1
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Chen CL, Lin CY, Kung HJ. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int J Mol Sci 2021; 22:13435. [PMID: 34948229 PMCID: PMC8708687 DOI: 10.3390/ijms222413435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Ching-Yu Lin
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-L.C.); (C.-Y.L.)
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Koshikawa N, Yasui N, Kida Y, Shinozaki Y, Tsuji K, Watanabe T, Takenaga K, Nagase H. A PI polyamide-TPP conjugate targeting a mtDNA mutation induces cell death of cancer cells with the mutation. Cancer Sci 2021; 112:2504-2512. [PMID: 33811417 PMCID: PMC8177799 DOI: 10.1111/cas.14912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations occur frequently in cancer cells, and some of them are often homoplasmic. Targeting such mtDNA mutations could be a new method for killing cancer cells with minimal impact on normal cells. Pyrrole‐imidazole polyamides (PIPs) are cell‐permeable minor groove binders that show sequence‐specific binding to double‐stranded DNA and inhibit the transcription of target genes. PIP conjugated with the lipophilic triphenylphosphonium (TPP) cation can be delivered to mitochondria without uptake into the nucleus. Here, we investigated the feasibility of the use of PIP‐TPP to target a mtDNA mutation in order to kill cancer cells that harbor the mutation. We synthesized hairpin‐type PIP‐TPP targeting the A3243G mutation and examined its effects on the survival of HeLa cybrid cells with or without the mutation (HeLamtA3243G cells or HeLamtHeLa cells, respectively). A surface plasmon resonance assay demonstrated that PIP‐TPP showed approximately 60‐fold higher binding affinity for the mutant G‐containing synthetic double‐stranded DNA than for the wild‐type A‐containing DNA. When added to cells, it localized in mitochondria and induced mitochondrial reactive oxygen species production, extensive mitophagy, and apoptosis in HeLamtA3243G cells, while only slightly exerting these effects in HeLamtHeLa cells. These results suggest that PIP‐TPPs targeting mtDNA mutations could be potential chemotherapeutic drugs to treat cancers without severe adverse effects.
Collapse
Affiliation(s)
- Nobuko Koshikawa
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Nanami Yasui
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuki Kida
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshinao Shinozaki
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan.,Organometallchemie Eduard-Zintl-Institut Technische Universität Darmstadt, Darmstadt, Germany
| | - Kohei Tsuji
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takayoshi Watanabe
- Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Keizo Takenaga
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hiroki Nagase
- Division of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
5
|
Sharma S, Singh Y, Sandhir R, Singh S, Ganju L, Kumar B, Varshney R. Mitochondrial DNA mutations contribute to high altitude pulmonary edema via increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148431. [PMID: 33862004 DOI: 10.1016/j.bbabio.2021.148431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
High altitude pulmonary edema (HAPE) is experienced by non-acclimatized sea level individuals on exposure to high altitude hypoxic conditions. Available evidence suggests that genetic factors and perturbed mitochondrial redox status may play an important role in HAPE pathophysiology. However, the precise mechanism has not been fully understood. In the present study, sequencing of mitochondrial DNA (mtDNA) from HAPE subjects and acclimatized controls was performed to identify pathogenic mutations and to determine their role in HAPE. Hypobaric hypoxia induced oxidative stress and metabolic alterations were also assessed in HAPE subjects. mtDNA copy number, mitochondrial oxidative phosphorylation (mtOXPHOS) activity, mitochondrial biogenesis were measured to determine mitochondrial functions. The data revealed that the mutations in Complex I genes affects the secondary structure of protein in HAPE subjects. Further, increased oxidative stress during hypobaric hypoxia, reduced mitochondrial biogenesis and mtOXPHOS activity induced metabolic reprogramming appears to contribute to mitochondrial dysfunctions in HAPE individuals. Haplogroup analysis suggests that mtDNA haplogroup H2a2a1 has potential contribution in the pathobiology of HAPE in lowlanders. This study also suggests contribution of altered mitochondrial functions in HAPE susceptibility.
Collapse
Affiliation(s)
- Swati Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh 160014, India
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India.
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block II, Panjab University, Chandigarh 160014, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
6
|
Physicochemical characterization and targeting performance of triphenylphosphonium nano-polyplexes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Next generation sequencing-based analysis of mitochondrial DNA characteristics in plasma extracellular vesicles of patients with hepatocellular carcinoma. Oncol Lett 2020; 20:2820-2828. [PMID: 32782600 PMCID: PMC7400774 DOI: 10.3892/ol.2020.11831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has revealed that mitochondrial DNA (mtDNA) is encapsulated in plasma extracellular vesicles (EVs). However, the characteristics of mtDNA in EVs from patients with cancer remain largely unexplored, which greatly limits its clinical application. Whole genome and capture-based sequencing found that EV mtDNA covered the whole mitochondrial genome. The medium fragment size in EV mtDNA was significantly larger compared with that in cell-free mtDNA [cfmtDNA; 159 vs. 109 base pairs (bp); P<0.001]. EV DNA appeared to have a higher mtDNA copy number compared with cfDNA. Of note, patients with hepatitis had >300-bp fragments in EV mtDNA compared with patients with hepatocellular carcinoma (HCC) and healthy controls. EV mtDNA fragments >300 bp in length exhibited a significantly higher proportion of EV mtDNA fragment ends than those that were ≤300 bp in length in patients with hepatitis. The EV mtDNA copy number in patients with HCC and hepatitis were significantly lower compared with those in healthy controls. Furthermore, inconsistencies in the mtDNA heteroplasmic variant were observed among HCC tissues, plasma and EVs. In conclusion, EV mtDNA exhibited different characteristics among patients with HCC, hepatitis and healthy controls, indicating the potential value of EV mtDNA as a diagnostic biomarker that complements cfmtDNA.
Collapse
|
8
|
Sousa Â, Faria R, Albuquerque T, Bhatt H, Biswas S, Queiroz JA, Costa D. Design of experiments to select triphenylphosphonium-polyplexes with suitable physicochemical properties for mitochondrial gene therapy. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Reactive oxygen species and cancer: A complex interaction. Cancer Lett 2019; 452:132-143. [PMID: 30905813 DOI: 10.1016/j.canlet.2019.03.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Elevated levels of Reactive Oxygen Species (ROS), increased antioxidant ability and the maintenance of redox homeostasis can cumulatively contribute to tumor progression and metastasis. The sources and the role of ROS in a heterogeneous tumor microenvironment can vary at different stages of tumor: initiation, development, and progression, thus making it a complex subject. In this review, we have summarized the sources of ROS generation in cancer cells, its role in the tumor microenvironment, the possible functions of ROS and its important scavenger systems in tumor progression with special emphasis on solid tumors.
Collapse
|
10
|
Baker KT, Nachmanson D, Kumar S, Emond MJ, Ussakli C, Brentnall TA, Kennedy SR, Risques RA. Mitochondrial DNA Mutations are Associated with Ulcerative Colitis Preneoplasia but Tend to be Negatively Selected in Cancer. Mol Cancer Res 2018; 17:488-498. [PMID: 30446624 DOI: 10.1158/1541-7786.mcr-18-0520] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
The role of mitochondrial DNA (mtDNA) mutations in cancer remains controversial. Ulcerative colitis is an inflammatory bowel disease that increases the risk of colorectal cancer and involves mitochondrial dysfunction, making it an ideal model to study the role of mtDNA in tumorigenesis. Our goal was to comprehensively characterize mtDNA mutations in ulcerative colitis tumorigenesis using Duplex Sequencing, an ultra-accurate next-generation sequencing method. We analyzed 46 colon biopsies from non-ulcerative colitis control patients and ulcerative colitis patients with and without cancer, including biopsies at all stages of dysplastic progression. mtDNA was sequenced at a median depth of 1,364x. Mutations were classified by mutant allele frequency: clonal > 0.95, subclonal 0.01-0.95, and very low frequency (VLF) < 0.01. We identified 208 clonal and subclonal mutations and 56,764 VLF mutations. Mutations were randomly distributed across the mitochondrial genome. Clonal and subclonal mutations increased in number and pathogenicity in early dysplasia, but decreased in number and pathogenicity in cancer. Most clonal, subclonal, and VLF mutations were C>T transitions in the heavy strand of mtDNA, which likely arise from DNA replication errors. A subset of VLF mutations were C>A transversions, which are probably due to oxidative damage. VLF transitions and indels were less abundant in the non-D-loop region and decreased with progression. Our results indicate that mtDNA mutations are frequent in ulcerative colitis preneoplasia but negatively selected in cancers. IMPLICATIONS: While mtDNA mutations might contribute to early ulcerative colitis tumorigenesis, they appear to be selected against in cancer, suggesting that functional mitochondria might be required for malignant transformation in ulcerative colitis.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - Shilpa Kumar
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Cigdem Ussakli
- Department of Pathology, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, Washington
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
Suárez-Villagrán MY, Azevedo RBR, Miller JH. Influence of Electron-Holes on DNA Sequence-Specific Mutation Rates. Genome Biol Evol 2018; 10:1039-1047. [PMID: 29617801 PMCID: PMC5887664 DOI: 10.1093/gbe/evy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron–hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution.
Collapse
Affiliation(s)
- Martha Y Suárez-Villagrán
- Department of Physics, University of Houston, Houston.,Texas Center for Superconductivity, University of Houston, Houston
| | | | - John H Miller
- Department of Physics, University of Houston, Houston.,Texas Center for Superconductivity, University of Houston, Houston
| |
Collapse
|
12
|
Wallace L, Cherian AM, Adamson P, Bari S, Banerjee S, Flood M, Simien M, Yao X, Aikhionbare FO. Comparison of Pre- and Post-translational Expressions of COXIV-1 and MT-ATPase 6 Genes in Colorectal Adenoma-Carcinoma Tissues. JOURNAL OF CARCINOGENESIS & MUTAGENESIS 2018; 9:319. [PMID: 30393577 PMCID: PMC6214464 DOI: 10.4172/2157-2518.1000319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Colorectal cancer (CRC) develops from precancerous adenomatous polyps to malignant lesions of adenocarcinoma. Elucidating inhibition mechanisms for this route in patients with a risk of developing CRC is highly important for a potential diagnostic or prognostic marker. Differential expression of nuclear-encoded cytochrome c oxidase subunit 4 (COXIV) seems to contribute to a more unregulated respiration due to loss of ATP inhibition. Majority of energy for tumor transformations are mitochondrial origin. Differences in mitochondrial efficiency may be reflected in the progression of colorectal adenomatous polyps to adenocarcinomas. Here, we evaluate expression levels of COXIV isoform 1 (COXIV-1) and Mitochondrial (MT)-ATP synthase Subunit 6 (ATPase6) in adenomas of tubular, tubulovillous and villous tissues as compared to adenocarcinoma tissues. METHOD Both RT-qPCR and western blot techniques were used to assess COXIV-1 and ATPase6 expression levels in 42 pairs of patients' tissue samples. Protein carbonyl assay was performed to determine levels of oxidized proteins, as a measurement of ROS productions, in the tissue samples. RESULTS Differential RNA expression levels of COXIV-1 and ATPase6 from whole tissues were observed. Interestingly, RNA expression levels obtained from mitochondrial for COXIV-1 were significantly decreased in tubulovillous, villous adenomas and adenocarcinoma, but not in the tubular-polyps. Moreover, mitochondrial ATPase6 RNA expression levels decreased progressively from adenopolyps to adenocarcinoma. In mitochondrial protein, expression levels of both genes progressively decreased with a three folds from adenomatous polyps to adenocarcinoma. Whilst the ATPase6 protein expression significantly decreased in adenocarcinoma compared to villous, conversely, the levels of oxidized carbonyl proteins were considerably increased from adenomatous polyps to adenocarcinoma. CONCLUSION Our findings provide evidence that decreased mitochondrial protein expression of COXIV-1 and ATPase6 correlates with increased ROS production during colorectal adenomatous polyps' progression, suggesting the pivotal role of COXIV-1 in energy metabolism of colorectal cells as they progress from polyps to carcinoma.
Collapse
Affiliation(s)
- LaShanale Wallace
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Anju M Cherian
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Paula Adamson
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Shahla Bari
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Saswati Banerjee
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Michael Flood
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Melvin Simien
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| | - Felix O Aikhionbare
- Department of Medicine, Morehouse School of Medicine, 720 Westview Dr. SW Atlanta, GA 30310-1495, USA
| |
Collapse
|
13
|
Baker KT, Salk JJ, Brentnall TA, Risques RA. Precancer in ulcerative colitis: the role of the field effect and its clinical implications. Carcinogenesis 2018; 39:11-20. [PMID: 29087436 PMCID: PMC6248676 DOI: 10.1093/carcin/bgx117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Jesse J Salk
- Division of Hematology and Oncology, Department of Medicine, University of
Washington, Seattle, WA, USA
- TwinStrand Biosciences Seattle, WA, USA
| | - Teresa A Brentnall
- Division of Gasteroenterology, Department of Medicine, University of
Washington, Seattle, WA, USA
| | - Rosa Ana Risques
- To whom correspondence should be addressed. Tel: +206-616-4976; Fax:
+206-543-1140;
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To provide examples of mitochondria-specific metabolic events that influence tumor cell biology, and of metabolism-related mitochondrial biomarkers and therapeutic targets in cancer cells. RECENT FINDINGS Cancer cell mitochondria are rewired to optimally serve the cancer cell under various conditions of cellular stress. The nonexhaustive list of mitochondrial alterations that support cancer cell proliferation, survival, and/or progression includes upregulation of oxidative metabolism and use of alternative substrates, oncometabolites, increased superoxide production, mutated mitochondrial DNA, and altered mitochondrial morphology and dynamics. Potential therapeutic targets include fatty acid oxidation, voltage-dependent anion channel-1, the pyruvate dehydrogenase complex, and Complex I. SUMMARY Some phenotypical traits, for example, chemoresistance and metastasis, are likely regulated by a fine-tuned balance between several metabolic processes and events that are upregulated in parallel and are also dependent on microenvironmental cues. Many metabolism-related mitochondrial biomarkers show prognostic value, but the biological interpretation of the data may be confounded by the overall metabolic status and context. Understanding metabolic regulation of stemness is important for targeting cancer stem cells. Therapeutic targeting of cancer cell mitochondria remains experimental but promising, and more predictive markers will be needed for metabolism-based treatments and personalized medicine.
Collapse
|
15
|
Shafiee G, Heshmat R, Larijani B. Circulating cell-free nucleic acids as potential biomarkers for sarcopenia: a step toward personalized medicine. J Diabetes Metab Disord 2017; 16:19. [PMID: 28439503 PMCID: PMC5399331 DOI: 10.1186/s40200-017-0299-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Sarcopenia is an age-related loss of muscle mass and function, leading to disability, morbidity and increased mortality in older people. Given the relatively high prevalence and related- outcome of the disease, correct diagnosis, screening, monitoring and treatment of sarcopenia are needed in clinical practice. Recent researches have focused on cell-free nucleic acids, which are released into the circulation following cell death, as a potential biomarker of aging and systematic inflammation. It seems that the diagnosis and treatment of sarcopenia can be possible by the help of the analysis of cell-free nucleic acids as noninvasive method.
Collapse
Affiliation(s)
- Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Dr shariati hospital, north karegar st, Tehran, 14114 Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Dr shariati hospital, north karegar st, Tehran, 14114 Iran
| | - Bagher Larijani
- Endocrinology & Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ballista-Hernández J, Martínez-Ferrer M, Vélez R, Climent C, Sánchez-Vázquez MM, Torres C, Rodríguez-Muñoz A, Ayala-Peña S, Torres-Ramos CA. Mitochondrial DNA Integrity Is Maintained by APE1 in Carcinogen-Induced Colorectal Cancer. Mol Cancer Res 2017; 15:831-841. [PMID: 28360037 DOI: 10.1158/1541-7786.mcr-16-0218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/27/2016] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Changes in mitochondrial DNA (mtDNA) integrity have been reported in many cancers; however, the contribution of mtDNA integrity to tumorigenesis is not well understood. We used a transgenic mouse model that is haploinsufficient for the apurinic/apyrimidinic endonuclease 1 (Apex1+/-) gene, which encodes the base excision repair (BER) enzyme APE1, to determine its role in protecting mtDNA from the effects of azoxymethane (AOM), a carcinogen used to induce colorectal cancer. Repair kinetics of AOM-induced mtDNA damage was evaluated using qPCR after a single AOM dose and a significant induction in mtDNA lesions in colonic crypts from both wild-type (WT) and Apex1+/-animals were observed. However, Apex1+/- mice had slower repair kinetics in addition to decreased mtDNA abundance. Tumors were also induced using multiple AOM doses, and both WT and Apex1+/-animals exhibited significant loss in mtDNA abundance. Surprisingly, no major differences in mtDNA lesions were observed in tumors from WT and Apex1+/- animals, whereas a significant increase in nuclear DNA lesions was detected in tumors from Apex1+/- mice. Finally, tumors from Apex1+/- mice displayed an increased proliferative index and histologic abnormalities. Taken together, these results demonstrate that APE1 is important for preventing changes in mtDNA integrity during AOM-induced colorectal cancer.Implications: AOM, a colorectal cancer carcinogen, generates damage to the mitochondrial genome, and the BER enzyme APE1 is required to maintain its integrity. Mol Cancer Res; 15(7); 831-41. ©2017 AACR.
Collapse
Affiliation(s)
- Joan Ballista-Hernández
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Margaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Roman Vélez
- Department of Pathology and Laboratory Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Consuelo Climent
- Department of Pathology and Laboratory Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Maria M Sánchez-Vázquez
- Department of Pharmaceutical Sciences, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Ceidy Torres
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Adlin Rodríguez-Muñoz
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Carlos A Torres-Ramos
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
17
|
Coutinho E, Batista C, Sousa F, Queiroz J, Costa D. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria. Mol Pharm 2017; 14:626-638. [PMID: 28199112 DOI: 10.1021/acs.molpharmaceut.6b00823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.
Collapse
Affiliation(s)
- Eduarda Coutinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cátia Batista
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João Queiroz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior , Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
18
|
Zhou HY, Shu HY, Dai J, Li HC, Tang L, Wang HW, Ni B. Maternal genetic backgrounds contribute to the genetic susceptibility of tongue cancer patients in Hunan, central of China. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:347-352. [PMID: 28278694 DOI: 10.1080/24701394.2016.1278539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations played crucial roles on affecting the susceptibility to cancer. In this study, to investigate whether mitochondrial DNA mutations contributed to the genetic susceptibility of Chinese tongue cancer patients, mtDNA control regions of 105 Chinese tongue cancer patients were amplified and sequenced, the mutations were recorded by comparing with the revised Cambridge Reference Sequence (rCRS), which were attributed to certain mtDNA haplogroups based on the specific variations motif of each patients. The Miao Chinese group (a Chinese ethnic minority) from surrounding region has no essential difference with tongue cancer group, which was taken as the matched control group with principal component analysis by taking the haplogroups frequency of 105 tongue cancer individuals and 354 healthy individuals of eight groups from the similar geographic regions as input factors. This was supported by the smallest genetic distance between tongue cancer and Miao_2 groups. Further, the statistical analysis based on mtDNA variations of hypervariable sequence I (HVSI) indicated that 13 variations including 16,124, 16,148, 16,182C, 16,183C, 16,227, 16,266A, 16,249, 16,272, 16,291, 16,327, 16,335, 16,497, and 16,519 have significant differences between tongue cancer group and matched control group. Comparison of mtDNA haplogroups between tongue cancer and control groups indicated that mtDNA haplogroups C, F2*, and M10 have significant differences. It's worth noting that 16,327 and 16,291 was the defining variation of haplogroups C and F2*, respectively. Our results suggested that mitochondrial DNA may play a crucial role for the maternal genetic susceptibility of tongue cancer patients from Hunan, central of China.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| | - Hong-Ying Shu
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| | - Jie Dai
- b Department of Head & Neck (Oncoplastic Surgery) , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Hong-Chao Li
- b Department of Head & Neck (Oncoplastic Surgery) , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Li Tang
- c Department of Reproduction and Genetics , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan Province , China.,d Department of Reproduction and Genetics, The First People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
| | - Hua-Wei Wang
- c Department of Reproduction and Genetics , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan Province , China
| | - Bin Ni
- a Key Laboratory of Genetics and Birth Health of Hunan Province , Family Planning Institute of Hunan Province , Changsha , Hunan Province , China
| |
Collapse
|
19
|
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2017; 35:347-76. [PMID: 27392603 PMCID: PMC5035665 DOI: 10.1007/s10555-016-9629-x] [Citation(s) in RCA: 550] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While various clinical applications especially in oncology are now in progress such as diagnosis, prognosis, therapy monitoring, or patient follow-up, the determination of structural characteristics of cell-free circulating DNA (cirDNA) are still being researched. Nevertheless, some specific structures have been identified and cirDNA has been shown to be composed of many “kinds.” This structural description goes hand-in-hand with the mechanisms of its origins such as apoptosis, necrosis, active release, phagocytosis, and exocytose. There are multiple structural forms of cirDNA depending upon the mechanism of release: particulate structures (exosomes, microparticles, apoptotic bodies) or macromolecular structures (nucleosomes, virtosomes/proteolipidonucleic acid complexes, DNA traps, links with serum proteins or to the cell-free membrane parts). In addition, cirDNA concerns both nuclear and/or mitochondrial DNA with both species exhibiting different structural characteristics that potentially reveal different forms of biological stability or diagnostic significance. This review focuses on the origins, structures and functional aspects that are paradoxically less well described in the literature while numerous reviews are directed to the clinical application of cirDNA. Differentiation of the various structures and better knowledge of the fate of cirDNA would considerably expand the diagnostic power of cirDNA analysis especially with regard to the patient follow-up enlarging the scope of personalized medicine. A better understanding of the subsequent fate of cirDNA would also help in deciphering its functional aspects such as their capacity for either genometastasis or their pro-inflammatory and immunological effects.
Collapse
Affiliation(s)
- A R Thierry
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France.
| | - S El Messaoudi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P B Gahan
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298, Montpellier, France
| | - P Anker
- , 135 route des fruitières, 74160, Beaumont, France
| | - M Stroun
- , 6 Pedro-meylan, 1208, Geneva, Switzerland
| |
Collapse
|
20
|
Suraj S, Dhar C, Srivastava S. Circulating nucleic acids: An analysis of their occurrence in malignancies. Biomed Rep 2016; 6:8-14. [PMID: 28123700 DOI: 10.3892/br.2016.812] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Through a regulated or fortuitous phenomenon, small portions of cell nucleic acids are thrown into circulation. Since the discovery of these circulating nucleic acids (CNAs) in 1948, numerous studies have been published to elucidate their clinical implications in multifarious diseases. Scientists have now discovered disease-specific genetic aberrations, such as mutations, microsatellite alterations, epigenetic modulations (including aberrant methylation), as well as viral DNA/RNA from nucleic acids in plasma and serum. CNAs have become increasingly popular due to their potential for use as a liquid biopsy, which is a tool for non-invasive diagnosis and monitoring of diseases, such as cancer, stroke, trauma, myocardial infarction, autoimmune disorders, and pregnancy-associated complications. While the diagnostic potential of CNAs has been investigated extensively, there is a paucity of understanding of their pathophysiological functions. Are these CNAs part of the cell's regular framework of functioning? Or do they act as molecular players in disease initiation and progression? The aim of this review is to investigate the origins and functions of the circulating cell-free nucleic acids in the plasma and serum of patients with various malignancies, and propose areas of study, which may elucidate the novel underlying mechanisms that are functioning during cancer initiation/progression.
Collapse
Affiliation(s)
- Shankar Suraj
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, Karnataka 560034, India
| | - Chirag Dhar
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, Karnataka 560034, India
| | - Sweta Srivastava
- Department of Transfusion Medicine and Immunohematology, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, Karnataka 560034, India
| |
Collapse
|
21
|
Er LM, Wu ML, Gao Y, Wang SJ, Li Y. Identification of sequence polymorphisms in the displacement loop region of mitochondrial DNA as a risk factor for gastroenteropancreatic neuroendocrine neoplasm. J Clin Lab Anal 2016; 31. [PMID: 27704598 DOI: 10.1002/jcla.22078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/06/2016] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) are relatively rare tumors that arise from the diffuse neuroendocrine system, and the biggest advances in molecular biology have helped in understanding these biological diversity of tumors over the past decades. It is important to determine the carcinogenesis of GEP-NEN from the perspective of genetic backgrounds. METHODS Mitochondrial DNA (mtDNA) of peripheral blood from 66 GEP-NEN patients and from 75 healthy controls without history of any cancer were examined for single nucleotide polymorphisms (SNPs) and mutations in the displacement loop (D-loop) region. RESULTS Single nucleotide polymorphisms were detected in 148 sites within the 982 bp mitochondria D-loop region from blood samples of healthy controls and GEP-NEN patients. SNPs with a rare allele frequency >5% in either controls or GEP-NEN patients were used for cancer risk analysis; a total of 23 SNPs were selected. When individual SNPs of GEP-NEN patients compared with healthy controls were analyzed, a statistically significant increase in the SNP frequency was observed for 73G, 150T, 151T, 492C, 16257A, 16261T, and 16399G in GEP-NEN patients (P<.05). It was also observed that the SNP frequency for 489C and 16519C significantly decreased in GEP-NEN patients compared with controls (P<.05). CONCLUSION In summary, SNPs in the mutations of the mitochondrial D-loop may be valuable markers for GEP-NEN risk evaluation. Analysis of the genetic polymorphisms in the D-loop may be useful for diagnosis of high-risk individuals.
Collapse
Affiliation(s)
- Li-Mian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-Li Wu
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Gao
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shi-Jie Wang
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
H. pylori infection is related to mitochondrial microsatellite instability in gastric carcinogenesis. Infect Agent Cancer 2016; 11:30. [PMID: 27408617 PMCID: PMC4940710 DOI: 10.1186/s13027-016-0078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACHGROUND To assess the correlation of H. pylori infection with mitochondrial microsatellite instability (mtMSI) and IL-8 in gastric carcinogenesis. METHODS H. pylori infection was evaluated through histology and a urease breath test; mtMSI was measured using PCR-single strand conformation polymorphism (PCR-SSCP); IL-8 was analyzed with ELISA methods. RESULTS The detection rate of mtMSI was significantly higher in specimens with H. pylori infection than in those without H. pylori infection (P < 0.05). The levels of IL-8 were significantly higher in specimens with mtMSI than in those without mtMSI (P < 0.01).An association of mtMSI with the intestinal histological type was found (P < 0.05). Increased IL-8 levels induced by H. pylori were related to the invasion, lymphnode spreading and clinical stage of gastric cancer (P < 0.05). CONCLUSIONS H. pylori infection is related to mitochondrial microsatellite instability in the early steps of gastric cancer development. IL-8 may play a role in the development of mtMSI induced by H. pylori. Our results support a role for mtMSI in different mechanisms of gastric carcinogenesis.
Collapse
|
23
|
Chaudhary AK, Bhat TA, Kumar S, Kumar A, Kumar R, Underwood W, Koochekpour S, Shourideh M, Yadav N, Dhar S, Chandra D. Mitochondrial dysfunction-mediated apoptosis resistance associates with defective heat shock protein response in African-American men with prostate cancer. Br J Cancer 2016; 114:1090-100. [PMID: 27115471 PMCID: PMC4865976 DOI: 10.1038/bjc.2016.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND African-American (AA) patients with prostate cancer (PCa) respond poorly to current therapy compared with Caucasian American (CA) PCa patients. Although underlying mechanisms are not defined, mitochondrial dysfunction is a key reason for this disparity. METHODS Cell death, cell cycle, and mitochondrial function/stress were analysed by flow cytometry or by Seahorse XF24 analyzer. Expression of cellular proteins was determined using immunoblotting and real-time PCR analyses. Cell survival/motility was evaluated by clonogenic, cell migration, and gelatin zymography assays. RESULTS Glycolytic pathway inhibitor dichloroacetate (DCA) inhibited cell proliferation in both AA PCa cells (AA cells) and CA PCa cells (CA cells). AA cells possess reduced endogenous reactive oxygen species, mitochondrial membrane potential (mtMP), and mitochondrial mass compared with CA cells. DCA upregulated mtMP in both cell types, whereas mitochondrial mass was significantly increased in CA cells. DCA enhanced taxol-induced cell death in CA cells while sensitising AA cells to doxorubicin. Reduced expression of heat shock proteins (HSPs) was observed in AA cells, whereas DCA induced expression of CHOP, C/EBP, HSP60, and HSP90 in CA cells. AA cells are more aggressive and metastatic than CA cells. CONCLUSIONS Restoration of mitochondrial function may provide new option for reducing PCa health disparity among American men.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Anil Kumar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Willie Underwood
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Shahriar Koochekpour
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mojgan Shourideh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
24
|
Zhang K, Chen Y, Huang X, Qu P, Pan Q, Lü L, Jiang S, Ren T, Su H. Expression and clinical significance of cytochrome c oxidase subunit IV in colorectal cancer patients. Arch Med Sci 2016; 12:68-77. [PMID: 26925120 PMCID: PMC4754367 DOI: 10.5114/aoms.2016.57581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/18/2014] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Previous studies have demonstrated that the expression of cytochrome c oxidase (COX) subunits encoded by mitochondrial DNA is elevated in colorectal cancer (CRC). However, the expression of nuclear DNA-encoded COX IV and its clinical significance have not yet been investigated in CRC. MATERIAL AND METHODS We examined COX IV expression in paired CRC samples (cancer and pericancerous tissues) by quantitative real-time polymerase chain reaction (qPCR), Western blot and immunohistochemical staining and analyzed its clinical significance. RESULTS qPCR and Western blot analyses showed that COX IV expression was significantly elevated at both the mRNA (p = 0.05) and protein levels in CRC tissue samples when compared with those in paired pericancerous tissues. Immunohistochemistry also revealed that COX IV expression was significantly increased in CRC tissues (p < 0.001). Association analyses showed that there was no significant association between COX IV expression and clinical parameters of CRC patients except for gender (p = 0.017). Moreover, we did not find any association between COX IV expression and overall survival or recurrence-free survival of CRC patients. Further analysis showed no significant relationship between the expression of COX IV and proliferating cell nuclear antigen (PCNA), a marker of cell proliferation. CONCLUSIONS Our findings suggest that elevated COX IV expression may play an important role in colorectal carcinogenesis, but not in progression, which warrants further investigation in future studies.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaojun Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ping Qu
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Qiuzhong Pan
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangdong, China
| | - Lin Lü
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangdong, China
| | - Shanshan Jiang
- Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangdong, China
| | - Tingitng Ren
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Kozhukhar N, Spadafora D, Fayzulin R, Shokolenko IN, Alexeyev M. The efficiency of the translesion synthesis across abasic sites by mitochondrial DNA polymerase is low in mitochondria of 3T3 cells. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4390-4396. [PMID: 26470640 DOI: 10.3109/19401736.2015.1089539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Translesion synthesis by specialized DNA polymerases is an important strategy for mitigating DNA damage that cannot be otherwise repaired either due to the chemical nature of the lesion. Apurinic/Apyrimidinic (abasic, AP) sites represent a block to both transcription and replication, and are normally repaired by the base excision repair (BER) pathway. However, when the number of abasic sites exceeds BER capacity, mitochondrial DNA is targeted for degradation. Here, we used two uracil-N-glycosylase (UNG1) mutants, Y147A or N204D, to generate AP sites directly in the mtDNA of NIH3T3 cells in vivo at sites normally occupied by T or C residues, respectively, and to study repair of these lesions in their native context. We conclude that mitochondrial DNA polymerase γ (Pol γ) is capable of translesion synthesis across AP sites in mitochondria of the NIH3T3 cells, and obeys the A-rule. However, in our system, base excision repair (BER) and mtDNA degradation occur more frequently than translesion bypass of AP sites.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- a Department of Physiology and Cell Biology , University of South Alabama , Mobile , AL , USA
| | - Domenico Spadafora
- b Department of Pharmacology , University of South Alabama , Mobile , AL , USA and
| | - Rafik Fayzulin
- a Department of Physiology and Cell Biology , University of South Alabama , Mobile , AL , USA
| | - Inna N Shokolenko
- c Department of Biomedical Sciences , University of South Alabama, Patt Capps Covey College of Allied Health Professions , Mobile , AL , USA
| | - Mikhail Alexeyev
- a Department of Physiology and Cell Biology , University of South Alabama , Mobile , AL , USA
| |
Collapse
|
26
|
Ghosh S, Singh KK, Sengupta S, Scaria V. Mitoepigenetics: The different shades of grey. Mitochondrion 2015; 25:60-6. [PMID: 26437363 DOI: 10.1016/j.mito.2015.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
Abstract
Epigenetic modifications of the nuclear genome have been well studied and it is established that these modifications play a key role in nuclear gene expression. However, the status of mitochondrial epigenetic modifications has not been delved in detail. The recent technological advancements in the genome analyzing tools and techniques, have helped in investigating mitochondrial epigenetic modifications with greater resolution and studies have indicated a regulatory role of the mitochondrial epigenome. Association of mitochondrial DNA methylation with various disease conditions, drug treatment, aging, exposure to environmental pollutants etc. has lent credence to this belief. Herein, we have reviewed studies on mitochondrial epigenetic modifications with a focus to comprehend its regulatory role in gene expression and disease association.
Collapse
Affiliation(s)
- Sourav Ghosh
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR IGIB), Mathura Road, Delhi, 110 020 Delhi, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi, 110020 Delhi, India
| | - Keshav K Singh
- Departments of Genetics, Pathology, Environmental Health, University of Alabama at Birmingham, Birmingham, Alabama; Center for Free Radical Biology, Center for Aging and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA 35294
| | - Shantanu Sengupta
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR IGIB), Mathura Road, Delhi, 110 020 Delhi, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi, 110020 Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR IGIB), Mathura Road, Delhi, 110 020 Delhi, India; Academy of Scientific and Innovative Research (AcSIR), CSIR IGIB South Campus, Mathura Road, Delhi, 110020 Delhi, India.
| |
Collapse
|
27
|
Xing X, Huang Y, Wang S, Chi M, Zeng Y, Chen L, Li L, Zeng J, Lin M, Han X, Liu X, Liu J. Comparative analysis of primary hepatocellular carcinoma with single and multiple lesions by iTRAQ-based quantitative proteomics. J Proteomics 2015; 128:262-71. [DOI: 10.1016/j.jprot.2015.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
|
28
|
Yacoub HA, Mahmoud WM, El-Baz HAEED, Eid OM, El-Fayoumi RI, Mahmoud MM, Harakeh S, Abuzinadah OH. New haplotypes of the ATP synthase subunit 6 gene of mitochondrial DNA are associated with acute lymphoblastic leukemia in Saudi Arabia. Asian Pac J Cancer Prev 2015; 15:10433-8. [PMID: 25556488 DOI: 10.7314/apjcp.2014.15.23.10433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children and represents approximately 25% of cancer diagnoses among those younger than 15 years of age. AIM AND OBJECTIVES This study investigated substitutions in the ATP synthase subunit 6 gene of mitochondrial DNA (mtDNA) as a potential diagnostic biomarker for early detection and diagnosis of acute lymphoblastic leukemia. Based on mtDNA from 23 subjects diagnosed with acute lymphoblastic leukemia, approximately 465 bp of the ATP synthase subunit 6 gene were amplified and sequenced. RESULTS The sequencing revealed thirty-one mutations at 14 locations in ATP synthase subunit 6 of mtDNA in the ALL subjects. All were identified as single nucleotide polymorphisms (SNPs) with a homoplasmic pattern. The mutations were distributed between males and females. Novel haplotypes were identified in this investigation: haplotype (G) was recorded in 34% in diagnosed subjects; the second haplotype was (C) with frequency of 13% in ALL subjects. Neither of these were observed in control samples. CONCLUSIONS These haplotypes were identified for the first time in acute lymphoblastic leukemia patients. Five mutations able to change amino acid synthesis for the ATP synthase subunit 6 were associated with acute lymphoblastic leukemia. This investigation could be used to provide an overview of incidence frequency of acute lyphoblastic leukemia (ALL) in Saudi patients based on molecular events.
Collapse
Affiliation(s)
- Haitham Ahmed Yacoub
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt E-mail : ,
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen XZ, Fang Y, Shi YH, Cui JH, Li LY, Xu YC, Ling B. Mitochondrial D310 instability in Chinese lung cancer patients. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:1177-80. [PMID: 25010070 DOI: 10.3109/19401736.2014.936426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To characterize the somatic mutation spectrum of mitochondrial DNA at D310 in Chinese lung cancer patients and evaluate its potential significance in Chinese lung cancer diagnosis, in this study, 237 samples, including lung tumor, adjacent normal tissue and blood samples of 79 lung cancer patients were analyzed. By comparing sequences of D310 between lung cancer tissues, adjacent normal tissue and blood samples, the somatic mutations at D310 were detected in 17.72% (14/79) of Chinese lung cancer patients; this implied that somatic mutations at D310 could be served as valuable biomarker for diagnostic of Chinese lung cancer. Further analyses indicated that deletion and heterogeneity were the predominant characters for somatic mutations detected at D310 of Chinese lung cancer patients.
Collapse
Affiliation(s)
- Xian-Zhong Chen
- a Department of ICU , The Second People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
| | - Yu Fang
- b Department of Anesthesiology , the first affiliated hospital of Kunming Medical University , Kunming , Yunnan Province , China
| | - Yan-Hai Shi
- c Department of Clinical Laboratory , Shanxi Tumor Hospital , Taiyuan , Shanxi , China
| | - Jing-Hui Cui
- d Department of Medical Service , Unit 65176 of PLA , Dalian , Liaoning , China , and
| | - Long-Yan Li
- e Department of Cardiology and Clinical Laboratory , 211 Hospital of PLA , Harbin , Heilongjiang , China
| | - Yong-Chen Xu
- e Department of Cardiology and Clinical Laboratory , 211 Hospital of PLA , Harbin , Heilongjiang , China
| | - Bin Ling
- a Department of ICU , The Second People's Hospital of Yunnan Province , Kunming , Yunnan Province , China
| |
Collapse
|
30
|
Development of mitochondrial targeting plasmid DNA nanoparticles: Characterization and in vitro studies. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015; 15:586. [PMID: 26268226 PMCID: PMC4535531 DOI: 10.1186/s12885-015-1594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Accumulation of mitochondrial DNA (mtDNA) damage could enhance the frequency of mitochondrial mutations and promote a variety of mitochondria-related diseases, including cancer. However, the mechanism(s) involved are not fully understood. Methods Quantitative extended length PCR was used to compare mtDNA and nDNA damage in human lung H1299 cells expressing WT Bcl2 or vector-only control. mtAPE1 endonuclease activity was analyzed by AP oligonucleotide assay. mtDNA mutation was measured by single molecule PCR. Subcellular localization of Bcl2 and APE1 was analyzed by subcellular fractionation. Results Bcl2, an anti-apoptotic molecule and oncoprotein, effectively inhibits the endonuclease activity of mitochondrial APE1 (mtAPE1), leading to significant retardation of mtDNA repair and enhanced frequency of mtDNA mutations following exposure of cells to hydrogen peroxide (H2O2) or nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, a carcinogen in cigarette smoke). Inversely, depletion of endogenous Bcl2 by RNA interference increases mtAPE1 endonuclease activity leading to accelerated mtDNA repair and decreased mtDNA mutation. Higher levels of mtAPE1 were observed in human lung cancer cells than in normal human bronchial epithelial cells (i.e. BEAS-2B). Bcl2 partially co-localizes with APE1 in the mitochondria of human lung cancer cells. Bcl2 directly interacts with mtAPE1 via its BH domains. Removal of any of the BH domains from Bcl2 abolishes Bcl2’s capacity to interact with mtAPE1 as well as its inhibitory effects on mtAPE1 activity and mtDNA repair. Conclusions Based our findings, we propose that Bcl2 suppression of mtDNA repair occurs through direct interaction with mtAPE1 and inhibition of its endonuclease activity in mitochondria, which may contribute to enhanced mtDNA mutations and carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maohua Xie
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Paul W Doetsch
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Xingming Deng
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Fayzulin RZ, Perez M, Kozhukhar N, Spadafora D, Wilson GL, Alexeyev MF. A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Res 2015; 43:e62. [PMID: 25820427 PMCID: PMC4482060 DOI: 10.1093/nar/gkv140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.
Collapse
Affiliation(s)
- Rafik Z Fayzulin
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Michael Perez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
33
|
Vidone M, Clima R, Santorsola M, Calabrese C, Girolimetti G, Kurelac I, Amato LB, Iommarini L, Trevisan E, Leone M, Soffietti R, Morra I, Faccani G, Attimonelli M, Porcelli AM, Gasparre G. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int J Biochem Cell Biol 2015; 63:46-54. [PMID: 25668474 DOI: 10.1016/j.biocel.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Michele Vidone
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Rosanna Clima
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Claudia Calabrese
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisa Trevisan
- Division of Neurology, Hospital of Rivoli, Rivoli, Italy
| | - Marco Leone
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and A.O.U. City of Health and Science, Turin, Italy
| | - Isabella Morra
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Giuliano Faccani
- Department of Neurosurgery CTO Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy.
| |
Collapse
|
34
|
Yacoub HA, Mahmoud WM, El-Baz HAED, Eid OM, ELfayoumi RI, Elhamidy SM, Mahmoud MM. Novel Mutations in the Displacement Loop of Mitochondrial DNA are Associated with Acute Lymphoblastic Leukemia: A Genetic Sequencing Study. Asian Pac J Cancer Prev 2014; 15:9283-9. [DOI: 10.7314/apjcp.2014.15.21.9283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
Rhodamine based plasmid DNA nanoparticles for mitochondrial gene therapy. Colloids Surf B Biointerfaces 2014; 121:129-40. [DOI: 10.1016/j.colsurfb.2014.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
|
36
|
Jiang H, Zhao H, Xu H, Hu L, Wang W, Wei Y, Wang Y, Peng X, Zhou F. Peripheral blood mitochondrial DNA content, A10398G polymorphism, and risk of breast cancer in a Han Chinese population. Cancer Sci 2014; 105:639-45. [PMID: 24703408 PMCID: PMC4317893 DOI: 10.1111/cas.12412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 04/03/2014] [Indexed: 01/04/2023] Open
Abstract
It has been reported that quantitative alterations and sequence variations of mtDNA are associated with the onset and progression of particular types of tumor. However, the relationship between mtDNA content, certain mtDNA polymorphisms in peripheral blood leukocytes and breast cancer risk remain obscure. This study was undertaken to investigate whether mtDNA content and the A10398G polymorphism in peripheral blood leukocytes could be used as risk predictors for breast cancer in Han Chinese women. Blood samples were obtained from a total of 506 breast cancer patients and 520 matched healthy controls. The mtDNA content was measured by using quantitative real-time PCR assay; A10398G polymorphism was determined by PCR-RFLP assay. There was no statistically significant difference between cases and controls in terms of peripheral blood mtDNA content or A10398G polymorphism. However, further analysis suggested that the risk of breast cancer was associated with decreased mtDNA content in premenopausal women (P = 0.001; odds ratio = 0.54; 95% confidence interval, 0.38–0.77), with increased mtDNA content in postmenopausal women (P = 0.027; odds ratio = 1.49; 95% confidence interval, 1.05–2.11). In addition, the associations between mtDNA content and several clinicopathological parameters of cases such as age, menopausal status, and number of pregnancies and live births were observed. This case–control study indicated that the peripheral blood mtDNA content might be a potential biomarker to evaluate the risk of breast cancer for selected Chinese women.
Collapse
Affiliation(s)
- Huangang Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China; Hubei Clinical Cancer Study Center, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shokolenko IN, Wilson GL, Alexeyev MF. The "fast" and the "slow" modes of mitochondrial DNA degradation. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:490-8. [PMID: 24724936 DOI: 10.3109/19401736.2014.905829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a living cell, oxidative stress resulting from an external or internal insult can result in mitochondrial DNA (mtDNA) damage and degradation. Here, we show that in HeLa cells, mtDNA can withstand relatively high levels of extracellular oxidant H2O2 before it is damaged to a point of degradation, and that mtDNA levels in these cells quickly recover after removal of the stressor. In contrast, mtDNA degradation in mouse fibroblast cells is induced at eight-fold lower concentrations of H2O2, and restoration of the lost mtDNA proceeds much slower. Importantly, mtDNA levels in HeLa cells continue to decline even after withdrawal of the stressor thus marking the "slow" mode of mtDNA degradation. Conversely, in mouse fibroblasts maximal loss of mtDNA is achieved during treatment, and is already detectable at 5 min after exposure, indicating the "fast" mode. These differences may modulate susceptibility to oxidative stress of those organs, which consist of multiple cell types.
Collapse
Affiliation(s)
- Inna N Shokolenko
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Glenn L Wilson
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| | - Mikhail F Alexeyev
- a Department of Cell Biology and Neuroscience , University of South Alabama , Mobile , AL , USA
| |
Collapse
|
38
|
Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292017. [PMID: 24818137 PMCID: PMC4003915 DOI: 10.1155/2014/292017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
The role of alterations of mitochondrial DNA (mtDNA) in the development of human pathologies is not understood well. Most of mitochondrial mutations are characterized by the phenomenon of heteroplasmy which is defined as the presence of a mixture of more than one type of an organellar genome within a cell or tissue. The level of heteroplasmy varies in wide range, and the expression of disease is dependent on the percent of alleles bearing mutations, thus allowing consumption that an upper threshold level may exist beyond which the mitochondrial function collapses. Recent findings have demonstrated that some mtDNA heteroplasmic mutations are associated with widely spread chronic diseases, including atherosclerosis and cancer. Actually, each etiological mtDNA mutation has its own heteroplasmy threshold that needs to be measured. Therefore, quantitative evaluation of a mutant allele of mitochondrial genome is an obvious methodological challenge, since it may be a keystone for diagnostics of individual genetic predisposition to the disease. This review provides a comprehensive comparison of methods applicable to the measurement of heteroplasmy level of mitochondrial mutations associated with the development of pathology, in particular, in atherosclerosis and its clinical manifestations.
Collapse
|
39
|
Liu S, Shi S, Li Y, Kong D. Identification of sequence nucleotide polymorphisms in the D-loop region of mitochondrial DNA as a risk factor for epithelial ovarian cancer. ACTA ACUST UNITED AC 2014; 27:9-11. [DOI: 10.3109/19401736.2013.867435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Kam WWY, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013; 65:607-619. [PMID: 23892359 DOI: 10.1016/j.freeradbiomed.2013.07.024] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 01/08/2023]
Abstract
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.
Collapse
Affiliation(s)
- Winnie Wai-Ying Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia.
| | - Richard B Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia; National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|
41
|
Weigl S, Paradiso A, Tommasi S. Mitochondria and familial predisposition to breast cancer. Curr Genomics 2013; 14:195-203. [PMID: 24179442 PMCID: PMC3664469 DOI: 10.2174/1389202911314030005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial genome and functional alterations are related to various diseases including cancer. In all cases, the role of these organelles is associated with defects in oxidative energy metabolism and control of tumor-induced oxidative stress. The present study examines the involvement of mitochondrial DNA in cancer and in particular in breast cancer. Furthermore, since mitochondrial DNA is maternally inherited, hereditary breast cancer has been focused on.
Collapse
Affiliation(s)
- Stefania Weigl
- National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari-Italy
| | | | | |
Collapse
|
42
|
Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:336-44. [PMID: 24140413 DOI: 10.1016/j.bbcan.2013.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 12/15/2022]
Abstract
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.
Collapse
|
43
|
Xu H, He W, Jiang HG, Zhao H, Peng XH, Wei YH, Wei JN, Xie CH, Liang C, Zhong YH, Zhang G, Deng D, Zhou YF, Zhou FX. Prognostic value of mitochondrial DNA content and G10398A polymorphism in non-small cell lung cancer. Oncol Rep 2013; 30:3006-12. [PMID: 24101028 DOI: 10.3892/or.2013.2783] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality worldwide. Mitochondrial dysfunction has been postulated to render cancer cells resistant to apoptosis based on the Warburg hypothesis. However, few studies have investigated the prognostic value of mitochondrial DNA (mtDNA) content and G10398A polymorphism in NSCLC patients. mtDNA copy number and G10398A polymorphism in 128 NSCLC tissue samples were assessed by real-time PCR (RT-PCR) and PCR-RFLP respectively, and their relationship to prognosis were analyzed by survival analysis and Cox proportional hazards model. In vitro, an mtDNA deletion A549 ρ(0) cell model was utilized to assess the function of mtDNA on radiosensitivity. Cell cycle distribution and reactive oxygen species (ROS) were analyzed to elucidate the potential mechanisms. For the whole group, the median follow-up time and overall survival time were 22.5 and 23.4 months, respectively. Patients with high mtDNA content had a marginally longer survival time than patients with low mtDNA content (P=0.053). Moreover, patients with high mtDNA content plus 10398G had a significantly longer overall survival time compared with those having low mtDNA content plus 10398A (47 vs. 27 months, P<0.05). In addition, multivariate analysis showed that stage and low mtDNA content plus 10398A were the two most independent prognostic factors. In vitro, the A549 ρ(0) cells showed more resistance to radiation than ρ(+) cells. Following radiation, ρ(0) cells showed delayed G2 arrest and lower ROS level as compared to ρ(+) cells. In conclusion, the present study suggests that in patients with NSCLC, low mtDNA content plus 10398A could be a marker of poor prognosis which is associated with resistance to anticancer treatment caused by low mtDNA content plus 10398A polymorphism resulting in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang, Wuhan, Hubei 430071, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gutiérrez Povedano C, Salgado J, Gil C, Robles M, Patiño-García A, García-Foncillas J. Analysis of BRCA1 and mtDNA haplotypes and mtDNA polymorphism in familial breast cancer. ACTA ACUST UNITED AC 2013; 26:227-31. [DOI: 10.3109/19401736.2013.825773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Ussakli CH, Ebaee A, Binkley J, Brentnall TA, Emond MJ, Rabinovitch PS, Risques RA. Mitochondria and tumor progression in ulcerative colitis. J Natl Cancer Inst 2013; 105:1239-48. [PMID: 23852949 DOI: 10.1093/jnci/djt167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of mitochondria in cancer is poorly understood. Ulcerative colitis (UC) is an inflammatory bowel disease that predisposes to colorectal cancer and is an excellent model to study tumor progression. Our goal was to characterize mitochondrial alterations in UC tumorigenesis. METHODS Nondysplastic colon biopsies from UC patients with high-grade dysplasia or cancer (progressors; n = 9) and UC patients dysplasia free (nonprogressors; n = 9) were immunostained for cytochrome C oxidase (COX), a component of the electron transport chain, and were quantified by multispectral imaging. For six additional progressors, nondysplastic and dysplastic biopsies were stained for COX and additional mitochondrial proteins including PGC1α, the master regulator of mitochondrial biogenesis. Mitochondrial DNA (mtDNA) copy number was determined by quantitative polymerase chain reaction. Generalized estimating equations with two-sided tests were used to account for correlation of measurements within individuals. RESULTS Nondysplastic biopsies of UC progressors showed statistically significant COX loss compared with UC nonprogressors by generalized estimating equation (-18.5 units, 95% confidence interval = -12.1 to -24.9; P < .001). COX intensity progressively decreased with proximity to dysplasia and was the lowest in adjacent to dysplasia and dysplastic epithelium. Surprisingly, COX intensity was statistically significantly increased in cancers. This bimodal pattern was observed for other mitochondrial proteins, including PGC1α, and was confirmed by mtDNA copy number. CONCLUSIONS Mitochondrial loss precedes the development of dysplasia, and it could be used to detect and potentially predict cancer. Cancer cells restore mitochondria, suggesting that mitochondria are needed for further proliferation. This bimodal pattern might be driven by transcriptional regulation of mitochondrial biogenesis by PGC1α.
Collapse
|
46
|
González-Masiá JA, García-Olmo D, García-Olmo DC. Circulating nucleic acids in plasma and serum (CNAPS): applications in oncology. Onco Targets Ther 2013; 6:819-32. [PMID: 23874104 PMCID: PMC3711950 DOI: 10.2147/ott.s44668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The presence of small amounts of circulating nucleic acids in plasma and serum (CNAPS) is not a new finding. The verification that such amounts are significantly increased in cancer patients, and that CNAPS might carry a variety of genetic and epigenetic alterations related to cancer development and progression, has aroused great interest in the scientific community in the last decades. Such alterations potentially reflect changes that occur during carcinogenesis, and include DNA mutations, loss of heterozygosity, viral genomic integration, disruption of microRNA, hypermethylation of tumor suppressor genes, and changes in the mitochondrial DNA. These findings have led to many efforts toward the implementation of new clinical biomarkers based on CNAPS analysis. In the present article, we review the main findings related to the utility of CNAPS analysis for early diagnosis, prognosis, and monitoring of cancer, most of which appear promising. However, due to the lack of harmonization of laboratory techniques, the heterogeneity of disease progression, and the small number of recruited patients in most of those studies, there has been a poor translation of basic research into clinical practice. In addition, many aspects remain unknown, such as the release mechanisms of cell-free nucleic acids, their biological function, and the way by which they circulate in the bloodstream. It is therefore expected that in the coming years, an improved understanding of the relationship between CNAPS and the molecular biology of cancer will lead to better diagnosis, management, and treatment.
Collapse
Affiliation(s)
| | - Damián García-Olmo
- Department of Surgery, Universidad Autónoma de Madrid and La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Dolores C García-Olmo
- Experimental Research Unit, General University Hospital of Albacete, Albacete, Spain
| |
Collapse
|
47
|
Shokolenko IN, Wilson GL, Alexeyev MF. Persistent damage induces mitochondrial DNA degradation. DNA Repair (Amst) 2013; 12:488-99. [PMID: 23721969 PMCID: PMC3683391 DOI: 10.1016/j.dnarep.2013.04.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/22/2013] [Indexed: 01/12/2023]
Abstract
Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.
Collapse
Affiliation(s)
- Inna N. Shokolenko
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688. Tel (251) 460-6772, Fax (251) 460-6771
| | - Glenn L. Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688. Tel (251) 460-6765, Fax (251) 460-6771
| | - Mikhail F. Alexeyev
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL (USA) 36688
| |
Collapse
|
48
|
Abstract
A plethora of somatic mutations and germline variations in mitochondrial DNA (mtDNA) have been increasingly reported in numerous cancer entities including osteosarcoma. However, it remains largely unclear whether mtDNA copy number changes occur during the multistep process of osteosarcoma carcinogenesis. For this purpose, we determined quantitative mtDNA levels in 31 primary osteosarcoma specimens and 5 normal bone tissue samples using a real-time polymerase chain reaction assay. Our data showed that the average mtDNA amount was significantly reduced in osteosarcoma tissues compared with normal bone controls. The copy number of mtDNA was statistically associated with tumor metastasis. There was an approximately 2-fold decrease of mtDNA quantity in tumors with metastasis than that in low-grade tumors without metastasis. Furthermore, change in mtDNA content was linked with somatic mutations in the D-loop regulatory region. Tumors carrying somatic D-loop mutations, at the polycytidine stretch between nucleotide positions 303 and 309 or close to the replication origin sites of the heavy strand, had significantly lowered mtDNA levels in comparison with those without mutations. Taken together, these results provide evidence for the first time that reduced mtDNA content may be critically implicated in the development and/or progression of osteosarcoma. Somatic D-loop mutation is likely one key factor among others leading to altered mtDNA amount in osteosarcoma.
Collapse
Affiliation(s)
- Man Yu
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, ON, Canada M5G 2M9.
| | | | | |
Collapse
|
49
|
Yu M, Wan Y, Zou Q. Somatic mitochondrial DNA mutations in Chinese patients with osteosarcoma. Int J Exp Pathol 2013; 94:126-32. [PMID: 23441585 DOI: 10.1111/iep.12015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022] Open
Abstract
Somatic mutations in mitochondrial DNA (mtDNA) have been long proposed to drive the pathogenesis and progression of human malignancies. Previous investigations have revealed a high frequency of somatic mutations in the D-loop control region of mtDNA in osteosarcoma. However, little is known with regard to whether or not somatic mutations also occur in the coding regions of mtDNA in osteosarcoma. To test this possibility, in the present study we screened somatic mutations over the full-length mitochondrial genome of 31 osteosarcoma tumour tissue samples, and corresponding peripheral blood samples from the same cohort of patients. We detected a sum of 11 somatic mutations in the mtDNA coding regions in our series. Nine of them were missense or frameshift mutations that have the potential to hamper mitochondrial respiratory function. In combination with our earlier observations on the D-loop fragment, 71.0% (22/31) of patients with osteosarcoma carried at least one somatic mtDNA mutation, and a total of 40 somatic mutations were identified. Amongst them, 29 (72.5%) were located in the D-loop region, two (5%) were in the sequences of the tRNA genes, two (5%) were in the mitochondrial ATP synthase subunit 6 gene and seven (17.5%) occurred in genes encoding components of the mitochondrial respiratory complexes. In addition, somatic mtDNA mutation was not closely associated with the clinicopathological characteristics of osteosarcoma. Together, these findings suggest that somatic mutations are highly prevalent events in both coding and non-coding regions of mtDNA in osteosarcoma. Some missense and frameshift mutations are putatively harmful to proper mitochondrial activity and might play vital roles in osteosarcoma carcinogenesis.
Collapse
Affiliation(s)
- Man Yu
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network and University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
50
|
Cornett EM, O’Steen MR, Kolpashchikov DM. Operating Cooperatively (OC) sensor for highly specific recognition of nucleic acids. PLoS One 2013; 8:e55919. [PMID: 23441157 PMCID: PMC3575382 DOI: 10.1371/journal.pone.0055919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
Molecular Beacon (MB) probes have been extensively used for nucleic acid analysis because of their ability to produce fluorescent signal in solution instantly after hybridization. The indirect binding of MB probe to a target analyte offers several advantages, including: improved genotyping accuracy and the possibility to analyse folded nucleic acids. Here we report on a new design for MB-based sensor, called ‘Operating Cooperatively’ (OC), which takes advantage of indirect binding of MB probe to a target analyte. The sensor consists of two unmodified DNA strands, which hybridize to a universal MB probe and a nucleic acid analyte to form a fluorescent complex. OC sensors were designed to analyze two human SNPs and E.coli 16S rRNA. High specificity of the approach was demonstrated by the detection of true analyte in over 100 times excess amount of single base substituted analytes. Taking into account the flexibility in the design and the simplicity in optimization, we conclude that OC sensors may become versatile and efficient tools for instant DNA and RNA analysis in homogeneous solution.
Collapse
Affiliation(s)
- Evan M. Cornett
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Martin R. O’Steen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Dmitry M. Kolpashchikov
- Chemistry Department, College of Sciences, University of Central Florida, Orlando, Florida, United States of America
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|