1
|
Yang W, Zhao Y, Dou Y, Ji Q, Zhang C, Guo L, Geng Z, Chen X. High albumen height by expression of GALNT9 and thin eggshell by decreased Ca 2+ transportation caused high hatchability in Huainan partridge chicken. Poult Sci 2024; 103:103784. [PMID: 38713992 PMCID: PMC11091513 DOI: 10.1016/j.psj.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
Hatchability could be quite different among individuals of indigenous chicken breed which might be affected by the egg quality. In this study, hatchability was individually recorded among 800 forty-wk-old Huainan partridge chickens. The chickens were then divided into high and low hatchability groups (HH and LH group) with 50 birds in each group. Egg quality was further determined in the 2 groups. Eight birds from each group were selected for slaughtering and tissue, responsible for egg formation, collection for structure observation by staining and candidate gene expression by transcriptome analysis. The hatchability in HH was 100% and 61.18% in LH. The eggshell thickness and shell strength were significantly lower, while the albumen height and Haugh unit were significantly higher in HH group than those in LH group (P < 0.05). The magnum weight and index, and the expression of polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), which responsible for thick albumen synthesis, in HH group were also significantly higher than that of LH group (P < 0.05). Compared with the LH group, there were 702 differentially expressed genes (DEGs) in HH group, of which 402 were up-regulated and 300 were down-regulated. Candidate genes of calbindin 1 (CALB1) and solute carrier family 26 member 9 (SLC26A9), which regulate calcium signaling pathway so as to affect Ca2+ transportation, exhibited significant high and low expression, respectively, in HH group compared to those in LH group (P < 0.05). Therefore, indigenous chicken with high expression of GALNT9 in magnum to form thick albumen to provide more protein for embryo, while high CALB1 and low expression of SLC26A9 to decrease Ca2+ transportation so as to form a thinner eggshell and provide better gas exchange during embryo development.
Collapse
Affiliation(s)
- Wanli Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yutong Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Yuhao Dou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Qianyun Ji
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Cheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Liping Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036, P.R. China.
| |
Collapse
|
2
|
Zhang L, Hu W, Guo H, Sun Q, Xu X, Li Z, Qiu Z, Bian J. Discovery of Highly Potent Solute Carrier 13 Member 5 (SLC13A5) Inhibitors for the Treatment of Hyperlipidemia. J Med Chem 2024; 67:6687-6704. [PMID: 38574002 DOI: 10.1021/acs.jmedchem.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.
Collapse
Affiliation(s)
- Li'ao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wenjun Hu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Huimin Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, Nanjing 211100, P. R. China
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Departments of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Chi X, Chen Y, Li Y, Dai L, Zhang Y, Shen Y, Chen Y, Shi T, Yang H, Wang Z, Yan R. Cryo-EM structures of the human NaS1 and NaDC1 transporters revealed the elevator transport and allosteric regulation mechanism. SCIENCE ADVANCES 2024; 10:eadl3685. [PMID: 38552027 PMCID: PMC10980263 DOI: 10.1126/sciadv.adl3685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The solute carrier 13 (SLC13) family comprises electrogenic sodium ion-coupled anion cotransporters, segregating into sodium ion-sulfate cotransporters (NaSs) and sodium ion-di- and-tricarboxylate cotransporters (NaDCs). NaS1 and NaDC1 regulate sulfate homeostasis and oxidative metabolism, respectively. NaS1 deficiency affects murine growth and fertility, while NaDC1 affects urinary citrate and calcium nephrolithiasis. Despite their importance, the mechanisms of substrate recognition and transport remain insufficiently characterized. In this study, we determined the cryo-electron microscopy structures of human NaS1, capturing inward-facing and combined inward-facing/outward-facing conformations within a dimer both in apo and sulfate-bound states. In addition, we elucidated NaDC1's outward-facing conformation, encompassing apo, citrate-bound, and N-(p-amylcinnamoyl) anthranilic acid (ACA) inhibitor-bound states. Structural scrutiny illuminates a detailed elevator mechanism driving conformational changes. Notably, the ACA inhibitor unexpectedly binds primarily anchored by transmembrane 2 (TM2), Loop 10, TM11, and TM6a proximate to the cytosolic membrane. Our findings provide crucial insights into SLC13 transport mechanisms, paving the way for future drug design.
Collapse
Affiliation(s)
- Ximin Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Science, Xiamen University, Xiamen 361102, Fujian Province, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yiming Chen
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Dai
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yun Chen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Novoprotein Scientific Inc., Suzhou 215000, China
| | - Tianhao Shi
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Haonan Yang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Zilong Wang
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
4
|
Yan H, Xu W, Zhang T, Feng L, Liu R, Wang L, Wu L, Zhang H, Zhang X, Li T, Peng Z, Jin C, Yu Y, Ping J, Ma M, He Z. Characterization of a novel arsenite long-distance transporter from arsenic hyperaccumulator fern Pteris vittata. THE NEW PHYTOLOGIST 2022; 233:2488-2502. [PMID: 35015902 DOI: 10.1111/nph.17962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Pteris vittata is an arsenic (As) hyperaccumulator that can accumulate several thousand mg As kg-1 DW in aboveground biomass. A key factor for its hyperaccumulation ability is its highly efficient As long-distance translocation system. However, the underlying molecular mechanisms remain unknown. We isolated PvAsE1 through the full-length cDNA over-expression library of P. vittata and characterized it through a yeast system, RNAi gametophytes and sporophytes, subcellular-location and in situ hybridization. Phylogenomic analysis was conducted to estimate the appearance time of PvAsE1. PvAsE1 was a plasma membrane-oriented arsenite (AsIII) effluxer. The silencing of PvAsE1 reduced AsIII long-distance translocation in P. vittata sporophytes. PvAsE1 was structurally similar to solute carrier (SLC)13 proteins. Its transcripts could be observed in parenchyma cells surrounding the xylem of roots. The appearance time was estimated at c. 52.7 Ma. PvAsE1 was a previously uncharacterized SLC13-like AsIII effluxer, which may contribute to AsIII long-distance translocation via xylem loading. PvAsE1 appeared late in fern evolution and might be an adaptive subject to the selection pressure at the Cretaceaou-Paleogene boundary. The identification of PvAsE1 provides clues for revealing the special As hyperaccumulation characteristics of P. vittata.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tian Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruoxi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimei Peng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Jin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yu
- Zhejiang Station for Management of Arable Land Quality and Fertilizer, Hangzhou, 310020, China
| | - Junai Ping
- Sorghum Research Institute of Shanxi Agricultural University, Jinzhong, 030600, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
5
|
Oberleitner L, Poschmann G, Macorano L, Schott-Verdugo S, Gohlke H, Stühler K, Nowack ECM. The Puzzle of Metabolite Exchange and Identification of Putative Octotrico Peptide Repeat Expression Regulators in the Nascent Photosynthetic Organelles of Paulinella chromatophora. Front Microbiol 2020; 11:607182. [PMID: 33329499 PMCID: PMC7729196 DOI: 10.3389/fmicb.2020.607182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic acquisition of mitochondria and plastids more than one billion years ago was central for the evolution of eukaryotic life. However, owing to their ancient origin, these organelles provide only limited insights into the initial stages of organellogenesis. The cercozoan amoeba Paulinella chromatophora contains photosynthetic organelles-termed chromatophores-that evolved from a cyanobacterium ∼100 million years ago, independently from plastids in plants and algae. Despite the more recent origin of the chromatophore, it shows tight integration into the host cell. It imports hundreds of nucleus-encoded proteins, and diverse metabolites are continuously exchanged across the two chromatophore envelope membranes. However, the limited set of chromatophore-encoded solute transporters appears insufficient for supporting metabolic connectivity or protein import. Furthermore, chromatophore-localized biosynthetic pathways as well as multiprotein complexes include proteins of dual genetic origin, suggesting that mechanisms evolved that coordinate gene expression levels between chromatophore and nucleus. These findings imply that similar to the situation in mitochondria and plastids, also in P. chromatophora nuclear factors evolved that control metabolite exchange and gene expression in the chromatophore. Here we show by mass spectrometric analyses of enriched insoluble protein fractions that, unexpectedly, nucleus-encoded transporters are not inserted into the chromatophore inner envelope membrane. Thus, despite the apparent maintenance of its barrier function, canonical metabolite transporters are missing in this membrane. Instead we identified several expanded groups of short chromatophore-targeted orphan proteins. Members of one of these groups are characterized by a single transmembrane helix, and others contain amphipathic helices. We hypothesize that these proteins are involved in modulating membrane permeability. Thus, the mechanism generating metabolic connectivity of the chromatophore fundamentally differs from the one for mitochondria and plastids, but likely rather resembles the poorly understood mechanism in various bacterial endosymbionts in plants and insects. Furthermore, our mass spectrometric analysis revealed an expanded family of chromatophore-targeted helical repeat proteins. These proteins show similar domain architectures as known organelle-targeted expression regulators of the octotrico peptide repeat type in algae and plants. Apparently these chromatophore-targeted proteins evolved convergently to plastid-targeted expression regulators and are likely involved in gene expression control in the chromatophore.
Collapse
Affiliation(s)
- Linda Oberleitner
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Medical Faculty, Institute for Molecular Medicine, Proteome Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luis Macorano
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Faculty of Engineering, Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile
| | - Holger Gohlke
- Department of Pharmacy, Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Jülich Supercomputing Centre, John von Neumann Institute for Computing, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Medical Faculty, Institute for Molecular Medicine, Proteome Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva C. M. Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E, Ule J, Östman A, Johnson RS. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 2020; 9:e59996. [PMID: 33095157 PMCID: PMC7584454 DOI: 10.7554/elife.59996] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise has a wide range of systemic effects. In animal models, repeated exertion reduces malignant tumor progression, and clinically, exercise can improve outcome for cancer patients. The etiology of the effects of exercise on tumor progression are unclear, as are the cellular actors involved. We show here that in mice, exercise-induced reduction in tumor growth is dependent on CD8+ T cells, and that metabolites produced in skeletal muscle and excreted into plasma at high levels during exertion in both mice and humans enhance the effector profile of CD8+ T-cells. We found that activated murine CD8+ T cells alter their central carbon metabolism in response to exertion in vivo, and that immune cells from trained mice are more potent antitumor effector cells when transferred into tumor-bearing untrained animals. These data demonstrate that CD8+ T cells are metabolically altered by exercise in a manner that acts to improve their antitumoral efficacy.
Collapse
Affiliation(s)
- Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
- Department of Laboratory Medicine, Karolinska InstitutetStockholmSweden
| | - Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Laura Barbieri
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
- Department of Surgery, Oncology, and Gastroenterology, University of PadovaPaduaItaly
| | | | - David Bargiela
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
- Department of Physiology, Development, and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Sara Mijwel
- Department of Physiology and Pharmacology, Karolinska InstitutetStockholmSweden
| | | | - David Wulliman
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
| | - Emil Ahlstedt
- Department of Laboratory Medicine, Karolinska InstitutetStockholmSweden
| | - Jernej Ule
- The Francis Crick InstituteLondonUnited Kingdom
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska InstitutetStockholmSweden
| | - Randall S Johnson
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholmSweden
- Department of Physiology, Development, and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Sun K, Meng Z, Chen L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 2020; 11:1-13. [PMID: 30239845 PMCID: PMC6359923 DOI: 10.1093/jmcb/mjy052] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
The prevalence of metabolic diseases is growing worldwide. Accumulating evidence suggests that solute carrier (SLC) transporters contribute to the etiology of various metabolic diseases. Consistent with metabolic characteristics, the top five organs in which SLC transporters are highly expressed are the kidney, brain, liver, gut, and heart. We aim to understand the molecular mechanisms of important SLC transporter-mediated physiological processes and their potentials as drug targets. SLC transporters serve as ‘metabolic gate’ of cells and mediate the transport of a wide range of essential nutrients and metabolites such as glucose, amino acids, vitamins, neurotransmitters, and inorganic/metal ions. Gene-modified animal models have demonstrated that SLC transporters participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, tissue development, oxidative stress, host defense, and neurological regulation. Furthermore, the human genomic studies have identified that SLC transporters are susceptible or causative genes in various diseases like cancer, metabolic disease, cardiovascular disease, immunological disorders, and neurological dysfunction. Importantly, a number of SLC transporters have been successfully targeted for drug developments. This review will focus on the current understanding of SLCs in regulating physiology, nutrient sensing and uptake, and risk of diseases.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.,Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuping Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Khamaysi A, Aharon S, Eini-Rider H, Ohana E. A dynamic anchor domain in slc13 transporters controls metabolite transport. J Biol Chem 2020; 295:8155-8163. [PMID: 32152229 DOI: 10.1074/jbc.ra119.010911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolite transport across cellular membranes is required for bioenergetic processes and metabolic signaling. The solute carrier family 13 (slc13) transporters mediate transport of the metabolites succinate and citrate and hence are of paramount physiological importance. Nevertheless, the mechanisms of slc13 transport and regulation are poorly understood. Here, a dynamic structural slc13 model suggested that an interfacial helix, H4c, which is common to all slc13s, stabilizes the stationary scaffold domain by anchoring it to the membrane, thereby facilitating movement of the SLC13 catalytic domain. Moreover, we found that intracellular determinants interact with the H4c anchor domain to modulate transport. This dual function is achieved by basic residues that alternately face either the membrane phospholipids or the intracellular milieu. This mechanism was supported by several experimental findings obtained using biochemical methods, electrophysiological measurements in Xenopus oocytes, and fluorescent microscopy of mammalian cells. First, a positively charged and highly conserved H4c residue, Arg108, was indispensable and crucial for metabolite transport. Furthermore, neutralization of other H4c basic residues inhibited slc13 transport function, thus mimicking the inhibitory effect of the slc13 inhibitor, slc26a6. Our findings suggest that the positive charge distribution across H4c domain controls slc13 transporter function and is utilized by slc13-interacting proteins in the regulation of metabolite transport.
Collapse
Affiliation(s)
- Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sara Aharon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hadar Eini-Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
9
|
|
10
|
Takahashi H. Sulfate transport systems in plants: functional diversity and molecular mechanisms underlying regulatory coordination. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4075-4087. [PMID: 30907420 DOI: 10.1093/jxb/erz132] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Sulfate transporters are integral membrane proteins controlling the flux of sulfate (SO42-) entering the cells and subcellular compartments across the membrane lipid bilayers. Sulfate uptake is a dynamic biological process that occurs in multiple cell layers and organs in plants. In vascular plants, sulfate ions are taken up from the soil environment to the outermost cell layers of roots and horizontally transferred to the vascular tissues for further distribution to distant organs. The amount of sulfate ions being metabolized in the cytosol and chloroplast/plastid or temporarily stored in the vacuole depends on expression levels and functionalities of sulfate transporters bound specifically to the plasma membrane, chloroplast/plastid envelopes, and tonoplast membrane. The entire system for sulfate homeostasis, therefore, requires different types of sulfate transporters to be expressed and coordinately regulated in specific organs, cell types, and subcellular compartments. Transcriptional and post-transcriptional regulatory mechanisms control the expression levels and functions of sulfate transporters to optimize sulfate uptake and internal distribution in response to sulfate availability and demands for synthesis of organic sulfur metabolites. This review article provides an overview of sulfate transport systems and discusses their regulatory aspects investigated in the model plant species Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Darbani B, Kell DB, Borodina I. Energetic evolution of cellular Transportomes. BMC Genomics 2018; 19:418. [PMID: 29848286 PMCID: PMC5977736 DOI: 10.1186/s12864-018-4816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. RESULTS We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. CONCLUSIONS The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
12
|
Cai W, Cai X, Yang Y, Yan S, Zhang H. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli. Front Microbiol 2017; 8:275. [PMID: 28270808 PMCID: PMC5318444 DOI: 10.3389/fmicb.2017.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032–c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the –35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo conditions. Therefore, different transcriptional regulation led to distinct roles played by C5038 and KgtP in KG utilization and fitness in vivo. This study thus potentially expanded our understanding of UPEC pathobiology.
Collapse
Affiliation(s)
- Wentong Cai
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Yongwu Yang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Shigan Yan
- School of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology Jinan, China
| | - Haibin Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Department of Clinical Veterinary Science, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
13
|
Rives ML, Shaw M, Zhu B, Hinke SA, Wickenden AD. State-Dependent Allosteric Inhibition of the Human SLC13A5 Citrate Transporter by Hydroxysuccinic Acids, PF-06649298 and PF-06761281. Mol Pharmacol 2016; 90:766-774. [PMID: 27754898 DOI: 10.1124/mol.116.106575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
In the liver, citrate is a key metabolic intermediate involved in the regulation of glycolysis and lipid synthesis and reduced expression of the hepatic citrate SLC13A5 transporter has been shown to improve metabolic outcomes in various animal models. Although inhibition of hepatic extracellular citrate uptake through SLC13A5 has been suggested as a potential therapeutic approach for Type-2 diabetes and/or fatty liver disease, so far, only a few SLC13A5 inhibitors have been identified. Moreover, their mechanism of action still remains unclear, potentially limiting their utility for in vivo proof-of-concept studies. In this study, we characterized the pharmacology of the recently identified hydroxysuccinic acid SLC13A5 inhibitors, PF-06649298 and PF-06761281, using a combination of 14C-citrate uptake, a membrane potential assay and electrophysiology. In contrast to their previously proposed mechanism of action, our data suggest that both PF-06649298 and PF-06761281 are allosteric, state-dependent SLC13A5 inhibitors, with low-affinity substrate activity in the absence of citrate. As allosteric state-dependent modulators, the inhibitory potency of both compounds is highly dependent on the ambient citrate concentration and our detailed mechanism of action studies therefore, may be of value in interpreting the in vivo effects of these compounds.
Collapse
Affiliation(s)
- Marie-Laure Rives
- Molecular and Cellular Pharmacology, Discovery Sciences, Janssen R&D, LLC., San Diego, California (M.-L.R., M.S., A.D.W.) and Cardiovascular and Metabolism Discovery, Janssen R&D, LLC., Springhouse, Pennsylvania, (B.Z., S.A.H.)
| | - Morena Shaw
- Molecular and Cellular Pharmacology, Discovery Sciences, Janssen R&D, LLC., San Diego, California (M.-L.R., M.S., A.D.W.) and Cardiovascular and Metabolism Discovery, Janssen R&D, LLC., Springhouse, Pennsylvania, (B.Z., S.A.H.)
| | - Bin Zhu
- Molecular and Cellular Pharmacology, Discovery Sciences, Janssen R&D, LLC., San Diego, California (M.-L.R., M.S., A.D.W.) and Cardiovascular and Metabolism Discovery, Janssen R&D, LLC., Springhouse, Pennsylvania, (B.Z., S.A.H.)
| | - Simon A Hinke
- Molecular and Cellular Pharmacology, Discovery Sciences, Janssen R&D, LLC., San Diego, California (M.-L.R., M.S., A.D.W.) and Cardiovascular and Metabolism Discovery, Janssen R&D, LLC., Springhouse, Pennsylvania, (B.Z., S.A.H.)
| | - Alan D Wickenden
- Molecular and Cellular Pharmacology, Discovery Sciences, Janssen R&D, LLC., San Diego, California (M.-L.R., M.S., A.D.W.) and Cardiovascular and Metabolism Discovery, Janssen R&D, LLC., Springhouse, Pennsylvania, (B.Z., S.A.H.)
| |
Collapse
|
14
|
Zwart R, Peeva PM, Rong JX, Sher E. Electrophysiological characterization of human and mouse sodium-dependent citrate transporters (NaCT/SLC13A5) reveal species differences with respect to substrate sensitivity and cation dependence. J Pharmacol Exp Ther 2015; 355:247-54. [PMID: 26324167 DOI: 10.1124/jpet.115.226902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/28/2015] [Indexed: 01/01/2023] Open
Abstract
The citric acid cycle intermediate citrate plays a crucial role in metabolic processes such as fatty acid synthesis, glucose metabolism, and β-oxidation. Citrate is imported from the circulation across the plasma membrane into liver cells mainly by the sodium-dependent citrate transporter (NaCT; SLC13A5). Deletion of NaCT from mice led to metabolic changes similar to caloric restriction; therefore, NaCT has been proposed as an attractive therapeutic target for the treatment of obesity and type 2 diabetes. In this study, we expressed mouse and human NaCT into Xenopus oocytes and examined some basic functional properties of those transporters. Interestingly, striking differences were found between mouse and human NaCT with respect to their sensitivities to citric acid cycle intermediates as substrates for these transporters. Mouse NaCT had at least 20- to 800-fold higher affinity for these intermediates than human NaCT. Mouse NaCT is fully active at physiologic plasma levels of citrate, but its human counterpart is not. Replacement of extracellular sodium by other monovalent cations revealed that human NaCT was markedly less dependent on extracellular sodium than mouse NaCT. The low sensitivity of human NaCT for citrate raises questions about the translatability of this target from the mouse to the human situation and raises doubts about the validity of this transporter as a therapeutic target for the treatment of metabolic diseases in humans.
Collapse
Affiliation(s)
- Ruud Zwart
- Neuroscience Discovery Research, Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom (R.Z., P.M.P., E.S.); and Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China (J.X.R.)
| | - Polina M Peeva
- Neuroscience Discovery Research, Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom (R.Z., P.M.P., E.S.); and Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China (J.X.R.)
| | - James X Rong
- Neuroscience Discovery Research, Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom (R.Z., P.M.P., E.S.); and Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China (J.X.R.)
| | - Emanuele Sher
- Neuroscience Discovery Research, Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom (R.Z., P.M.P., E.S.); and Lilly China Research and Development Center, Eli Lilly and Company, Shanghai, China (J.X.R.)
| |
Collapse
|
15
|
Kałużna-Czaplińska J, Żurawicz E, Struck W, Markuszewski M. Identification of organic acids as potential biomarkers in the urine of autistic children using gas chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:70-6. [DOI: 10.1016/j.jchromb.2014.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 11/15/2022]
|
16
|
Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch 2013; 466:119-30. [PMID: 24114175 DOI: 10.1007/s00424-013-1369-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022]
Abstract
The SLC13 family in humans and other mammals consists of sodium-coupled transporters for anionic substrates: three transporters for dicarboxylates/citrate and two transporters for sulfate. This review will focus on the di- and tricarboxylate transporters: NaDC1 (SLC13A2), NaDC3 (SLC13A3), and NaCT (SLC13A5). The substrates of these transporters are metabolic intermediates of the citric acid cycle, including citrate, succinate, and α-ketoglutarate, which can exert signaling effects through specific receptors or can affect metabolic enzymes directly. The SLC13 transporters are important for regulating plasma, urinary and tissue levels of these metabolites. NaDC1, primarily found on the apical membranes of renal proximal tubule and small intestinal cells, is involved in regulating urinary levels of citrate and plays a role in kidney stone development. NaDC3 has a wider tissue distribution and high substrate affinity compared with NaDC1. NaDC3 participates in drug and xenobiotic excretion through interactions with organic anion transporters. NaCT is primarily a citrate transporter located in the liver and brain, and its activity may regulate metabolic processes. The recent crystal structure of the Vibrio cholerae homolog, VcINDY, provides a new framework for understanding the mechanism of transport in this family. This review summarizes current knowledge of the structure, function, and regulation of the di- and tricarboxylate transporters of the SLC13 family.
Collapse
|