely clear. Given this fact, the present review provides a comprehensive overview of the current knowledge about the SOAT by summarizing all experimental findings obtained since its first cloning in 2004 and by processing SOAT/SLC10A6-related data from genome-wide protein and mRNA expression databases. In conclusion, despite a significantly increased understanding of the function and physiological significance of the SOAT over the past 20 years, further studies are needed to finally establish it as a potential drug target for endocrine-based therapy of steroid-responsive diseases such as hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Marie Wannowius
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Zekeriya Aktürk
- General Practice, Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Breuer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg (BFS), Justus Liebig University of Giessen, Schubertstr. 81, 35392 Giessen, Germany
| |
Collapse
|
9
|
Chen B, Xu X, Wu W, Zheng K, Yu Y. LINC00659 Inhibits Hepatocellular Carcinoma Malignant Progression by Blocking Aerobic Glycolysis through FUS Recruitment and SLC10A1 Modulation. Anal Cell Pathol (Amst) 2023; 2023:5852963. [PMID: 37234237 PMCID: PMC10208759 DOI: 10.1155/2023/5852963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of liver cancer that poses severe threat to human health worldwide. Aerobic glycolysis is a hallmark of HCC and facilitates its progression. Solute carrier family 10 member 1 (SLC10A1) and long intergenic non-protein coding RNA 659 (LINC00659) were detected to be downregulated in HCC cells, yet their potential functions underlying HCC progression remained unidentified. In the current work, colony formation and transwell assays were used to detect HCC cells (HepG2 and HuH-7) proliferation and migration in vitro study. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were used for gene/protein expression determination. Seahorse assay was performed for aerobic glycolysis assessment. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted for detection of the molecular interaction between LINC00659 and SLC10A1. The results showed that overexpressed SLC10A1 significantly suppressed the proliferation, migration, and aerobic glycolysis in HCC cells. Mechanical experiments further demonstrated that LINC00659 positively regulated SLC10A1 expression in HCC cells by recruiting fused protein in sarcoma (FUS). Our work elucidated that LINC00659 inhibited HCC progression and aerobic glycolysis via the FUS/SLC10A1 axis, revealing a novel lncRNA-RNA-binding protein-mRNA network in HCC, which might provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Xin Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Wei Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Ke Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Yijun Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| |
Collapse
|
10
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
11
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
12
|
Erlinger S. A history of research into the physiology of bile, from Hippocrates to molecular medicine. Clin Liver Dis (Hoboken) 2022; 20:33-44. [PMID: 36518787 PMCID: PMC9742757 DOI: 10.1002/cld.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Content available: Audio Recording.
Collapse
|
13
|
Medical Advances in Hepatitis D Therapy: Molecular Targets. Int J Mol Sci 2022; 23:ijms231810817. [PMID: 36142728 PMCID: PMC9506394 DOI: 10.3390/ijms231810817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
An approximate number of 250 million people worldwide are chronically infected with hepatitis B virus, making them susceptible to a coinfection with hepatitis D virus. The superinfection causes the most severe form of a viral hepatitis and thus drastically worsens the course of the disease. Until recently, the only available therapy consisted of interferon-α, only eligible for a minority of patients. In July 2020, the EMA granted Hepcludex conditional marketing authorization throughout the European Union. This first-in-class entry inhibitor offers the promise to prevent the spread in order to gain control and eventually participate in curing hepatitis B and D. Hepcludex is an example of how understanding the viral lifecycle can give rise to new therapy options. Sodium taurocholate co-transporting polypeptide, the virus receptor and the target of Hepcludex, and other targets of hepatitis D therapy currently researched are reviewed in this work. Farnesyltransferase inhibitors such as Lonafarnib, targeting another essential molecule in the HDV life cycle, represent a promising target for hepatitis D therapy. Farnesyltransferase attaches a farnesyl (isoprenyl) group to proteins carrying a C-terminal Ca1a2X (C: cysteine, a: aliphatic amino acid, X: C-terminal amino acid) motif like the large hepatitis D virus antigen. This modification enables the interaction of the HBV/HDV particle and the virus envelope proteins. Lonafarnib, which prevents this envelopment, has been tested in clinical trials. Targeting the lifecycle of the hepatitis B virus needs to be considered in hepatitis D therapy in order to cure a patient from both coexisting infections. Nucleic acid polymers target the hepatitis B lifecycle in a manner that is not yet understood. Understanding the possible targets of the hepatitis D virus therapy is inevitable for the improvement and development of a sufficient therapy that HDV patients are desperately in need of.
Collapse
|
14
|
Liu H, Irobalieva RN, Bang-Sørensen R, Nosol K, Mukherjee S, Agrawal P, Stieger B, Kossiakoff AA, Locher KP. Structure of human NTCP reveals the basis of recognition and sodium-driven transport of bile salts into the liver. Cell Res 2022; 32:773-776. [PMID: 35726088 PMCID: PMC9343345 DOI: 10.1038/s41422-022-00680-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hongtao Liu
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Rose Bang-Sørensen
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Tremmel R, Nies AT, van Eijck BAC, Handin N, Haag M, Winter S, Büttner FA, Kölz C, Klein F, Mazzola P, Hofmann U, Klein K, Hoffmann P, Nöthen MM, Gaugaz FZ, Artursson P, Schwab M, Schaeffeler E. Hepatic Expression of the Na+-Taurocholate Cotransporting Polypeptide Is Independent from Genetic Variation. Int J Mol Sci 2022; 23:ijms23137468. [PMID: 35806468 PMCID: PMC9267852 DOI: 10.3390/ijms23137468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Barbara A. C. van Eijck
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Florian A. Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Franziska Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascale Mazzola
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Fabienne Z. Gaugaz
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Pharmacy and Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-711-8101-3700
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
16
|
Huang H, Yuan D, Li M, Abulaiti A, Lu F. Active HBV replication in hypoxic pericentral zone 3 is upregulated by multiple host factors including HIF-1α. J Hepatol 2022; 77:265-267. [PMID: 35219790 DOI: 10.1016/j.jhep.2022.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Disen Yuan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Mingwei Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Abudurexiti Abulaiti
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Hepatology Institute, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
17
|
Zakrzewicz D, Leidolf R, Kunz S, Müller SF, Neubauer A, Leiting S, Goldmann N, Lehmann F, Glebe D, Geyer J. Tyrosine 146 of the Human Na +/Taurocholate Cotransporting Polypeptide (NTCP) Is Essential for Its Hepatitis B Virus (HBV) Receptor Function and HBV Entry into Hepatocytes. Viruses 2022; 14:v14061259. [PMID: 35746730 PMCID: PMC9230856 DOI: 10.3390/v14061259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1) is a hepatic bile acid uptake carrier participating in the enterohepatic circulation of bile acids. Apart from its transporter function, NTCP acts as the high-affinity liver-specific receptor for the hepatitis B virus (HBV), which attaches via its preS1-peptide domain of the large surface protein to NTCP, subsequently leading to endocytosis of the virus/NTCP-receptor complex. Although the process of NTCP-dependent HBV infection of hepatocytes has received much attention over the last decade, the precise molecular sites of the virus/NTCP interaction have not been fully identified. Inspection of the primary protein sequence of human NTCP revealed 139YIYSRGIY146 as a highly conserved tyrosine-rich motif. To study the role of Y139, Y141 and Y146 amino acids in NTCP biology, the aforementioned residues were substituted with alanine, phenylalanine or glutamate (mimicking phosphorylation) using site-directed mutagenesis. Similar to wt NTCP, the Y139A, Y141A, Y146A, Y141F, Y146F, and Y146E mutants were expressed at the plasma membrane of HEK293 cells and exhibited intact bile acid transport function. Y146A, Y146E, and Y146F demonstrated transport kinetics comparable to wild-type NTCP with Km values of 57.3–112.4 µM and Vmax values of 6683–7579 pmol/mg protein/min. Only Y141E was transport deficient, most likely due to an intracellular accumulation of the mutant protein. Most importantly, Y146A and Y146E mutation completely abrogated binding of the viral preS1-peptide to NTCP, while the Y146F mutant of NTCP showed some residual binding competence for preS1. Consequently, the NTCP mutants Y146A and Y146E, when expressed in HepG2 hepatoma cells, showed complete loss of susceptibility for in vitro HBV infection. In conclusion, tyrosine 146, and to some extent tyrosine 141, both belonging to the tyrosine-rich motif 139YIYSRGIY146 of human NTCP, are newly identified amino acid residues that play an essential role in the interaction of HBV with its receptor NTCP and, thus, in the process of virus entry into hepatocytes.
Collapse
Affiliation(s)
- Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
- Correspondence: ; Tel.: +49-641-99-38412
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| | - Sebastian Kunz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| | - Anita Neubauer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| | - Silke Leiting
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, German Center for Infection Research (DZIF, Partner Site Giessen-Marburg-Langen), Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (R.L.); (S.K.); (S.F.M.); (A.N.); (S.L.); (J.G.)
| |
Collapse
|
18
|
Goutam K, Ielasi FS, Pardon E, Steyaert J, Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature 2022; 606:1015-1020. [PMID: 35545671 PMCID: PMC9242856 DOI: 10.1038/s41586-022-04723-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
The liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs1. Human Na+–taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses2,3 (HBV/HDV), and has emerged as an important target for antiviral drugs4. However, the molecular mechanisms underlying NTCP transport and viral receptor functions remain incompletely understood. Here we present cryo-electron microscopy structures of human NTCP in complexes with nanobodies, revealing key conformations of its transport cycle. NTCP undergoes a conformational transition opening a wide transmembrane pore that serves as the transport pathway for bile salts, and exposes key determinant residues for HBV/HDV binding to the outside of the cell. A nanobody that stabilizes pore closure and inward-facing states impairs recognition of the HBV/HDV receptor-binding domain preS1, demonstrating binding selectivity of the viruses for open-to-outside over inward-facing conformations of the NTCP transport cycle. These results provide molecular insights into NTCP ‘gated-pore’ transport and HBV/HDV receptor recognition mechanisms, and are expected to help with development of liver disease therapies targeting NTCP. Structural studies of human Na+–taurocholate co-transporting polypeptide in complex with nanobodies reveal mechanisms for bile salts transport and HBV recognition involving an open-pore intermediate state.
Collapse
Affiliation(s)
- Kapil Goutam
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, CNRS-UMR5234, Pessac, France.,Membrane Protein Mechanisms Unit, Institut Pasteur, Paris, France
| | | | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.,VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Nicolas Reyes
- Membrane Protein Mechanisms Group, European Institute of Chemistry and Biology, University of Bordeaux, CNRS-UMR5234, Pessac, France. .,Membrane Protein Mechanisms Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
19
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
20
|
Zaongo SD, Ouyang J, Chen Y, Jiao YM, Wu H, Chen Y. HIV Infection Predisposes to Increased Chances of HBV Infection: Current Understanding of the Mechanisms Favoring HBV Infection at Each Clinical Stage of HIV Infection. Front Immunol 2022; 13:853346. [PMID: 35432307 PMCID: PMC9010668 DOI: 10.3389/fimmu.2022.853346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) selectively targets and destroys the infection-fighting CD4+ T-lymphocytes of the human immune system, and has a life cycle that encompasses binding to certain cells, fusion to that cell, reverse transcription of its genome, integration of its genome into the host cell DNA, replication of the HIV genome, assembly of the HIV virion, and budding and subsequent release of free HIV virions. Once a host is infected with HIV, the host’s ability to competently orchestrate effective and efficient immune responses against various microorganisms, such as viral infections, is significantly disrupted. Without modern antiretroviral therapy (ART), HIV is likely to gradually destroy the cellular immune system, and thus the initial HIV infection will inexorably evolve into acquired immunodeficiency syndrome (AIDS). Generally, HIV infection in a patient has an acute phase, a chronic phase, and an AIDS phase. During these three clinical stages, patients are found with relatively specific levels of viral RNA, develop rather distinctive immune conditions, and display unique clinical manifestations. Convergent research evidence has shown that hepatitis B virus (HBV) co-infection, a common cause of chronic liver disease, is fairly common in HIV-infected individuals. HBV invasion of the liver can be facilitated by HIV infection at each clinical stage of the infection due to a number of contributing factors, including having identical transmission routes, immunological suppression, gut microbiota dysbiosis, poor vaccination immune response to hepatitis B immunization, and drug hepatotoxicity. However, there remains a paucity of research investigation which critically describes the influence of the different HIV clinical stages and their consequences which tend to favor HBV entrenchment in the liver. Herein, we review advances in the understanding of the mechanisms favoring HBV infection at each clinical stage of HIV infection, thus paving the way toward development of potential strategies to reduce the prevalence of HBV co-infection in the HIV-infected population.
Collapse
Affiliation(s)
- Silvere D. Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaling Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yan-Mei Jiao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Infectious Diseases, You’an Hospital, Capital Medical University, Beijing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Yaokai Chen,
| |
Collapse
|
21
|
IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses 2022; 14:v14040727. [PMID: 35458456 PMCID: PMC9027621 DOI: 10.3390/v14040727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1–3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein–protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies.
Collapse
|
22
|
Ruggiero MJ, Malhotra S, Fenton AW, Swint-Kruse L, Karanicolas J, Hagenbuch B. Structural Plasticity Is a Feature of Rheostat Positions in the Human Na +/Taurocholate Cotransporting Polypeptide (NTCP). Int J Mol Sci 2022; 23:ijms23063211. [PMID: 35328632 PMCID: PMC8954283 DOI: 10.3390/ijms23063211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
In the Na+/taurocholate cotransporting polypeptide (NTCP), the clinically relevant S267F polymorphism occurs at a "rheostat position". That is, amino acid substitutions at this position ("S267X") lead to a wide range of functional outcomes. This result was particularly striking because molecular models predicted the S267X side chains are buried, and thus, usually expected to be less tolerant of substitutions. To assess whether structural tolerance to buried substitutions is widespread in NTCP, here we used Rosetta to model all 19 potential substitutions at another 13 buried positions. Again, only subtle changes in the calculated stabilities and structures were predicted. Calculations were experimentally validated for 19 variants at codon 271 ("N271X"). Results showed near wildtype expression and rheostatic modulation of substrate transport, implicating N271 as a rheostat position. Notably, each N271X substitution showed a similar effect on the transport of three different substrates and thus did not alter substrate specificity. This differs from S267X, which altered both transport kinetics and specificity. As both transport and specificity may change during protein evolution, the recognition of such rheostat positions may be important for evolutionary studies. We further propose that the presence of rheostat positions is facilitated by local plasticity within the protein structure. Finally, we note that identifying rheostat positions may advance efforts to predict new biomedically relevant missense variants in NTCP and other membrane transport proteins.
Collapse
Affiliation(s)
- Melissa J. Ruggiero
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (S.M.); (J.K.)
| | - Aron W. Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (A.W.F.); (L.S.-K.)
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; (A.W.F.); (L.S.-K.)
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (S.M.); (J.K.)
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|
23
|
Multitasking Na+/Taurocholate Cotransporting Polypeptide (NTCP) as a Drug Target for HBV Infection: From Protein Engineering to Drug Discovery. Biomedicines 2022; 10:biomedicines10010196. [PMID: 35052874 PMCID: PMC8773476 DOI: 10.3390/biomedicines10010196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infections are among the major public health concerns worldwide with more than 250 million of chronically ill individuals. Many of them are additionally infected with the Hepatitis D virus, a satellite virus to HBV. Chronic infection frequently leads to serious liver diseases including cirrhosis and hepatocellular carcinoma, the most common type of liver cancer. Although current antiviral therapies can control HBV replication and slow down disease progress, there is an unmet medical need to identify therapies to cure this chronic infectious disease. Lately, a noteworthy progress in fighting against HBV has been made by identification of the high-affinity hepatic host receptor for HBV and HDV, namely Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1). Next to its primary function as hepatic uptake transporter for bile acids, NTCP is essential for the cellular entry of HBV and HDV into hepatocytes. Due to this high-ranking discovery, NTCP has become a valuable target for drug development strategies for HBV/HDV-infected patients. In this review, we will focus on a newly predicted three-dimensional NTCP model that was generated using computational approaches and discuss its value in understanding the NTCP’s membrane topology, substrate and virus binding taking place in plasma membranes. We will review existing data on structural, functional, and biological consequences of amino acid residue changes and mutations that lead to loss of NTCP’s transport and virus receptor functions. Finally, we will discuss new directions for future investigations aiming at development of new NTCP-based HBV entry blockers that inhibit HBV tropism in human hepatocytes.
Collapse
|
24
|
SLC10A7, an orphan member of the SLC10 family involved in congenital disorders of glycosylation. Hum Genet 2022; 141:1287-1298. [PMID: 34999954 DOI: 10.1007/s00439-021-02420-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca2+ regulation and is involved in proper glycosaminoglycan biosynthesis, especially heparan-sulfate, and N-glycosylation. This paper will review our current knowledge on the known and predicted structural and functional properties of this fascinating protein, and its link with the glycosylation process.
Collapse
|
25
|
Abstract
Hepatitis B virus (HBV) is a non-cytopathic, hepatotropic virus with the potential to cause a persistent infection, ultimately leading to cirrhosis and hepatocellular carcinoma. Over the past four decades, the basic principles of HBV gene expression and replication as well as the viral and host determinants governing infection outcome have been largely uncovered. Whereas HBV appears to induce little or no innate immune activation, the adaptive immune response mediates both viral clearance as well as liver disease. Here, we review our current knowledge on the immunobiology and pathogenesis of HBV infection, focusing in particular on the role of CD8+ T cells and on several recent breakthroughs that challenge current dogmas. For example, we now trust that HBV integration into the host genome often serves as a relevant source of hepatitis B surface antigen (HBsAg) expression during chronic infection, possibly triggering dysfunctional T cell responses and favouring detrimental immunopathology. Further, the unique haemodynamics and anatomy of the liver - and the changes they frequently endure during disease progression to liver fibrosis and cirrhosis - profoundly influence T cell priming, differentiation and function. We also discuss why therapeutic approaches that limit the intrahepatic inflammatory processes triggered by HBV-specific T cells might be surprisingly beneficial for patients with chronic infection.
Collapse
|
26
|
Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W, Petriello MC. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. ENVIRONMENT INTERNATIONAL 2021; 157:106843. [PMID: 34479135 PMCID: PMC8490327 DOI: 10.1016/j.envint.2021.106843] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epidemiological studies have shown Per- and polyfluoroalkyl substances (PFAS) to be associated with diseases of dysregulated lipid and sterol homeostasis such as steatosis and cardiometabolic disorders. However, the majority of mechanistic studies rely on single chemical exposures instead of identifying mechanisms related to the toxicity of PFAS mixtures. OBJECTIVES The goal of the current study is to investigate mechanisms linking exposure to a PFAS mixture with alterations in lipid metabolism, including increased circulating cholesterol and bile acids. METHODS Male and female wild-type C57BL/6J mice were fed an atherogenic diet used in previous studies of pollutant-accelerated atherosclerosis and exposed to water containing a mixture of 5 PFAS representing legacy, replacement, and alternative subtypes (i.e., PFOA, PFOS, PFNA, PFHxS, and GenX), each at a concentration of 2 mg/L, for 12 weeks. Changes at the transcriptome and metabolome level were determined by RNA-seq and high-resolution mass spectrometry, respectively. RESULTS We observed increased circulating cholesterol, sterol metabolites, and bile acids due to PFAS exposure, with some sexual dimorphic effects. PFAS exposure increased hepatic injury, demonstrated by increased liver weight, hepatic inflammation, and plasma alanine aminotransferase levels. Females displayed increased lobular and portal inflammation compared to the male PFAS-exposed mice. Hepatic transcriptomics analysis revealed PFAS exposure modulated multiple metabolic pathways, including those related to sterols, bile acids, and acyl carnitines, with multiple sex-specific differences observed. Finally, we show that hepatic and circulating levels of PFOA were increased in exposed females compared to males, but this sexual dimorphism was not the same for other PFAS examined. DISCUSSION Exposure of mice to a mixture of PFAS results in PFAS-mediated modulation of cholesterol levels, possibly through disruption of enterohepatic circulation.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Manisha Agarwal
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Wendy Liu
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Ze Long
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
27
|
Mueller JW, Vogg N, Lightning TA, Weigand I, Ronchi CL, Foster PA, Kroiss M. Steroid Sulfation in Adrenal Tumors. J Clin Endocrinol Metab 2021; 106:3385-3397. [PMID: 33739426 DOI: 10.1210/clinem/dgab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Nora Vogg
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Thomas Alec Lightning
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
28
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
29
|
Ambrus C, Bakos É, Sarkadi B, Özvegy-Laczka C, Telbisz Á. Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics. Sci Rep 2021; 11:17810. [PMID: 34497279 PMCID: PMC8426393 DOI: 10.1038/s41598-021-97160-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transporters in the human liver play a major role in the clearance of endo- and xenobiotics. Apical (canalicular) transporters extrude compounds to the bile, while basolateral hepatocyte transporters promote the uptake of, or expel, various compounds from/into the venous blood stream. In the present work we have examined the in vitro interactions of some key repurposed drugs advocated to treat COVID-19 (lopinavir, ritonavir, ivermectin, remdesivir and favipiravir), with the key drug transporters of hepatocytes. These transporters included ABCB11/BSEP, ABCC2/MRP2, and SLC47A1/MATE1 in the canalicular membrane, as well as ABCC3/MRP3, ABCC4/MRP4, SLC22A1/OCT1, SLCO1B1/OATP1B1, SLCO1B3/OATP1B3, and SLC10A1/NTCP, residing in the basolateral membrane. Lopinavir and ritonavir in low micromolar concentrations inhibited BSEP and MATE1 exporters, as well as OATP1B1/1B3 uptake transporters. Ritonavir had a similar inhibitory pattern, also inhibiting OCT1. Remdesivir strongly inhibited MRP4, OATP1B1/1B3, MATE1 and OCT1. Favipiravir had no significant effect on any of these transporters. Since both general drug metabolism and drug-induced liver toxicity are strongly dependent on the functioning of these transporters, the various interactions reported here may have important clinical relevance in the drug treatment of this viral disease and the existing co-morbidities.
Collapse
Affiliation(s)
- Csilla Ambrus
- SOLVO Biotechnology, Irinyi József street 4-20, 1117, Budapest, Hungary.,Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary.
| |
Collapse
|
30
|
Lei K, Yuan M, Zhou T, Ye Q, Zeng B, Zhou Q, Wei A, Guo L. Research progress in the application of bile acid-drug conjugates: A "trojan horse" strategy. Steroids 2021; 173:108879. [PMID: 34181976 DOI: 10.1016/j.steroids.2021.108879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Bile acid transporters are highly expressed in intestinal cells and hepatocytes, and they determine the uptake of drugs in cells by modulating cellular entry and exit. In order to improve the oral bioavailability of drugs and investigate the potential application prospects of drugs used to target cancer, numerous studies have adopted these transporters to identify prodrug strategies. Through the connection of covalent bonds between drugs and bile acids, the resulting bile acid-drug conjugates continue to be recognized as similar to natural unmodified bile acid and is translocated by the transporter. The present mini-review provides a brief summary of recent progress of the application of bile acid-drug conjugates based primarily on ASBT, NTCP, and OATP, with the hope of contributing to subsequent research.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Yuan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Ye
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Zeng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ailing Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Qie D, Zhang Y, Gong X, He Y, Qiao L, Lu G, Li Y. SLC10A2 deficiency-induced congenital chronic bile acid diarrhea and stunting. Mol Genet Genomic Med 2021; 9:e1740. [PMID: 34192422 PMCID: PMC8404231 DOI: 10.1002/mgg3.1740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Diarrhea is a common occurrence in children below the age of 5 years. In chronic cases, it induces malnutrition that severely stunts growth. Bile acid diarrhea (BAD), caused by malabsorption of bile acid (BA), is a rare form of chronic diarrhea seldom observed in pediatric patients. Here, we present a clinical report on a novel case of chronic BAD, with severe stunting in an infant, induced by a homozygous mutation of SLC10A2. Methods We performed DNA extraction, whole‐exome sequencing analysis, and mutation analysis of SLC10A2 to obtain genetic data on the patient. We subsequently analyzed the patient's clinical and genetic data. Results The patient's clinical manifestations were chronic diarrhea with increased BAs in the feces and extreme stunting, which was diagnosed as BAD. A homozygous mutation of SLC10A2 at the c.313T>C (rs201206937) site was detected. Conclusion Our report reveals the youngest case illustrating the characteristics of BAD induced by genetic variant at 313T>C, and the second case entailing a clear association between a SLC10A2 genetic mutation and the onset of BAD. Our findings expand the mutant spectrum of the SLC10A2 gene and contribute to the refinement of the genotype–phenotype mapping of severe stunting induced by pediatric BAD. Moreover, they highlight the value of molecular genetic screening for diagnosing BAD in young patients.
Collapse
Affiliation(s)
- Di Qie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yunru He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Lina Qiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Guoyan Lu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Palatini M, Müller SF, Lowjaga KAAT, Noppes S, Alber J, Lehmann F, Goldmann N, Glebe D, Geyer J. Mutational Analysis of the GXXXG/A Motifs in the Human Na +/Taurocholate Co-Transporting Polypeptide NTCP on Its Bile Acid Transport Function and Hepatitis B/D Virus Receptor Function. Front Mol Biosci 2021; 8:699443. [PMID: 34239896 PMCID: PMC8257933 DOI: 10.3389/fmolb.2021.699443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
Homodimerization is essential for plasma membrane sorting of the liver bile acid transporter NTCP and its function as Hepatitis B/D Virus (HBV/HDV) receptor. However, the protein domains involved in NTCP dimerization are unknown. NTCP bears two potential GXXXG/A dimerization motifs in its transmembrane domains (TMDs) 2 and 7. The present study aimed to analyze the role of these GXXXG/A motifs for the sorting, function, and dimerization of NTCP. The NTCP mutants G60LXXXA64L (TMD2), G233LXXXG237L (TMD7) and a double mutant were generated and analyzed for their interaction with wild-type NTCP using a membrane-based yeast-two hybrid system (MYTH) and co-immunoprecipitation (co-IP). In the MYTH system, the TMD2 and TMD7 mutants showed significantly lower interaction with the wild-type NTCP. In transfected HEK293 cells, membrane expression and bile acid transport activity were slightly reduced for the TMD2 mutant but were completely abolished for the TMD7 and the TMD2/7 mutants, while co-IP experiments still showed intact protein-protein interactions. Susceptibility for in vitro HBV infection in transfected HepG2 cells was reduced to 50% for the TMD2 mutant, while the TMD7 mutant was not susceptible for HBV infection at all. We conclude that the GXXXG/A motifs in TMD2 and even more pronounced in TMD7 are important for proper folding and sorting of NTCP, and so indirectly affect glycosylation, homodimerization, and bile acid transport of NTCP, as well as its HBV/HDV receptor function.
Collapse
Affiliation(s)
- Massimo Palatini
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | | | - Saskia Noppes
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Jörg Alber
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B and D Viruses, Justus Liebig University Giessen, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B and D Viruses, Justus Liebig University Giessen, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B and D Viruses, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Grosser G, Müller SF, Kirstgen M, Döring B, Geyer J. Substrate Specificities and Inhibition Pattern of the Solute Carrier Family 10 Members NTCP, ASBT and SOAT. Front Mol Biosci 2021; 8:689757. [PMID: 34079822 PMCID: PMC8165160 DOI: 10.3389/fmolb.2021.689757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Three carriers of the solute carrier family SLC10 have been functionally characterized so far. Na+/taurocholate cotransporting polypeptide NTCP is a hepatic bile acid transporter and the cellular entry receptor for the hepatitis B and D viruses. Its intestinal counterpart, apical sodium-dependent bile acid transporter ASBT, is responsible for the reabsorption of bile acids from the intestinal lumen. In addition, sodium-dependent organic anion transporter SOAT specifically transports sulfated steroid hormones, but not bile acids. All three carriers show high sequence homology, but significant differences in substrate recognition that makes a systematic structure-activity comparison attractive in order to define the protein domains involved in substrate binding and transport. By using stably transfected NTCP-, ASBT-, and SOAT-HEK293 cells, systematic comparative transport and inhibition experiments were performed with more than 20 bile acid and steroid substrates as well as different inhibitors. Taurolithocholic acid (TLC) was identified as the first common substrate of NTCP, ASBT and SOAT with K m values of 18.4, 5.9, and 19.3 µM, respectively. In contrast, lithocholic acid was the only bile acid that was not transported by any of these carriers. Troglitazone, BSP and erythrosine B were identified as pan-SLC10 inhibitors, whereas cyclosporine A, irbesartan, ginkgolic acid 17:1, and betulinic acid only inhibited NTCP and SOAT, but not ASBT. The HBV/HDV-derived myr-preS1 peptide showed equipotent inhibition of the NTCP-mediated substrate transport of taurocholic acid (TC), dehydroepiandrosterone sulfate (DHEAS), and TLC with IC50 values of 182 nM, 167 nM, and 316 nM, respectively. In contrast, TLC was more potent to inhibit myr-preS1 peptide binding to NTCP with IC50 of 4.3 µM compared to TC (IC50 = 70.4 µM) and DHEAS (IC50 = 52.0 µM). Based on the data of the present study, we propose several overlapping, but differently active binding sites for substrates and inhibitors in the carriers NTCP, ASBT, SOAT.
Collapse
Affiliation(s)
- Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Michael Kirstgen
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Barbara Döring
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Biomedical Research Center Seltersberg (BFS), Giessen, Germany
| |
Collapse
|
34
|
Pratsinis A, Uhl P, Bolten JS, Hauswirth P, Schenk SH, Urban S, Mier W, Witzigmann D, Huwyler J. Virus-Derived Peptides for Hepatic Enzyme Delivery. Mol Pharm 2021; 18:2004-2014. [PMID: 33844553 DOI: 10.1021/acs.molpharmaceut.0c01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a lipopeptide derived from the hepatitis B virus (HBV) large surface protein has been developed as an HBV entry inhibitor. This lipopeptide, called MyrcludexB (MyrB), selectively binds to the sodium taurocholate cotransporting polypeptide (NTCP) on the basolateral membrane of hepatocytes. Here, the feasibility of coupling therapeutic enzymes to MyrB was investigated for the development of enzyme delivery strategies. Hepatotropic targeting shall enable enzyme prodrug therapies and detoxification procedures. Here, horseradish peroxidase (HRP) was conjugated to MyrB via maleimide chemistry, and coupling was validated by SDS-PAGE and reversed-phase HPLC. The specificity of the target recognition of HRP-MyrB could be shown in an NTCP-overexpressing liver parenchymal cell line, as demonstrated by competitive inhibition with an excess of free MyrB and displayed a strong linear dependency on the applied HRP-MyrB concentration. In vivo studies in zebrafish embryos revealed a dominating interaction of HRP-MyrB with scavenger endothelial cells vs xenografted NTCP expressing mammalian cells. In mice, radiolabeled 125I-HRP-MyrBy, as well as the non-NTCP targeted control HRP-peptide-construct (125I-HRP-alaMyrBy) demonstrated a strong liver accumulation confirming the nonspecific interaction with scavenger cells. Still, MyrB conjugation to HRP resulted in an increased and NTCP-mediated hepatotropism, as revealed by competitive inhibition. In conclusion, the model enzyme HRP was successfully conjugated to MyrB to achieve NTCP-specific targeting in vitro with the potential for ex vivo diagnostic applications. In vivo, target specificity was reduced by non-NTCP-mediated interactions. Nonetheless, tissue distribution experiments in zebrafish embryos provide mechanistic insight into underlying scavenging processes indicating partial involvement of stabilin receptors.
Collapse
Affiliation(s)
- Anna Pratsinis
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Philipp Uhl
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Patrick Hauswirth
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Susanne Heidi Schenk
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Stephan Urban
- Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
35
|
Lightning TA, Gesteira TF, Mueller JW. Steroid disulfates - Sulfation double trouble. Mol Cell Endocrinol 2021; 524:111161. [PMID: 33453296 DOI: 10.1016/j.mce.2021.111161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Sulfation pathways have recently come into the focus of biomedical research. For steroid hormones and related compounds, sulfation represents an additional layer of regulation as sulfated steroids are more water-soluble and tend to be biologically less active. For steroid diols, an additional sulfation is possible, carried out by the same sulfotransferases that catalyze the first sulfation step. The steroid disulfates that are formed are the focus of this review. We discuss both their biochemical production as well as their putative biological function. Steroid disulfates have also been linked to various clinical conditions in numerous untargeted metabolomics studies. New analytical techniques exploring the biosynthetic routes of steroid disulfates have led to novel insights, changing our understanding of sulfation in human biology. They promise a bright future for research into sulfation pathways, hopefully too for the diagnosis and treatment of several associated diseases.
Collapse
Affiliation(s)
- Thomas Alec Lightning
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, USA; Optimvia, LLC, Batavia, OH, USA
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
36
|
Tran QH, Nguyen VG, Tran CM, Nguyen MN. Down-regulation of solute carrier family 10 member 1 is associated with early recurrence and poorer prognosis of hepatocellular carcinoma. Heliyon 2021; 7:e06463. [PMID: 33763615 PMCID: PMC7973870 DOI: 10.1016/j.heliyon.2021.e06463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/07/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and the fourth-leading cancer-related death worldwide. Most patients with HCC are diagnosed at a late stage in which curable therapies are limited. Thus, identifying biomarkers for early diagnosis and prognosis of HCC is essential for improving the treatment effectiveness in patients with HCC. In this paper, the SLC10A1 expression levels in the cells and the tissues and their correlation with HCC were analyzed using bioinformatics tools. Clinical information data and gene expression profiles were retrieved from the Gene Expression Omnibus and The Cancer Genome Atlas. Chi-square tests, log-rank tests, and Kaplan-Meier curves were performed using R packages. In all statistical analyses, a p-value of less than 0.05 was considered significant. We found that SLC10A1 primarily expresses in the liver, especially on the plasma membrane. The expression levels of SLC10A1 in tumors were consistently lower than that in normal tissue. Down-regulation of SLC10A1 was correlated with a poor survival outcome [p = 4.50e-05] and recurrence-free survival [p = 8.0e-04] in patients with HCC. In addition, multivariate analysis indicated that the expression of SLC10A1 was an independent predictor for survival outcome [p = 2.17e-05] and recurrence-free survival [p = 1.63e-04]. We concluded that SLC10A1 is a potential biomarker for the early diagnosis and prognosis of HCC in the era of personalized medicine.
Collapse
Affiliation(s)
- Quynh Hoa Tran
- Department of Biotechnology, Ho Chi Minh City University of Food Industry, Tay Thanh, Tan Phu District, HCM City, Viet Nam
| | - Van Gio Nguyen
- Department of Biotechnology, Ho Chi Minh City University of Food Industry, Tay Thanh, Tan Phu District, HCM City, Viet Nam
| | - Cong Manh Tran
- Department of Biotechnology, Ho Chi Minh City University of Food Industry, Tay Thanh, Tan Phu District, HCM City, Viet Nam
| | - Minh Nam Nguyen
- School of Medicine, Vietnam National University HCM City, Linh Trung Ward, Thu Duc District, HCM City, Viet Nam
| |
Collapse
|
37
|
Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021; 26:molecules26041172. [PMID: 33671813 PMCID: PMC7926819 DOI: 10.3390/molecules26041172] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| |
Collapse
|
38
|
Ma Q, Chen J, Zhou X, Hu L, Sun Y, Wang Z, Yue Z, Shan A. Dietary supplementation with aromatic amino acids decreased triglycerides and alleviated hepatic steatosis by stimulating bile acid synthesis in mice. Food Funct 2021; 12:267-277. [PMID: 33300530 DOI: 10.1039/d0fo02364g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence shows that amino acids can modulate lipid metabolism. Aromatic amino acids (AAAs) serve as important precursors of several neurotransmitters and metabolic regulators that play a vital role in regulating nutrient metabolism. But whether AAAs have a lipid-lowering function remains unknown. Here mice were fed amino acid-defined diets containing AAAs at 1.82% and 3.64% for 3 weeks. We demonstrated that double AAA intake significantly decreased the serum and hepatic triglycerides and serum low-density lipoprotein cholesterol, but increased the high-density lipoprotein cholesterol as well as insulin tolerance. Combined metabolomic and transcriptomic analysis showed that the hepatic acidic pathway of bile acid synthesis was responsible for the improvement in lipid metabolism by AAA treatment. This study suggests that AAAs have the potential to ameliorate steatosis and provides a new alternative to improve lipid metabolism.
Collapse
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiayi Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Xinbo Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Linlin Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhishen Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhiyuan Yue
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
39
|
Kwong EK, Puri P. Gut microbiome changes in Nonalcoholic fatty liver disease & alcoholic liver disease. Transl Gastroenterol Hepatol 2021; 6:3. [PMID: 33409398 DOI: 10.21037/tgh.2020.02.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are some of the most common liver diseases worldwide. The human gut microbiome is dynamic and shifts in bacterial composition have been implicated in many diseases. Studies have shown that there is a shift in bacterial overgrowth favoring pro-inflammatory mediators in patients with advanced disease progression such as cirrhosis. Further investigation demonstrated that the transplantation of gut microbiota from advanced liver disease patients can reproduce severe liver inflammation and injury in mice. Various techniques in manipulating the gut microbiota have been attempted including fecal transplantation and probiotics. This review focuses on the changes in the gut microbiota as well as emerging lines of microbiome work with respect to NAFLD and ALD.
Collapse
Affiliation(s)
- Eric K Kwong
- Department of Microbiology and Immunology, McGuire VA Medical Center, Richmond, VA, USA
| | - Puneet Puri
- Section of Gastroenterology, Hepatology and Nutrition, McGuire VA Medical Center, Richmond, VA, USA.,Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Xiang J, Zhang Z, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes 2021; 13:1949095. [PMID: 34313539 PMCID: PMC8346203 DOI: 10.1080/19490976.2021.1949095] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor for bile acids (BAs) that is widely expressed in the intestine, liver and kidney. FXR has important regulatory impacts on a wide variety of metabolic pathways (such as glucose, lipid, and sterol metabolism) and has been recognized to ameliorate obesity, liver damage, cholestasis and chronic inflammatory diseases. The types of BAs are complex and diverse. BAs link the intestine with the liver through the enterohepatic circulation. BAs derivatives have entered clinical trials for liver disease. In addition to the liver, the intestine is also targeted by BAs. This article reviews the effects of different BAs on the intestinal tract through the enterohepatic circulation from the perspective of FXR, aiming to elucidate the effects of different BAs on the intestinal tract and lay a foundation for new treatment methods.
Collapse
Affiliation(s)
- Junwei Xiang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Board of Directors, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- CONTACT Zhengquan Su ; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
41
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
42
|
Antidiarrheal Effect of Sechang-Zhixie-San on Acute Diarrhea Mice and Network Pharmacology Deciphering Its Characteristics and Potential Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8880298. [PMID: 33381214 PMCID: PMC7749774 DOI: 10.1155/2020/8880298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Sechang-Zhixie-San (SCZX) is an ancient prescription used for pediatric diarrhea by the Yi people in China, which consists of Rodgersia sambucifolia Hemsley (known as Yantuo and abbreviated as YT) and Bentonite (BN). Now, it is also a Chinese patent medicine used in the clinic to treat infantile diarrhea. Besides evaluating the antidiarrheal effect of SCZX on diarrhea mice induced by Folium Sennae, the purpose of this study is to outline the characteristics of the antidiarrheal effect and reveal the potential mechanisms of SCZX through the analysis of the mechanism and active components of YT via network pharmacology and molecular docking, combined with the research progress of BN obtained from the literature. SCZX (3.12 and 12.48 g/kg) effectively inhibited diarrhea in mice, significantly lowering the loose stool rate (LSR), loose stool level (LSL), and loose stool index (LSI). Using network pharmacology, the "herb-compound-target-pathway-pharmacological action" network was mapped to indicate the antidiarrheal mechanism of YT. And the docking results revealed that 4 components of YT including quercetin, geranyl-1-O-α-L-arabinopyranosyl-(1 ⟶ 6)-β-D-glucopyranoside, 3α-O-(E)-p-hydroxy-cinnamoyl-olean-12-en-27-oic acid, and daucosterol showed significant docking activities with STAT3, EGFR, and SLC10A2, involving 11 pathways such as Th17 cell differentiation, Jak-STAT signaling pathway, ErbB signaling pathway, and HIF-1 signaling pathway. According to our research results and literature reports, the antidiarrheal could be summarized into five aspects: inhibiting intestinal inflammation, acting as a barrier to the intestinal mucosal, regulating water and ion transport, involving the purification of intestinal microorganisms, and intestinal transmission, which might be dependent on multiple proteins and intervention in multiple pathways.
Collapse
|
43
|
Kirstgen M, Lowjaga KAAT, Müller SF, Goldmann N, Lehmann F, Alakurtti S, Yli-Kauhaluoma J, Glebe D, Geyer J. Selective hepatitis B and D virus entry inhibitors from the group of pentacyclic lupane-type betulin-derived triterpenoids. Sci Rep 2020; 10:21772. [PMID: 33303817 PMCID: PMC7729925 DOI: 10.1038/s41598-020-78618-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP’s physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure–activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.
Collapse
Affiliation(s)
- Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Kira Alessandra Alicia Theresa Lowjaga
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Simon Franz Müller
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Nora Goldmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Felix Lehmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland.,VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, 02044, Espoo, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
44
|
Dai F, Yoo WG, Lu Y, Song JH, Lee JY, Byun Y, Pak JH, Sohn WM, Hong SJ. Sodium-bile acid co-transporter is crucial for survival of a carcinogenic liver fluke Clonorchis sinensis in the bile. PLoS Negl Trop Dis 2020; 14:e0008952. [PMID: 33284789 PMCID: PMC7746286 DOI: 10.1371/journal.pntd.0008952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The liver fluke Clonorchis sinensis inhabits the bile ducts, where bile concentration disparities across the fluke cell membrane can cause bile intoxication. Sodium-bile acid co-transporter (SBAT) plays a crucial role in bile acid recycling. The process by which SBAT imports bile acids is electrically coupled to sodium ion co-transportation. Here, we report that the SBAT of C. sinensis (CsSBAT) is involved in bile acid transportation. CsSBAT cDNA encoded a putative polypeptide of 546 amino acid residues. Furthermore, CsSBAT consisted of ten putative transmembrane domains, and its 3D structure was predicted to form panel and core domains. The CsSBAT had one bile acid- and three Na+-binding sites, enabling coordination of a symport process. CsSBAT was mainly localized in the mesenchymal tissue throughout the fluke body and sparsely localized in the basement of the tegument, intestinal epithelium, and excretory bladder wall. Bile acid permeated into the adult flukes in a short time and remained at a low concentration level. Bile acid accumulated inside the mesenchymal tissue when CsSBAT was inhibited using polyacrylic acid–tetradeoxycholic acid conjugate. The accumulated bile acid deteriorated the C. sinensis adults leading to death. CsSBAT silencing shortened the lifespan of the fluke when it was placed into bile. Taken together, we propose that CsSBAT transports bile acids in the mesenchymal tissue and coordinate with outward transporters to maintain bile acid homeostasis of C. sinensis adults, contributing to C. sinensis survival in the bile environment. Clonorchiasis is a neglected tropical disease caused by infection with the liver fluke Clonorchis sinensis. C. sinensis is a biological carcinogen causing cholangiocarcinoma in humans. Juvenile worms inhabit and grow to adults in the bile ducts. Bile acids in the bile are double-edged molecules; they promote metabolism, but differences in their concentration across the cell membrane could lead to bile intoxication. The sodium-bile acid co-transporter of C. sinensis (CsSBAT) is indispensable for maintaining its normal physiology and bile detoxification in the bile duct. However, information related to the molecular and biological characteristics of the SBAT of liver flukes is not available. Here, we cloned CsSBAT for the first time in trematodes and characterized its tertiary structure and physiological functions. The sequential and structural properties of CsSBAT were similar to the apical sodium-bile acid co-transporter found in mammalian intestines. CsSBAT shared a mesenchymal tissue distribution with Na+-taurocholate co-transporting polypeptide in the hepatocytes adjacent to the bile ducts. Bile acids accumulated in C. sinensis adults when CsSBAT was inhibited, causing their death. This information might promote further studies on the physiological functions of SBAT and other trematode bile transporters and open new avenues toward developing novel anthelminthic drugs.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Liubei Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Ruggiero MJ, Malhotra S, Fenton AW, Swint-Kruse L, Karanicolas J, Hagenbuch B. A clinically relevant polymorphism in the Na +/taurocholate cotransporting polypeptide (NTCP) occurs at a rheostat position. J Biol Chem 2020; 296:100047. [PMID: 33168628 PMCID: PMC7948949 DOI: 10.1074/jbc.ra120.014889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Conventionally, most amino acid substitutions at “important” protein positions are expected to abolish function. However, in several soluble-globular proteins, we identified a class of nonconserved positions for which various substitutions produced progressive functional changes; we consider these evolutionary “rheostats”. Here, we report a strong rheostat position in the integral membrane protein, Na+/taurocholate (TCA) cotransporting polypeptide, at the site of a pharmacologically relevant polymorphism (S267F). Functional studies were performed for all 20 substitutions (S267X) with three substrates (TCA, estrone-3-sulfate, and rosuvastatin). The S267X set showed strong rheostatic effects on overall transport, and individual substitutions showed varied effects on transport kinetics (Km and Vmax) and substrate specificity. To assess protein stability, we measured surface expression and used the Rosetta software (https://www.rosettacommons.org) suite to model structure and stability changes of S267X. Although buried near the substrate-binding site, S267X substitutions were easily accommodated in the Na+/TCA cotransporting polypeptide structure model. Across the modest range of changes, calculated stabilities correlated with surface-expression differences, but neither parameter correlated with altered transport. Thus, substitutions at rheostat position 267 had wide-ranging effects on the phenotype of this integral membrane protein. We further propose that polymorphic positions in other proteins might be locations of rheostat positions.
Collapse
Affiliation(s)
- Melissa J Ruggiero
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
46
|
How strong is the evidence that gut microbiota composition can be influenced by lifestyle interventions in a cardio-protective way? Atherosclerosis 2020; 311:124-142. [PMID: 32981713 DOI: 10.1016/j.atherosclerosis.2020.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Alterations in composition and function of the gut microbiota have been demonstrated in diseases involving the cardiovascular system, particularly coronary heart disease and atherosclerosis. The data are still limited but the typical altered genera include Roseburia and Faecalibacterium. Plausible mechanisms by which microbiota may mediate cardio-protective effects have been postulated, including the production of metabolites like trimethylamine (TMA), as well as immunomodulatory functions. This raises the question of whether it is possible to modify the gut microbiota by lifestyle interventions and thereby improve cardiovascular health. Nevertheless, lifestyle intervention studies that have involved modifications of dietary intake and/or physical activity, as well as investigating changes in the gut microbiota and subsequent modifications of the cardioprotective markers, are still scarce, and the results have been inconclusive. Current evidence points to benefits of consuming high-fibre foods, nuts and an overall healthy dietary pattern to achieve beneficial effects on both gut microbiota and serum cardiovascular markers, primarily lipids. The relationship between physical exercise and gut microbiota is probably complex and may be dependent on the intensity of exercise. In this article, we review the available evidence on lifestyle, specifically diet, physical activity and smoking as modifiers of the gut microbiota, and subsequently as modifiers of serum cardiovascular health markers. We have attempted to elucidate the plausible mechanisms and further critically appraise the caveats and gaps in the research.
Collapse
|
47
|
Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacol Ther 2020; 212:107539. [PMID: 32201314 DOI: 10.1016/j.pharmthera.2020.107539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
48
|
Wang J, Tian R, Shan Y, Li J, Gao H, Xie C, Ma Y, Wu Y, Ji B, Gu S, Xu M. Metabolomics study of the metabolic changes in hepatoblastoma cells in response to NTCP/SLC10A1 overexpression. Int J Biochem Cell Biol 2020; 125:105773. [PMID: 32450267 DOI: 10.1016/j.biocel.2020.105773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022]
Abstract
NTCP (SLC10A1) has been well recognized as a basolateral (sinusoidal) Na+-bile acid co-transporter that mediates the hepatic uptake of bile acids. However, little is known about the effects of NTCP (SLC10A1) on hepatoblastoma (HB) and its underlying metabolic mechanisms. In this study, we found that NTCP (SLC10A1) expression was downregulated in HB cells and tissues, and it was demonstrated that NTCP (SLC10A1) reduced cell viability, promoted cell cycle arrest and induced apoptosis of HB cells. The metabolic profiles of HB cells with NTCP (SLC10A1) overexpression were further examined to determine their biochemical alterations and deepen our understanding on the metabolic regulation of NTCP (SLC10A1) overexpression. The metabolomics study based on ultra performance liquid chromatography-mass spectrometry revealed alterations in the metabolites of HB cells following NTCP (SLC10A1) overexpression. Next, we stably overexpressed NTCP (SLC10A1) in HepG2 cells, and found that NTCP (SLC10A1)-overexpressing cells could inhibit the production of adenosine and decreased both mRNA and protein levels of HIF1α. Further overexpression of HIF1α in the NTCP (SLC10A1)-overexpression group restored the production of adenosine. Collectively, these findings provide strong evidence that NTCP (SLC10A1) overexpression significantly disrupts the metabolism of adenosine in HB cells and highlight that NTCP (SLC10A1) mediates adenosine production mainly through HIF1α.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Ruicheng Tian
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yuhua Shan
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jingjing Li
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Hongxiang Gao
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Chenjie Xie
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yimei Ma
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yun Wu
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Bin Ji
- Department of Operating Room, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
49
|
Xiao Y, Liu C, Tang W, Zhang H, Chen X. Evans Blue Inhibits HBV Replication Through a Dual Antiviral Mechanism by Targeting Virus Binding and Capsid Assembly. Front Microbiol 2019; 10:2638. [PMID: 31798562 PMCID: PMC6868041 DOI: 10.3389/fmicb.2019.02638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B (CHB) is a global health problem caused by human hepatitis B virus (HBV). Current treatment with interferons and nucleos(t)ide analogs (NAs) can cause population tolerance and drug resistance. Therefore, new antiviral drugs, especially those targeting host factors, are urgently needed. Here, we identified Evans blue as a new HBV inhibitor by screening an FDA drug library using Huh7DhNTCP cells and confirmed the antiviral activity in primary human hepatocytes and human sodium taurocholate cotransporting polypeptide (hNTCP)-transfected porcine primary hepatocytes. Our efficacy study showed that Evans blue has an IC50 of 2 μM against HBV infection in Huh7DhNTCP cells, and no apparent toxicity at up to 1000 μM. The IC50 of Evans blue against HBV in primary human hepatocytes was approximately 5 μM. Mechanism studies revealed that Evans blue has a dual anti-HBV effect. It inhibits both the binding of viral preS1 to host cells through the host factor NTCP and the virus capsid assembly by targeting the host factor BK channel. The KD of the direct interaction between Evans blue and NTCP is 8.82E-8 M. Evans blue can suppress capsid assembly at micromolar concentrations by reducing the cytosolic calcium ion concentration. Since the antiviral effects on HBV binding and assembly are both achieved through targeting host factors, Evans blue inhibits the infection of nucleos(t)ide analog drug-resistant HBV strains in Huh7DhNTCP cells. Taken together, our results suggest that Evans blue may be a promising anti-HBV drug candidate in the classes of both entry and assembly inhibitors.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Ge MX, Niu WX, Ren JF, Cai SY, Yu DK, Liu HT, Zhang N, Zhang YX, Wang YC, Shao RG, Wang JX, He HW. A novel ASBT inhibitor, IMB17-15, repressed nonalcoholic fatty liver disease development in high-fat diet-fed Syrian golden hamsters. Acta Pharmacol Sin 2019; 40:895-907. [PMID: 30573812 DOI: 10.1038/s41401-018-0195-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
The manipulation of bile acid (BA) homeostasis by blocking the ileal apical Na+-dependent bile salt transporter (ASBT/SLC10A2) may have therapeutic effects in nonalcoholic fatty liver disease. We developed a novel ASBT inhibitor, an N-(3,4-o-dichlorophenyl)-2-(3-trifluoromethoxy) benzamide derivative referred to as IMB17-15, and investigated its therapeutic effects and the molecular mechanisms underlying the effects. Syrian golden hamsters were challenged with high-fat diet (HFD) to induce NAFLD and were subsequently administered 400 mg/kg IMB17-15 by gavage daily for 21 days. Serum, liver, and fecal samples were collected for further analysis. Plasma concentration-time profiles of IMB17-15 were also constructed. The human hepatocyte cell line HL-7702 was treated with Oleic acid (OA) with or without IMB17-15. Western blotting and real-time PCR were used to study the molecular mechanisms of IMB17-15. We found that IMB17-15 inhibited ASBT and subsequently suppressed ileal farnesoid X receptor (FXR) and FXR-activated fibroblast growth factor15/19 (FGF15/19) expression, which reduced the hepatic phosphorylated extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) levels and upregulated the cholesterol 7α-hydroxylase (CYP7A1) activity. Additionally, IMB17-15 stimulated adenosine monophosphate (AMP)-activated protein kinase (AMPKα) phosphorylation and enhanced peroxisome proliferator activated receptor α (PPARα) expression and thus promoted triglyceride (TG) oxidation and high-density lipoprotein cholesterol (HDL-c) metabolism through an ASBT-independent mechanism. In conclusion, a novel ASBT inhibitor known as IMB17-15 protected hamsters against HFD-induced NFALD by manipulating BA and lipid homeostasis. IMB17-15 also reduced lipid deposition in human hepatic cell lines, indicating that it may be useful as a therapy for NAFLD patients.
Collapse
|