1
|
Kongari R, Ray MD, Lehman SM, Plaut RD, Hinton DM, Stibitz S. The Transcriptional Program of Staphylococcus aureus Phage K Is Affected by a Host rpoC Mutation That Confers Phage K Resistance. Viruses 2024; 16:1773. [PMID: 39599887 PMCID: PMC11598898 DOI: 10.3390/v16111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
To better understand host-phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase β' subunit. To examine the hypothesis that mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoCG17D mutant cultures infected with phage K, at different timepoints after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define 53 transcriptional units and to categorize genes based on their temporal expression patterns. Predicted promoter sequences defined by conserved -35, -10, and, in some cases, extended -10 elements, were found upstream of early and middle genes. However, in many cases, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their expression. Infection of the rpoCG17D mutant host led to a transcriptional pattern that was similar to that of the WT at early timepoints. However, beginning at 20 min after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, this study will inform our investigations into the basis of phage K's control of its transcriptional program as well as mechanisms of phage resistance.
Collapse
Affiliation(s)
- Rohit Kongari
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Melissa D. Ray
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Roger D. Plaut
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
2
|
Kornienko M, Bespiatykh D, Gorodnichev R, Abdraimova N, Shitikov E. Transcriptional Landscapes of Herelleviridae Bacteriophages and Staphylococcus aureus during Phage Infection: An Overview. Viruses 2023; 15:1427. [PMID: 37515114 PMCID: PMC10383478 DOI: 10.3390/v15071427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.
Collapse
Affiliation(s)
- Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Narina Abdraimova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow 119435, Russia
| |
Collapse
|
3
|
Staphylococcus aureus Prophage-Encoded Protein Causes Abortive Infection and Provides Population Immunity against Kayviruses. mBio 2023; 14:e0249022. [PMID: 36779718 PMCID: PMC10127798 DOI: 10.1128/mbio.02490-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.
Collapse
|
4
|
Leprince A, Mahillon J. Phage Adsorption to Gram-Positive Bacteria. Viruses 2023; 15:196. [PMID: 36680236 PMCID: PMC9863714 DOI: 10.3390/v15010196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The phage life cycle is a multi-stage process initiated by the recognition and attachment of the virus to its bacterial host. This adsorption step depends on the specific interaction between bacterial structures acting as receptors and viral proteins called Receptor Binding Proteins (RBP). The adsorption process is essential as it is the first determinant of phage host range and a sine qua non condition for the subsequent conduct of the life cycle. In phages belonging to the Caudoviricetes class, the capsid is attached to a tail, which is the central player in the adsorption as it comprises the RBP and accessory proteins facilitating phage binding and cell wall penetration prior to genome injection. The nature of the viral proteins involved in host adhesion not only depends on the phage morphology (i.e., myovirus, siphovirus, or podovirus) but also the targeted host. Here, we give an overview of the adsorption process and compile the available information on the type of receptors that can be recognized and the viral proteins taking part in the process, with the primary focus on phages infecting Gram-positive bacteria.
Collapse
|
5
|
Finstrlová A, Mašlaňová I, Blasdel Reuter BG, Doškař J, Götz F, Pantůček R. Global Transcriptomic Analysis of Bacteriophage-Host Interactions between a Kayvirus Therapeutic Phage and Staphylococcus aureus. Microbiol Spectr 2022; 10:e0012322. [PMID: 35435752 PMCID: PMC9241854 DOI: 10.1128/spectrum.00123-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.
Collapse
Affiliation(s)
- Adéla Finstrlová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Hernandez Santos H, Clark J, Terwilliger A, Maresso A. Discovery of the First Lytic Staphylococcus pseudintermedius/ Staphylococcus aureus Polyvalent Bacteriophages. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:116-124. [PMID: 36157281 PMCID: PMC9248872 DOI: 10.1089/phage.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Background There are no verified lytic Staphylococcus pseudintermedius phages in the literature and few temperate phage genomes in databases. S. pseudintermedius is an opportunistic zoonotic pathogen of great importance in veterinary and human medicine. Materials and Methods We discovered phages against canine-derived S. pseudintermedius isolates by screening dog feces, hair, and skin swabs. Fourteen new phages were isolated and characterized by genomic analysis, transmission electron microscopy, and host range determination. Results Three phages-DH2, DH5, and DS10, a phage K variant-were predicted lytic by sequencing, a designation supported by mitomycin C induction. All three are S. pseudintermedius and Staphylococcus aureus polyvalent phages, with DH2 and DS10 being strong killers of both species. Conclusions We report discovery of the first verified lytic S. pseudintermedius phages and suggest dog hair as a novel reservoir. DH2, DH5, and DS10 are promising candidates toward developing an anti-Staphylococcal phage cocktail.
Collapse
Affiliation(s)
- Haroldo Hernandez Santos
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Justin Clark
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Austen Terwilliger
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
- Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Arroyo-Moreno S, Buttimer C, Bottacini F, Chanishvili N, Ross P, Hill C, Coffey A. Insights into Gene Transcriptional Regulation of Kayvirus Bacteriophages Obtained from Therapeutic Mixtures. Viruses 2022; 14:v14030626. [PMID: 35337034 PMCID: PMC8952766 DOI: 10.3390/v14030626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriophages (phages) of the genus Kayvirus of Staphylococcus aureus are promising agents for therapeutic applications. In this study, we isolated Kayvirus phages, SAM1 and SAM2, from the Fersisi commercial phage cocktail (George Eliava Institute, Tbilisi, Georgia), which exhibits high sequence homology with phage K (≥94%, BLASTn). We found that phages SAM1 and SAM2 infected 95% and 86% of 21 MRSA of differing sequence types (MLST, SCCmec type) obtained from the Irish National MRSA collection, respectively. We conducted differential transcriptomic analysis by RNA-Seq on phage SAM1 during host infection, showing differential expression of its genes at different points during host infection. This analysis also allowed the identification of potentially adverse outcomes in the application of these phages to target MRSA as therapy. The interaction of phage SAM1 on the host caused the upregulation of prophage genes. Additionally, phage infection was found to cause the slight upregulation of host genes implicated in virulence factors relating to hemolysins, immune evasion, and adhesion, but also the downregulation of genes associated with enterotoxins. The findings of this study give further insights into the biology of kayviruses and their use as therapeutics.
Collapse
Affiliation(s)
- Sara Arroyo-Moreno
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
| | - Nina Chanishvili
- George Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi 0160, Georgia;
| | - Paul Ross
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
| | - Colin Hill
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (S.A.-M.); (F.B.)
- APC Microbiome Ireland, University College, T12 YT20 Cork, Ireland; (C.B.); (P.R.); (C.H.)
- Correspondence:
| |
Collapse
|
8
|
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, Amri N, Khatchatourova E, Coutinho FH, Loessner MJ, Gómez-Sanz E. Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 2021; 12:6965. [PMID: 34845206 PMCID: PMC8629997 DOI: 10.1038/s41467-021-27037-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
The host range of bacteriophages defines their impact on bacterial communities and genome diversity. Here, we characterize 94 novel staphylococcal phages from wastewater and establish their host range on a diversified panel of 117 staphylococci from 29 species. Using this high-resolution phage-bacteria interaction matrix, we unveil a multi-species host range as a dominant trait of the isolated staphylococcal phages. Phage genome sequencing shows this pattern to prevail irrespective of taxonomy. Network analysis between phage-infected bacteria reveals that hosts from multiple species, ecosystems, and drug-resistance phenotypes share numerous phages. Lastly, we show that phages throughout this network can package foreign genetic material enclosing an antibiotic resistance marker at various frequencies. Our findings indicate a weak host specialism of the tested phages, and therefore their potential to promote horizontal gene transfer in this environment.
Collapse
Affiliation(s)
- Pauline C. Göller
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Tabea Elsener
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Dominic Lorgé
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Natasa Radulovic
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Viona Bernardi
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Annika Naumann
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Nesrine Amri
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Ekaterina Khatchatourova
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Felipe Hernandes Coutinho
- grid.26811.3c0000 0001 0586 4893Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J. Loessner
- grid.5801.c0000 0001 2156 2780Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland. .,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain.
| |
Collapse
|
9
|
Ning H, Lin H, Wang J, He X, Lv X, Ju L. Characterizations of the endolysin Lys84 and its domains from phage qdsa002 with high activities against Staphylococcus aureus and its biofilms. Enzyme Microb Technol 2021; 148:109809. [PMID: 34116743 DOI: 10.1016/j.enzmictec.2021.109809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus (S. aureus), particularly methicillin-resistant S. aureus (MRSA), and its biofilms are great threats in the food industry. Bacteriophage-encoded endolysins are promising tools to inhibit pathogens and to eliminate their biofilms. In this work, a virulent phage qdsa002 against S. aureus ATCC43300 (MRSA) was isolated, and the phage's endolysin (Lys84) and its domains were expressed and purified. Morphological and genome analyses demonstrated that qdsa002 is a Twort-like phage from Myoviridae. Lys84 contains two catalytic domains (CHAP and Amidase_2) and one cell binding domain (SH3b). This endolysin exhibits a strong lytic activity against S. aureus and has a wider bactericidal spectrum than qdsa002. Moreover, Lys84 exceed 10 μM effectively removed around 90 % of the biofilms of S. aureus. Besides, CHAP and Amidase_2 domains remained 61.20 % and 59.46 % of lytic activity as well as 84.31 % and 70.11 % of anti-biofilm activity of Lys84, respectively. The lytic and anti-biofilm activities of the combination of CHAP and Amidase_2 were close to 90 % of those of Lys84. These results indicated that Lys84 and its domains might be alternative antimicrobials for controlling S. aureus and its biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Xuebing He
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Xiaoqian Lv
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Lei Ju
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| |
Collapse
|
10
|
Comparative Genomics of Three Novel Jumbo Bacteriophages Infecting Staphylococcus aureus. J Virol 2021; 95:e0239120. [PMID: 34287047 DOI: 10.1128/jvi.02391-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus "jumbo" phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus, including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.
Collapse
|
11
|
Synergy between Phage Sb-1 and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10070849. [PMID: 34356770 PMCID: PMC8300854 DOI: 10.3390/antibiotics10070849] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious pathogen responsible for not only a number of difficult-to-treat hospital-acquired infections, but also for infections that are community- or livestock-acquired. The increasing lack of efficient antibiotics has renewed the interest in lytic bacteriophages (briefly phages) as additional antimicrobials against multi-drug resistant bacteria, including MRSA. The aim of this study was to test the hypothesis that a combination of the well-known and strictly lytic S. aureus phage Sb-1 and oxacillin, which as sole agent is ineffective against MRSA, exerts a significantly stronger bacterial reduction than either antimicrobial alone. Eighteen different MRSA isolates and, for comparison, five MSSA and four reference strains were included in this study. The bacteria were challenged with a combination of varying dosages of the phage and the antibiotic in liquid medium using five different antibiotic levels and four different viral titers (i.e., multiplicity of infections (MOIs) ranging from 10-5 to 10). The dynamics of the cell density changes were determined via time-kill assays over 16 h. Positive interactions between both antimicrobials in the form of facilitation, additive effects, or synergism were observed for most S. aureus isolates. These enhanced antibacterial effects were robust with phage MOIs of 10-1 and 10 irrespective of the antibiotic concentrations, ranging from 5 to 100 µg/mL. Neutral effects between both antimicrobials were seen only with few isolates. Importantly, antagonism was a rare exception. As a conclusion, phage Sb-1 and oxacillin constitute a robust heterologous antimicrobial pair which extends the efficacy of a phage-only approach for controlling MRSA.
Collapse
|
12
|
Whittard E, Redfern J, Xia G, Millard A, Ragupathy R, Malic S, Enright MC. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:698909. [PMID: 34295840 PMCID: PMC8290860 DOI: 10.3389/fcimb.2021.698909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phage therapy recently passed a key milestone with success of the first regulated clinical trial using systemic administration. In this single-arm non-comparative safety study, phages were administered intravenously to patients with invasive Staphylococcus aureus infections with no adverse reactions reported. Here, we examined features of 78 lytic S. aureus phages, most of which were propagated using a S. carnosus host modified to be broadly susceptible to staphylococcal phage infection. Use of this host eliminates the threat of contamination with staphylococcal prophage - the main vector of S. aureus horizontal gene transfer. We determined the host range of these phages against an international collection of 185 S. aureus isolates with 56 different multilocus sequence types that included multiple representatives of all epidemic MRSA and MSSA clonal complexes. Forty of our 78 phages were able to infect > 90% of study isolates, 15 were able to infect > 95%, and two could infect all 184 clinical isolates, but not a phage-resistant mutant generated in a previous study. We selected the 10 phages with the widest host range for in vitro characterization by planktonic culture time-kill analysis against four isolates:- modified S. carnosus strain TM300H, methicillin-sensitive isolates D329 and 15981, and MRSA isolate 252. Six of these 10 phages were able to rapidly kill, reducing cell numbers of at least three isolates. The four best-performing phages, in this assay, were further shown to be highly effective in reducing 48 h biofilms on polystyrene formed by eight ST22 and eight ST36 MRSA isolates. Genomes of 22 of the widest host-range phages showed they belonged to the Twortvirinae subfamily of the order Caudovirales in three main groups corresponding to Silviavirus, and two distinct groups of Kayvirus. These genomes assembled as single-linear dsDNAs with an average length of 140 kb and a GC content of c. 30%. Phages that could infect > 96% of S. aureus isolates were found in all three groups, and these have great potential as therapeutic candidates if, in future studies, they can be formulated to maximize their efficacy and eliminate emergence of phage resistance by using appropriate combinations.
Collapse
Affiliation(s)
- Elliot Whittard
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - James Redfern
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Guoqing Xia
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Roobinidevi Ragupathy
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Sladjana Malic
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Kaźmierczak Z, Majewska J, Miernikiewicz P, Międzybrodzki R, Nowak S, Harhala M, Lecion D, Kęska W, Owczarek B, Ciekot J, Drab M, Kędzierski P, Mazurkiewicz-Kania M, Górski A, Dąbrowska K. Immune Response to Therapeutic Staphylococcal Bacteriophages in Mammals: Kinetics of Induction, Immunogenic Structural Proteins, Natural and Induced Antibodies. Front Immunol 2021; 12:639570. [PMID: 34194425 PMCID: PMC8236893 DOI: 10.3389/fimmu.2021.639570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/14/2021] [Indexed: 01/12/2023] Open
Abstract
Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Research and Development Center, Regional Specialist Hospital, Wroclaw, Poland
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paulina Miernikiewicz
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Nowak
- Laboratory of Microscopic Techniques, University of Wroclaw, Wroclaw, Poland
| | - Marek Harhala
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Lecion
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Weronika Kęska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jarosław Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marek Drab
- Unit of Nano-Structural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Paweł Kędzierski
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
14
|
Feng T, Leptihn S, Dong K, Loh B, Zhang Y, Stefan MI, Li M, Guo X, Cui Z. JD419, a Staphylococcus aureus Phage With a Unique Morphology and Broad Host Range. Front Microbiol 2021; 12:602902. [PMID: 33967969 PMCID: PMC8100676 DOI: 10.3389/fmicb.2021.602902] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Phage therapy represents a possible treatment option to cure infections caused by multidrug-resistant bacteria, including methicillin and vancomycin-resistant Staphylococcus aureus, to which most antibiotics have become ineffective. In the present study, we report the isolation and complete characterization of a novel phage named JD219 exhibiting a broad host range able to infect 61 of 138 clinical strains of S. aureus tested, which included MRSA strains as well. The phage JD419 exhibits a unique morphology with an elongated capsid and a flexible tail. To evaluate the potential of JD419 to be used as a therapeutic phage, we tested the ability of the phage particles to remain infectious after treatment exceeding physiological pH or temperature. The activity was retained at pH values of 6.0–8.0 and below 50°C. As phages can contain virulence genes, JD419’s complete genome was sequenced. The 45509 bp genome is predicted to contain 65 ORFs, none of which show homology to any known virulence or antibiotic resistance genes. Genome analysis indicates that JD419 is a temperate phage, despite observing rapid replication and lysis of host strains. Following the recent advances in synthetic biology, JD419 can be modified by gene engineering to remove prophage-related genes, preventing potential lysogeny, in order to be deployed as a therapeutic phage.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China
| | - Ke Dong
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China
| | - Yan Zhang
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Melanie I Stefan
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE), Zhejiang University, Haining, China.,Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaokui Guo
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
16
|
Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 2021; 592:611-615. [PMID: 33828299 DOI: 10.1038/s41586-021-03440-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.
Collapse
|
17
|
Shimamori Y, Pramono AK, Kitao T, Suzuki T, Aizawa SI, Kubori T, Nagai H, Takeda S, Ando H. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol 2021; 78:1267-1276. [PMID: 33638001 PMCID: PMC7997843 DOI: 10.1007/s00284-021-02395-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.
Collapse
Affiliation(s)
- Yuzuki Shimamori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ajeng K Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tohru Suzuki
- Genome Microbiology Laboratory, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Shin-Ichi Aizawa
- Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Shigeki Takeda
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| |
Collapse
|
18
|
Isolation of a Novel Lytic Bacteriophage against a Nosocomial Methicillin-Resistant Staphylococcus aureus Belonging to ST45. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5463801. [PMID: 33426055 PMCID: PMC7773469 DOI: 10.1155/2020/5463801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) can cause a wide range of infections from mild to life-threatening conditions. Its enhanced antibiotic resistance often leads to therapeutic failures and therefore alternative eradication methods must be considered. Potential candidates to control MRSA infections are bacteriophages and their lytic enzymes, lysins. In this study, we isolated a bacteriophage against a nosocomial MRSA strain belonging to the ST45 epidemiologic group. The phage belonging to Caudovirales, Siphoviridae, showed a narrow host range and stable lytic activity without the emergence of resistant MRSA clones. Phylogenetic analysis showed that the newly isolated Staphylococcus phage R4 belongs to the Triavirus genus in Siphoviridae family. Genetic analysis of the 45 kb sequence of R4 revealed 69 ORFs. No remnants of mobile genetic elements and traces of truncated genes were observed. We have localized the lysin (N-acetylmuramoyl-L-alanine amidase) gene of the new phage that was amplified, cloned, expressed, and purified. Its activity was verified by zymogram analysis. Our findings could potentially be used to develop specific anti-MRSA bacteriophage- and phage lysin-based therapeutic strategies against major clonal lineages and serotypes.
Collapse
|
19
|
Kornienko M, Fisunov G, Bespiatykh D, Kuptsov N, Gorodnichev R, Klimina K, Kulikov E, Ilina E, Letarov A, Shitikov E. Transcriptional Landscape of Staphylococcus aureus Kayvirus Bacteriophage vB_SauM-515A1. Viruses 2020; 12:E1320. [PMID: 33213043 PMCID: PMC7698491 DOI: 10.3390/v12111320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Twort-like myoviruses (Kayvirus genus) of S. aureus are promising agents for bacteriophage therapy due to a broad host range and high killing activity against clinical isolates. This work improves the current understanding of the phage infection physiology by transcriptome analysis. The expression profiles of a typical member of the Kayvirus genus (vB_SauM-515A1) were obtained at three time-points post-infection using RNA sequencing. A total of 35 transcription units comprising 238 ORFs were established. The sequences for 58 early and 12 late promoters were identified in the phage genome. The early promoters represent the strong sigma-70 promoters consensus sequence and control the host-dependent expression of 26 transcription units (81% of genes). The late promoters exclusively controlled the expression of four transcription units, while the transcription of the other five units was directed by both types of promoters. The characteristic features of late promoters were long -10 box of TGTTATATTA consensus sequence and the absence of -35 boxes. The data obtained are also of general interest, demonstrating a strategy of the phage genome expression with a broad overlap of the early and late transcription phases without any middle transcription, which is unusual for the large phage genomes (>100 kbp).
Collapse
Affiliation(s)
- Maria Kornienko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Gleb Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Dmitry Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Nikita Kuptsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Roman Gorodnichev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Ksenia Klimina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Eugene Kulikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia; (E.K.); (A.L.)
| | - Elena Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| | - Andrey Letarov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia; (E.K.); (A.L.)
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (G.F.); (D.B.); (N.K.); (R.G.); (K.K.); (E.I.); (E.S.)
| |
Collapse
|
20
|
Kornienko M, Kuptsov N, Gorodnichev R, Bespiatykh D, Guliaev A, Letarova M, Kulikov E, Veselovsky V, Malakhova M, Letarov A, Ilina E, Shitikov E. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep 2020; 10:18612. [PMID: 33122703 PMCID: PMC7596081 DOI: 10.1038/s41598-020-75637-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteriophage therapy is considered one of the most promising therapeutic approaches against multi-drug resistant bacterial infections. Infections caused by Staphylococcus aureus are very efficiently controlled with therapeutic bacteriophage cocktails, containing a number of individual phages infecting a majority of known pathogenic S. aureus strains. We assessed the contribution of individual bacteriophages comprising a therapeutic bacteriophage cocktail against S. aureus in order to optimize its composition. Two lytic bacteriophages vB_SauM-515A1 (Myoviridae) and vB_SauP-436A (Podoviridae) were isolated from the commercial therapeutic cocktail produced by Microgen (Russia). Host ranges of the phages were established on the panel of 75 S. aureus strains. Phage vB_SauM-515A1 lysed 85.3% and vB_SauP-436A lysed 68.0% of the strains, however, vB_SauP-436A was active against four strains resistant to vB_SauM-515A1, as well as to the therapeutic cocktail per se. Suboptimal results of the therapeutic cocktail application were due to extremely low vB_SauP-436A1 content in this composition. Optimization of the phage titers led to an increase in overall cocktail efficiency. Thus, one of the effective ways to optimize the phage cocktails design was demonstrated and realized by using bacteriophages of different families and lytic spectra.
Collapse
Affiliation(s)
- Maria Kornienko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.
| | - Nikita Kuptsov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Roman Gorodnichev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Dmitry Bespiatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Andrei Guliaev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maria Letarova
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Eugene Kulikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Vladimir Veselovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maya Malakhova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Andrey Letarov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Elena Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Egor Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
21
|
Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics (Basel) 2020; 9:antibiotics9080447. [PMID: 32722499 PMCID: PMC7460284 DOI: 10.3390/antibiotics9080447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a prevalent nosocomial pathogen, causing a wide range of diseases. The increased frequency of MRSA isolates in hospitals and the emergence of vancomycin resistance have sparked the search for new control strategies. This study aimed to characterize sixty-seven MRSA isolates collected from both infected patients and asymptomatic carriers in a Spanish hospital. RAPD-PCR allowed the identification of six genetic patterns. We also investigated the presence of genes involved in producing adhesins, toxins and the capsule; the biofilm; and antimicrobial resistance. A notable percentage of the isolates carried virulence genes and showed medium-high ability to form biofilms. Next, we assessed the strains' susceptibility to two phages (phiIPLA-C1C and phiIPLA-RODI) and one endolysin (LysRODI). All strains were resistant to phiIPLA-C1C, and most (70.2%) were susceptible to phiIPLA-RODI. Regarding LysRODI, all strains displayed susceptibility, although to varying degrees. There was a correlation between endolysin susceptibility and the random amplification of polymorphic DNA (RAPD) profile or the presence of some virulence genes (fnbA, eta, etb, PVL and czr), but that was not observed with biofilm-forming ability, strain origin or phage sensitivity. Taken together, these findings can help to explain the factors influencing endolysin effectiveness, which will contribute to the development of efficient therapies targeting MRSA infections.
Collapse
|
22
|
Complete Genome Sequence of Broad-Host-Range Staphylococcus aureus Myophage ESa1. Microbiol Resour Announc 2020; 9:9/30/e00730-20. [PMID: 32703841 PMCID: PMC7378040 DOI: 10.1128/mra.00730-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A potentially therapeutic Twort-like myophage, Esa1, with specificity toward Staphylococcus aureus was isolated from lake water. We report the complete genome sequence of ESa1, assembled using both MinION and Illumina MiSeq reads, consisting of 153,106 bp, with 30.3% GC content, 253 protein coding sequences, 4 tRNAs, and 10,437-bp direct terminal repeats. A potentially therapeutic Twort-like myophage, Esa1, with specificity toward Staphylococcus aureus was isolated from lake water. We report the complete genome sequence of ESa1, assembled using both MinION and Illumina MiSeq reads, consisting of 153,106 bp, with 30.3% GC content, 253 protein coding sequences, 4 tRNAs, and 10,437-bp direct terminal repeats.
Collapse
|
23
|
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020; 9:E673. [PMID: 32456227 PMCID: PMC7278617 DOI: 10.3390/foods9050673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Naglaa F. Abd El Haliem
- Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| |
Collapse
|
24
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
25
|
A Kayvirus Distant Homolog of Staphylococcal Virulence Determinants and VISA Biomarker Is a Phage Lytic Enzyme. Viruses 2020; 12:v12030292. [PMID: 32156046 PMCID: PMC7150955 DOI: 10.3390/v12030292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Staphylococcal bacteriophages of the Kayvirus genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD. It causes lysis of E. coli cells expressing the cloned tgl gene, but could be overproduced when depleted of signal peptide. S. aureus cells producing Tgl lysed in the presence of nisin, which mimics the action of phage holin. In vitro, Tgl protein was able to destroy S. aureus cell walls. The production of Tgl decreased S. aureus tolerance to vancomycin, unlike the production of SceD, which is associated with decreased sensitivity to vancomycin. In the genomes of kayviruses, the tgl gene is located a few genes away from the lysK gene, encoding the major endolysin. While lysK is a late phage gene, tgl can be transcribed by a host RNA polymerase, like phage early genes. Taken together, our data indicate that tgl belongs to the kayvirus lytic module and encodes an additional endolysin that can act in concert with LysK in cell lysis.
Collapse
|
26
|
Bhardwaj SB, Mehta M, Sood S, Sharma J. Isolation of a Novel Phage and Targeting Biofilms of Drug-Resistant Oral Enterococci. J Glob Infect Dis 2020; 12:11-15. [PMID: 32165796 PMCID: PMC7045759 DOI: 10.4103/jgid.jgid_110_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Enterococci are now recognized as the second most cause of nosocomial infections worldwide. The emergence of multidrug-resistant strains in the organism has given rise to alternative strategies such as phage therapy. In this study, an Enterococcus faecalis infecting phage was isolated and its efficiency against biofilms formed by drug-resistant enterococci obtained from chronic periodontitis was evaluated. MATERIALS AND METHODS Bacteriophage against E. faecalis was isolated from sewage sample. The phage was propagated and identified using transmission electron microscope (TEM). In vitro biofilm formation was assessed. RESULTS TEM microscopy showed that the phage belonged to Siphoviridae family. In the presence of the novel phage, the metabolic activity of enterococci biofilm was reduced at 48 h of contact. A difference of at least 5 log CFU/ml was seen in the live cells of the control biofilm, and the phage treated biofilm of enterococci isolates. CONCLUSION The study shows that the novel phage inhibits biofilm production in oral enterococci isolates from periodontitis patients but has a narrow host range. The role of bacteriophages as strong biotechnological and natural therapeutic agents for E. faecalis in chronic periodontitis can be considered.
Collapse
Affiliation(s)
- Sonia Bhonchal Bhardwaj
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Manjula Mehta
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Shaveta Sood
- Department of Periodontics, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| | - Jyoti Sharma
- Departments of Microbiology, Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Majewska J, Kaźmierczak Z, Lahutta K, Lecion D, Szymczak A, Miernikiewicz P, Drapała J, Harhala M, Marek-Bukowiec K, Jędruchniewicz N, Owczarek B, Górski A, Dąbrowska K. Induction of Phage-Specific Antibodies by Two Therapeutic Staphylococcal Bacteriophages Administered per os. Front Immunol 2019; 10:2607. [PMID: 31803179 PMCID: PMC6871536 DOI: 10.3389/fimmu.2019.02607] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023] Open
Abstract
In therapeutic phage applications oral administration is a common and well-accepted delivery route. Phages applied per os may elicit a specific humoral response, which may in turn affect phage activity. We present specific anti-phage antibody induction in mice receiving therapeutic staphylococcal bacteriophage A3R or 676Z in drinking water. The schedule comprised: (1) primary exposure to phages for 100 days, followed by (2) diet without phage for 120 days, and (3) secondary exposure to the same phage for 44 days. Both phages induced specific antibodies in blood (IgM, IgG, IgA), even though poor to ineffective translocation of the phages to blood was observed. IgM reached a maximum on day 22, IgG increased from day 22 until the end of the experiment. Specific IgA in the blood and in the gut were induced simultaneously within about 2 months; the IgA level gradually decreased when phage was removed from the diet. Importantly, phage-specific IgA was the limiting factor for phage activity in the gastrointestinal tract. Multicopy proteins (major capsid protein and tail morphogenetic protein H) contributed significantly to phage immunogenicity (IgG), while the baseplate protein gpORF096 did not induce a significant response. Microbiome composition assessment by next-generation sequencing (NGS) revealed that no important changes correlated with phage treatment.
Collapse
Affiliation(s)
- Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Karolina Lahutta
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dorota Lecion
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jarosław Drapała
- Faculty of Computer Science and Management, Wrocław University of Science and Technology, Wrocław, Poland
| | - Marek Harhala
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Natalia Jędruchniewicz
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Barbara Owczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
28
|
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl Environ Microbiol 2019; 85:AEM.01209-19. [PMID: 31492663 DOI: 10.1128/aem.01209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococci are frequent agents of health care-associated infections and include methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to first-line antibiotic treatments. Bacteriophage (phage) therapy is a promising alternative antibacterial option to treat MRSA infections. S. aureus-specific phage Sb-1 has been widely used in Georgia to treat a variety of human S. aureus infections. Sb-1 has a broad host range within S. aureus, including MRSA strains, and its host range can be further expanded by adaptation to previously resistant clinical isolates. The susceptibilities of a panel of 25 genetically diverse clinical MRSA isolates to Sb-1 phage were tested, and the phage had lytic activity against 23 strains (92%). The adapted phage stock (designated Sb-1A) was tested in comparison with the parental phage (designated Sb-1P). Sb-1P had lytic activity against 78/90 strains (87%) in an expanded panel of diverse global S. aureus isolates, while eight additional strains in this panel were susceptible to Sb-1A (lytic against 86/90 strains [96%]). The Sb-1A stock was shown to be a mixed population of phage clones, including approximately 4% expanded host range mutants, designated Sb-1M. In an effort to better understand the genetic basis for this host range expansion, we sequenced the complete genomes of the parental Sb-1P and two Sb-1M mutants. Comparative genomic analysis revealed a hypervariable complex repeat structure in the Sb-1 genome that had a distinct allele that correlated with the host range expansion. This hypervariable region was previously uncharacterized in Twort-like phages and represents a novel putative host range determinant.IMPORTANCE Because of limited therapeutic options, infections caused by methicillin-resistant Staphylococcus aureus represent a serious problem in both civilian and military health care settings. Phages have potential as alternative antibacterial agents that can be used in combination with antibiotic drugs. For decades, phage Sb-1 has been used in former Soviet Union countries for antistaphylococcal treatment in humans. The therapeutic spectrum of activity of Sb-1 can be increased by selecting mutants of the phage with expanded host ranges. In this work, the host range of phage Sb-1 was expanded in the laboratory, and a hypervariable region in its genome was identified with a distinct allele state that correlated with this host range expansion. These results provide a genetic basis for better understanding the mechanisms of phage host range expansion.
Collapse
|
29
|
Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019; 7:microorganisms7100471. [PMID: 31635437 PMCID: PMC6843549 DOI: 10.3390/microorganisms7100471] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022] Open
Abstract
The development of antimicrobial resistance has become a global concern. One approach to overcome the problem of drug resistance is the application of bacteriophages. This study aimed at characterizing three phages isolated from sewage, which show lytic activity against clinical isolates of multidrug-resistant Staphylococcus aureus. Morphology, genetics and biological properties, including host range, adsorption rate, latent time, phage burst size and lysis profiles, were studied in all three phages. As analyzed by transmission electron microscopy (TEM), phages vB_SauM-A, vB_SauM-C, vB_SauM-D have a myovirion morphology. One of the tested phages, vB_SauM-A, has relatively rapid adsorption (86% in 17.5 min), short latent period (25 min) and extremely large burst size (~500 plaque-forming units (PFU) per infected cell). The genomic analysis revealed that vB_SauM-A, vB_SauM-C, vB_SauM-D possess large genomes (vB_SauM-A 139,031 bp, vB_SauM-C 140,086 bp, vB_SauM-D 139,088 bp) with low G+C content (~30.4%) and are very closely related to the phage K (95-97% similarity). The isolated bacteriophages demonstrate broad host range against MDR S. aureus strains, high lytic activity corresponding to strictly virulent life cycle, suggesting their potential to treat S. aureus infections.
Collapse
|
30
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Borysowski J, Przybylski M, Międzybrodzki R, Owczarek B, Górski A. The effects of bacteriophages on the expression of genes involved in antimicrobial immunity*. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.4081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Bacteriophages (viruses of bacteria) are used in the treatment of antibiotic‑resistant infections. Moreover, they are an important component of the mucosal microbiota. The objective of this study was to investigate the effects of T4 and A5/80 bacteriophages on the expression of genes involved in antimicrobial immunity, including Toll‑like receptors.
Material/Methods: The expression of genes was determined in the A549 cell line using RT2 Profiler PCR Array.
Results: Purified T4 and A5/80 phage preparations significantly affected the expression of 7 and 10 out of 84 examined genes, respectively.
Discussion: Our results are important for phage therapy of bacterial infections and provide novel insights into the role of phages from the mucosal microbiota. They may also lead to novel applications of phages as antiviral and immunomodulatory agents.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Przybylski
- Department of Medical Microbiology, Medical University of Warsaw, Poland
| | | | - Barbara Owczarek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Azam AH, Kadoi K, Miyanaga K, Usui M, Tamura Y, Cui L, Tanji Y. Analysis host-recognition mechanism of staphylococcal kayvirus ɸSA039 reveals a novel strategy that protects Staphylococcus aureus against infection by Staphylococcus pseudintermedius Siphoviridae phages. Appl Microbiol Biotechnol 2019; 103:6809-6823. [PMID: 31236618 DOI: 10.1007/s00253-019-09940-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
Following the emergence of antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP), phage therapy has attracted significant attention as an alternative to antibiotic treatment. Bacteriophages belonging to kayvirus (previously known as Twort-like phages) have broad host range and are strictly lytic in Staphylococcus spp. Previous work revealed that kayvirus ɸSA039 has a host-recognition mechanism distinct from those of other known kayviruses: most of kayviruses use the backbone of wall teichoic acid (WTA) as their receptor; by contrast, ɸSA039 uses the β-N-acetylglucosamine (β-GlcNAc) residue in WTA. In this study, we found that ɸSA039 could switch its receptor to be able to infect S. aureus lacking the β-GlcNAc residue by acquiring a spontaneous mutation in open reading frame (ORF) 100 and ORF102. Moreover, ɸSA039 could infect S. pseudintermedius, which has a different WTA structure than S. aureus. By comparison, with newly isolated S. pseudintermedius-specific phage (SP phages), we determined that glycosylation in WTA of S. pseudintermedius is essential for adsorption of SP phages, but not ɸSA039. Finally, we describe a novel strategy of S. aureus which protects the bacteria from infection of SP phages. Notably, glycosylation of ribitol phosphate (RboP) WTA by TarM or/and TarS prevents infection of S. aureus by SP phages. These findings could help to establish a new strategy for the treatment of S. aureus and S. pseudintermedius infection, as well as provide valuable insights into the biology of phage-host interactions.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kenji Kadoi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masaru Usui
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudaimidorimachi, Ebetsu-shi, Hokkaido, 069-0836, Japan
| | - Yutaka Tamura
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudaimidorimachi, Ebetsu-shi, Hokkaido, 069-0836, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
33
|
Przybylski M, Dzieciątkowski T, Borysowski J, Międzybrodzki R, Górski A. Inhibitory Effects of Bacteriophage Preparations on Adenoviral Replication. Intervirology 2019; 62:37-44. [PMID: 31189156 DOI: 10.1159/000500540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Bacteriophages (phages) are viruses of bacteria. Escherichia coli phage (T4) can potentially interfere with adsorption of HAdV-5 to cellular integrins by its KGD motif, while staphylococcal A5/80 phage does not possess this structure. The objective of this study was to investigate the effects of T4 and A5/80 phage preparations on type 5 human adenovirus (HAdV-5) DNA synthesis and the expression of HAdV-5 genes. METHODS Experiments were performed on the A549 cell line. HAdV-5 DNA synthesis was investigated with real-time PCR. Expression of HAdV-5 early (DBP) and late (hexon) genes was determined by quantitative real-time PCR in preincubation and coincubation experiments. RESULTS While both phage preparations significantly reduced the expression of HAdV-5 genes, synthesis of HAdV-5 DNA was inhibited only by T4. CONCLUSION Phage preparations show promise as novel antiviral agents. However, further studies are required to investigate their antiviral effects.
Collapse
Affiliation(s)
- Maciej Przybylski
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland,
| | - Ryszard Międzybrodzki
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.,Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
34
|
Dakheel KH, Rahim RA, Neela VK, Al-Obaidi JR, Hun TG, Isa MNM, Yusoff K. Genomic analyses of two novel biofilm-degrading methicillin-resistant Staphylococcus aureus phages. BMC Microbiol 2019; 19:114. [PMID: 31138130 PMCID: PMC6540549 DOI: 10.1186/s12866-019-1484-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2019] [Indexed: 01/21/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers represent an important etiological agent of many chronic human infections. Antibiotics and host immune responses are largely ineffective against bacteria within biofilms. Alternative actions and novel antimicrobials should be considered. In this context, the use of phages to destroy MRSA biofilms presents an innovative alternative mechanism. Results Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses. Conclusions The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA. Electronic supplementary material The online version of this article (10.1186/s12866-019-1484-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khulood Hamid Dakheel
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Biology, College of Science, Mustansiriyah University, Palestine Street, PO Box 14022, Baghdad, Iraq
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Jameel R Al-Obaidi
- Agro-biotechnology Institute Malaysia (ABI), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Tan Geok Hun
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute (MGI), Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
35
|
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, Azeredo J. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 2019; 20:357. [PMID: 31072320 PMCID: PMC6507118 DOI: 10.1186/s12864-019-5647-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophages are the most abundant and diverse entities in the biosphere, and this diversity is driven by constant predator–prey evolutionary dynamics and horizontal gene transfer. Phage genome sequences are under-sampled and therefore present an untapped and uncharacterized source of genetic diversity, typically characterized by highly mosaic genomes and no universal genes. To better understand the diversity and relationships among phages infecting human pathogens, we have analysed the complete genome sequences of 205 phages of Staphylococcus sp. Results These are predicted to encode 20,579 proteins, which can be sorted into 2139 phamilies (phams) of related sequences; 745 of these are orphams and possess only a single gene. Based on shared gene content, these phages were grouped into four clusters (A, B, C and D), 27 subclusters (A1-A2, B1-B17, C1-C6 and D1-D2) and one singleton. However, the genomes have mosaic architectures and individual genes with common ancestors are positioned in distinct genomic contexts in different clusters. The staphylococcal Cluster B siphoviridae are predicted to be temperate, and the integration cassettes are often closely-linked to genes implicated in bacterial virulence determinants. There are four unusual endolysin organization strategies found in Staphylococcus phage genomes, with endolysins predicted to be encoded as single genes, two genes spliced, two genes adjacent and as a single gene with inter-lytic-domain secondary translational start site. Comparison of the endolysins reveals multi-domain modularity, with conservation of the SH3 cell wall binding domain. Conclusions This study provides a high-resolution view of staphylococcal viral genetic diversity, and insights into their gene flux patterns within and across different phage groups (cluster and subclusters) providing insights into their evolution. Electronic supplementary material The online version of this article (10.1186/s12864-019-5647-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Welkin H Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
36
|
Huh H, Wong S, St Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: Therapeutic applications. Adv Drug Deliv Rev 2019; 145:4-17. [PMID: 30659855 DOI: 10.1016/j.addr.2019.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
The human body is a large reservoir for bacterial viruses known as bacteriophages (phages), which participate in dynamic interactions with their bacterial and human hosts that ultimately affect human health. The current growing interest in human resident phages is paralleled by new uses of phages, including the design of engineered phages for therapeutic applications. Despite the increasing number of clinical trials being conducted, the understanding of the interaction of phages and mammalian cells and tissues is still largely unknown. The presence of phages in compartments within the body previously considered purely sterile, suggests that phages possess a unique capability of bypassing anatomical and physiological barriers characterized by varying degrees of selectivity and permeability. This review will discuss the direct evidence of the accumulation of bacteriophages in various tissues, focusing on the unique capability of phages to traverse relatively impermeable barriers in mammals and its relevance to its current applications in therapy.
Collapse
Affiliation(s)
- Haein Huh
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Jesse St Jean
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada.
| |
Collapse
|
37
|
Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol 2019; 103:4279-4289. [PMID: 30997551 DOI: 10.1007/s00253-019-09810-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/07/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
Bacteriophage has become an attractive alternative for the treatment of antibiotic-resistant Staphylococcus aureus. For the success of phage therapy, phage host range is an important criterion when considering a candidate phage. Most reviews of S. aureus (SA) phages have focused on their impact on host evolution, especially their contribution to the spread of virulence genes and pathogenesis factors. The potential therapeutic use of SA phages, especially detailed characterizations of host recognition mechanisms, has not been extensively reviewed so far. In this report, we provide updates on the study of SA phages, focusing on host recognition mechanisms with the recent discovery of phage receptor-binding proteins (RBPs) and the possible applications of SA phages in phage therapy.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
38
|
Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, Havlíčková P, Varga M, Žemličková H, Koláčková I, Florianová M, Jakubů V, Karpíšková R, Doškař J. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep 2019; 9:5475. [PMID: 30940900 PMCID: PMC6445280 DOI: 10.1038/s41598-019-41868-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
Lytic bacteriophages are valuable therapeutic agents against bacterial infections. There is continual effort to obtain new phages to increase the effectivity of phage preparations against emerging phage-resistant strains. Here we described the genomic diversity of spontaneous host-range mutants of kayvirus 812. Five mutant phages were isolated as rare plaques on phage-resistant Staphylococcus aureus strains. The host range of phage 812-derived mutants was 42% higher than the wild type, determined on a set of 186 methicillin-resistant S. aureus strains representing the globally circulating human and livestock-associated clones. Comparative genomics revealed that single-nucleotide polymorphisms from the parental phage 812 population were fixed in next-step mutants, mostly in genes for tail and baseplate components, and the acquired point mutations led to diverse receptor binding proteins in the phage mutants. Numerous genome changes associated with rearrangements between direct repeat motifs or intron loss were found. Alterations occurred in host-takeover and terminal genomic regions or the endolysin gene of mutants that exhibited the highest lytic activity, which implied various mechanisms of overcoming bacterial resistance. The genomic data revealed that Kayvirus spontaneous mutants are free from undesirable genes and their lytic properties proved their suitability for rapidly updating phage therapeutics.
Collapse
Affiliation(s)
- Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic.
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Petr Petráš
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Pavla Havlíčková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Marian Varga
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Helena Žemličková
- National Institute of Public Health, Praha, 100 42, Czech Republic.,Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, 500 05, Czech Republic
| | | | | | - Vladislav Jakubů
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| |
Collapse
|
39
|
Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 2019; 103:2121-2131. [PMID: 30680434 DOI: 10.1007/s00253-019-09629-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
Abstract
Due to a constant attack by phage, bacteria in the environment have evolved diverse mechanisms to defend themselves. Several reviews on phage resistance mechanisms have been published elsewhere. Thanks to the advancement of molecular techniques, several new phage resistance mechanisms were recently identified. For the practical phage therapy, the emergence of phage-resistant bacteria could be an obstacle. However, unlike antibiotic, phages could evolve a mechanism to counter-adapt against phage-resistant bacteria. In this review, we summarized the most recent studies of the phage-bacteria arm race with the perspective of future applications of phages as antimicrobial agents.
Collapse
|
40
|
Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, Morales S. Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections. Viruses 2019; 11:E88. [PMID: 30669652 PMCID: PMC6356596 DOI: 10.3390/v11010088] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages, viruses that only kill specific bacteria, are receiving substantial attention as nontraditional antibacterial agents that may help alleviate the growing antibiotic resistance problem in medicine. We describe the design and preclinical development of AB-SA01, a fixed-composition bacteriophage product intended to treat Staphylococcus aureus infections. AB-SA01 contains three naturally occurring, obligately lytic myoviruses related to Staphylococcus phage K. AB-SA01 component phages have been sequenced and contain no identifiable bacterial virulence or antibiotic resistance genes. In vitro, AB-SA01 killed 94.5% of 401 clinical Staphylococcus aureus isolates, including methicillin-resistant and vancomycin-intermediate ones for a total of 95% of the 205 known multidrug-resistant isolates. The spontaneous frequency of resistance to AB-SA01 was ≤3 × 10-9, and resistance emerging to one component phage could be complemented by the activity of another component phage. In both neutropenic and immunocompetent mouse models of acute pneumonia, AB-SA01 reduced lung S. aureus populations equivalently to vancomycin. Overall, the inherent characteristics of AB-SA01 component phages meet regulatory and generally accepted criteria for human use, and the preclinical data presented here have supported production under good manufacturing practices and phase 1 clinical studies with AB-SA01.
Collapse
|
41
|
Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model. Front Microbiol 2019; 9:3227. [PMID: 30713528 PMCID: PMC6346686 DOI: 10.3389/fmicb.2018.03227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phage vB_SauP_phiAGO1.3 (phiAGO1.3) is a polyvalent Staphylococcus lytic podovirus with a 17.6-kb genome (Gozdek et al., 2018). It can infect most of the Staphylococcus aureus human isolates of dominant clonal complexes. We show that a major factor contributing to the wide host range of phiAGO1.3 is a lack or sparcity of target sites for certain restriction-modification systems of types I and II in its genome. Phage phiAGO1.3 requires for adsorption β-O-GlcNAcylated cell wall teichoic acid, which is also essential for the expression of methicillin resistance. Under certain conditions an exposure of S. aureus to phiAGO1.3 can lead to the establishment of a mixed population in which the bacteria and phages remain in equilibrium over multiple generations. This is reminiscent of the so called phage carrier state enabling the co-existence of phage-resistant and phage-sensitive cells supporting a continuous growth of the bacterial and phage populations. The stable co-existence of bacteria and phage favors the emergence of phage-resistant variants of the bacterium. All phiAGO1.3-resistant cells isolated from the phage-carrier-state cultures contained a mutation inactivating the two-component regulatory system ArlRS, essential for efficient expression of numerous S. aureus virulence-associated traits. Moreover, the mutants were unaffected in their susceptibility to infection with an unrelated, polyvalent S. aureus phage of the genus Kayvirus. The ability of phiAGO1.3 to establish phage-carrier-state cultures did not preclude its antistaphylococcal activity in vivo in an S. aureus nematode infection model. Taken together our results suggest that phiAGO1.3 could be suitable for the therapeutic application in humans and animals, alone or in cocktails with Kayvirus phages. It might be especially useful in the treatment of infections with the majority of methicillin-resistant S. aureus strains.
Collapse
Affiliation(s)
- Aleksandra Głowacka-Rutkowska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Gozdek
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Kozińska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Janusz Dębski
- Laboratory of Mass Spectrometry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
42
|
Isolation and characterization of a potentially novel Siphoviridae phage (vB_SsapS-104) with lytic activity against Staphylococcus saprophyticus isolated from urinary tract infection. Folia Microbiol (Praha) 2018; 64:283-294. [PMID: 30284669 DOI: 10.1007/s12223-018-0653-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
Antibiotic resistance is increasing among Staphylococcus saprophyticus strains isolated from urinary tract infection. This necessitates alternative therapies. For this, a lytic phage (vB_SsapS-104) against S. saprophyticus, which formed round and clear plaques on bacterial culture plates, was isolated from hospital wastewater and characterized. Microscopy analysis showed that it had a small head (about 50 nm), tail (about 80 nm), and a collar (about 22 nm in length and 19 nm in width) indicating to be a phage within Siphoviridae family. Phage vB_SsapS-104 showed a large latency period of about 40 min, rapid adsorption rate that was significantly enhanced by MgCl2 and CaCl2, and high stability to a wide range of temperatures and pH values. Restriction analyses demonstrated that phage consists of a double-stranded DNA with an approximate genome size of 40 Kb. BLAST results did not show high similarity (megablast) with other previously identified phages. But, in Blastn, similarity with Staphylococcus phages was observed. Phage vB_SsapS-104 represented high anti-bacterial activity against S. saprophyticus isolates in vitro as it was able to lyse 8 of the 9 clinical isolates (%88.8) obtained from a hospital in Gorgan, Iran. It was a S. saprophyticus-specific phage because no lytic activity was observed on some other pathogenic bacteria tested. Therefore, phage vB_SsapS-104 can be considered as a specific virulent phage against of S. saprophyitcus isolated from urinary tract infection. This study provided the partial genomic characterization of S. saprophyticus phage and its application against urinary tract infection associated with S. saprophyticus. This phage also can be considered as a good candidate for a therapeutic alternative in the future.
Collapse
|
43
|
Fish R, Kutter E, Bryan D, Wheat G, Kuhl S. Resolving Digital Staphylococcal Osteomyelitis Using Bacteriophage-A Case Report. Antibiotics (Basel) 2018; 7:antibiotics7040087. [PMID: 30279396 PMCID: PMC6316425 DOI: 10.3390/antibiotics7040087] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
Infections involving diabetic foot ulcers (DFU) are a major public health problem and have a substantial negative impact on patient outcomes. Osteomyelitis in an ulcerated foot substantially increases the difficulty of successful treatment. While literature suggests that osteomyelitis in selected patients can sometimes be treated conservatively, with no, or minimal removal of bone, we do not yet have clear treatment guidelines and the standard treatment failure fallback remains amputation. The authors report on the successful treatment, with a long term follow up, of a 63 YO diabetic female with distal phalangeal osteomyelitis using bacteriophage, a form of treatment offering the potential for improved outcomes in this era of escalating antibiotic resistance and the increasingly recognized harms associated with antibiotic therapy.
Collapse
Affiliation(s)
- Randolph Fish
- PhageBiotics Research Foundation and Grays Harbor Community Hospital, Aberdeen, WA 98520, USA.
| | - Elizabeth Kutter
- PhageBiotics Research Foundation, The Evergreen State College, 2700 Evergreen Parkway NW, Olympia, WA 98505, USA.
| | - Daniel Bryan
- PhageBiotics Research Foundation, The Evergreen State College, 2700 Evergreen Parkway NW, Olympia, WA 98505, USA.
| | - Gordon Wheat
- PhageBiotics Research Foundation, Saint Peter Hospital Family Medicine Residency, Olympia, WA 98505, USA.
| | - Sarah Kuhl
- VA Northern California, Muir Road, Martinez CA, USA.
| |
Collapse
|
44
|
Marie H, Dana Š, Jiří Š, Karel Š, Marta Š, Filip R, Roman P. Electrophoretic techniques for purification, separation and detection of Kayvirus with subsequent control by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and microbiological methods. J Chromatogr A 2018; 1570:155-163. [DOI: 10.1016/j.chroma.2018.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
|
45
|
Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039. Appl Microbiol Biotechnol 2018; 102:8963-8977. [DOI: 10.1007/s00253-018-9269-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
|
46
|
Melo LDR, França A, Brandão A, Sillankorva S, Cerca N, Azeredo J. Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiol Ecol 2018; 94:5061119. [DOI: 10.1093/femsec/fiy143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luís D R Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Angela França
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Brandão
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Sanna Sillankorva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Cerca
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Antimicrobial effect of commercial phage preparation Stafal® on biofilm and planktonic forms of methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2018; 64:121-126. [PMID: 29923129 DOI: 10.1007/s12223-018-0622-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus may be a highly virulent human pathogen, especially when it is able to form a biofilm, and it is resistant to antibiotic. Infections caused by these bacteria significantly affect morbidity and mortality, primarily in hospitalized patients. Treatment becomes more expensive, more toxic, and prolonged. This is the reason why research on alternative therapies should be one of the main priorities of medicine and biotechnology. A promising alternative treatment approach is bacteriophage therapy. The effect of the anti-staphylococcal bacteriophage preparation Stafal® on biofilm reduction was assessed on nine S. aureus strains using both sonication with subsequent quantification of surviving cells on the catheter surface and evaluation of biofilm reduction in microtiter plates. It was demonstrated that the bacteriophages destroy planktonic cells very effectively. However, to destroy cells embedded in the biofilm effectively requires a concentration at least ten times higher than that provided by the commercial preparation. The catheter disc method (CDM) allowed easier comparison of the effect on planktonic cells and cells in a biofilm than the microtiter plate (MTP) method.
Collapse
|
48
|
Complete Genome Sequences of Two Novel Staphylococcus aureus Podoviruses of Potential Therapeutic Use, vB_SauP_phiAGO1.3 and vB_SauP_phiAGO1.9. GENOME ANNOUNCEMENTS 2018; 6:6/17/e00048-18. [PMID: 29700131 PMCID: PMC5920172 DOI: 10.1128/genomea.00048-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the genome sequences of two Staphylococcus aureus phages belonging to the family Podoviridae and subfamily Picovirinae, vB_SauP_phiAGO1.3 and vB_SauP_phiAGO1.9, which were isolated from Warsaw sewage. Analysis of their genomes provides valuable information about the diversity of phages belonging to the genus Rosenblumvirus and their genes that undergo evolutionary adaptation to cells of different host strains.
Collapse
|
49
|
Ajuebor J, Buttimer C, Arroyo-Moreno S, Chanishvili N, Gabriel EM, O'Mahony J, McAuliffe O, Neve H, Franz C, Coffey A. Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics. Antibiotics (Basel) 2018; 7:E37. [PMID: 29693603 PMCID: PMC6022877 DOI: 10.3390/antibiotics7020037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 01/20/2023] Open
Abstract
The increase in antibiotic resistance in pathogenic bacteria is a public health danger requiring alternative treatment options, and this has led to renewed interest in phage therapy. In this respect, we describe the distinct host ranges of Staphylococcus phage K, and two other K-like phages against 23 isolates, including 21 methicillin-resistant S. aureus (MRSA) representative sequence types representing the Irish National MRSA Reference Laboratory collection. The two K-like phages were isolated from the Fersisi therapeutic phage mix from the Tbilisi Eliava Institute, and were designated B1 (vB_SauM_B1) and JA1 (vB_SauM_JA1). The sequence relatedness of B1 and JA1 to phage K was observed to be 95% and 94% respectively. In terms of host range on the 23 Staphylococcus isolates, B1 and JA1 infected 73.9% and 78.2% respectively, whereas K infected only 43.5%. Eleven open reading frames (ORFs) present in both phages B1 and JA1 but absent in phage K were identified by comparative genomic analysis. These ORFs were also found to be present in the genomes of phages (Team 1, vB_SauM-fRuSau02, Sb_1 and ISP) that are components of several commercial phage mixtures with reported wide host ranges. This is the first comparative study of therapeutic staphylococcal phages within the recently described genus Kayvirus.
Collapse
Affiliation(s)
- Jude Ajuebor
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Sara Arroyo-Moreno
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Nina Chanishvili
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi 0160, Georgia.
| | - Emma M Gabriel
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
| | - Olivia McAuliffe
- Teagasc, Moorepark Food Research Centre, Fermoy, Cork P61 C996, UK.
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, DE-24103 Kiel, Germany.
| | - Charles Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, DE-24103 Kiel, Germany.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, UK.
- Alimentary Pharmabiotic Centre, University College, Cork T12 YT20, UK.
| |
Collapse
|
50
|
Melo LDR, Brandão A, Akturk E, Santos SB, Azeredo J. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses 2018; 10:v10040182. [PMID: 29642449 PMCID: PMC5923476 DOI: 10.3390/v10040182] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most relevant opportunistic pathogens involved in many biofilm-associated diseases, and is a major cause of nosocomial infections, mainly due to the increasing prevalence of multidrug-resistant strains. Consequently, alternative methods to eradicate the pathogen are urgent. It has been previously shown that polyvalent staphylococcal kayviruses and their derived endolysins are excellent candidates for therapy. Here we present the characterization of a new bacteriophage: vB_SauM-LM12 (LM12). LM12 has a broad host range (>90%; 56 strains tested), and is active against several MRSA strains. The genome of LM12 is composed of a dsDNA molecule with 143,625 bp, with average GC content of 30.25% and codes for 227 Coding Sequences (CDSs). Bioinformatics analysis did not identify any gene encoding virulence factors, toxins, or antibiotic resistance determinants. Antibiofilm assays have shown that this phage significantly reduced the number of viable cells (less than one order of magnitude). Moreover, the encoded endolysin also showed activity against biofilms, with a consistent biomass reduction during prolonged periods of treatment (of about one order of magnitude). Interestingly, the endolysin was shown to be much more active against stationary-phase cells and suspended biofilm cells than against intact and scraped biofilms, suggesting that cellular aggregates protected by the biofilm matrix reduced protein activity. Both phage LM12 and its endolysin seem to have a strong antimicrobial effect and broad host range against S. aureus, suggesting their potential to treat S. aureus biofilm infections.
Collapse
Affiliation(s)
- Luís D R Melo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ana Brandão
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Ergun Akturk
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Silvio B Santos
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| | - Joana Azeredo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4700-057, Braga, Portugal.
| |
Collapse
|