1
|
Brocke SA, Reidel B, Ehre C, Rebuli ME, Robinette C, Schichlein KD, Brooks CA, Jaspers I. Profiling endogenous airway proteases and antiproteases and modeling proteolytic activation of Influenza HA using in vitro and ex vivo human airway surface liquid samples. PLoS One 2024; 19:e0306197. [PMID: 39739661 DOI: 10.1371/journal.pone.0306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Imbalance of airway proteases and antiproteases has been implicated in diseases such as COPD and environmental exposures including cigarette smoke and ozone. To initiate infection, endogenous proteases are commandeered by respiratory viruses upon encountering the airway epithelium. The airway proteolytic environment likely contains redundant antiproteases and proteases with diverse catalytic mechanisms, however a proteomic profile of these enzymes and inhibitors in airway samples has not been reported. The objective of this study was to first profile extracellular proteases and antiproteases using human airway epithelial cell cultures and ex vivo nasal epithelial lining fluid (NELF) samples. Secondly, we present an optimized method for probing the proteolytic environment of airway surface liquid samples (in vitro and ex vivo) using fluorogenic peptides modeling the cleavage sites of respiratory viruses. We detected 48 proteases in the apical wash of cultured human nasal epithelial cells (HNECs) (n = 6) and 57 in NELF (n = 13) samples from healthy human subjects using mass-spectrometry based proteomics. Additionally, we detected 29 and 48 antiproteases in the HNEC apical washes and NELF, respectively. We observed large interindividual variability in rate of cleavage of an Influenza H1 peptide in the ex vivo clinical samples. Since protease and antiprotease levels have been found to be altered in the airways of smokers, we compared proteolytic cleavage in ex vivo nasal lavage samples from male/female smokers and non-smokers. There was a statistically significant increase in proteolysis of Influenza H1 in NLF from male smokers compared to female smokers. Furthermore, we measured cleavage of the S1/S2 site of SARS-CoV, SARS-CoV-2, and SARS-CoV-2 Delta peptides in various airway samples, suggesting the method could be used for other viruses of public health relevance. This assay presents a direct and efficient method of evaluating the proteolytic environment of human airway samples in assessment of therapeutic treatment, exposure, or underlying disease.
Collapse
Affiliation(s)
- Stephanie A Brocke
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Boris Reidel
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Carole Robinette
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kevin D Schichlein
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Christian A Brooks
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
2
|
Aufy M, Hussein AM, Stojanovic T, Studenik CR, Kotob MH. Proteolytic Activation of the Epithelial Sodium Channel (ENaC): Its Mechanisms and Implications. Int J Mol Sci 2023; 24:17563. [PMID: 38139392 PMCID: PMC10743461 DOI: 10.3390/ijms242417563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Epithelial sodium channel (ENaC) are integral to maintaining salt and water homeostasis in various biological tissues, including the kidney, lung, and colon. They enable the selective reabsorption of sodium ions, which is a process critical for controlling blood pressure, electrolyte balance, and overall fluid volume. ENaC activity is finely controlled through proteolytic activation, a process wherein specific enzymes, or proteases, cleave ENaC subunits, resulting in channel activation and increased sodium reabsorption. This regulatory mechanism plays a pivotal role in adapting sodium transport to different physiological conditions. In this review article, we provide an in-depth exploration of the role of proteolytic activation in regulating ENaC activity. We elucidate the involvement of various proteases, including furin-like convertases, cysteine, and serine proteases, and detail the precise cleavage sites and regulatory mechanisms underlying ENaC activation by these proteases. We also discuss the physiological implications of proteolytic ENaC activation, focusing on its involvement in blood pressure regulation, pulmonary function, and intestinal sodium absorption. Understanding the mechanisms and consequences of ENaC proteolytic activation provides valuable insights into the pathophysiology of various diseases, including hypertension, pulmonary disorders, and various gastrointestinal conditions. Moreover, we discuss the potential therapeutic avenues that emerge from understanding these mechanisms, offering new possibilities for managing diseases associated with ENaC dysfunction. In summary, this review provides a comprehensive discussion of the intricate interplay between proteases and ENaC, emphasizing the significance of proteolytic activation in maintaining sodium and fluid balance in both health and disease.
Collapse
Affiliation(s)
- Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
| | - Mohamed H. Kotob
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria; (A.M.H.); (M.H.K.)
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
3
|
Dolmatov IY, Nizhnichenko VA. Extracellular Matrix of Echinoderms. Mar Drugs 2023; 21:417. [PMID: 37504948 PMCID: PMC10381214 DOI: 10.3390/md21070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| | - Vladimir A Nizhnichenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
4
|
Huynh PT, Vu HD, Ryu J, Kim HS, Jung H, Youn SW. Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules 2023; 28:molecules28083538. [PMID: 37110769 PMCID: PMC10141219 DOI: 10.3390/molecules28083538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Serine protease is linked to a wide range of diseases, prompting the development of robust, selective, and sensitive protease assays and sensing methods. However, the clinical needs for serine protease activity imaging have not yet been met, and the efficient in vivo detection and imaging of serine protease remain challenging. Here, we report the development of the gadolinium-cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-click-Sulfonyl Fluoride (Gd-DOTA-click-SF) MRI contrast agent targeting serine protease. The HR-FAB mass spectrum confirmed the successful formation of our designed chelate. The molar longitudinal relaxivity (r1) of the Gd-DOTA-click-SF probe (r1 = 6.82 mM-1 s-1) was significantly higher than that of Dotarem (r1 = 4.63 mM-1 s-1), in the range of 0.01-0.64 mM at 9.4 T. The in vitro cellular study and the transmetallation kinetics study showed that the safety and stability of this probe are comparable to those of conventional Dotarem. Ex vivo abdominal aortic aneurysm (AAA) MRI revealed that this probe has a contrast-agent-to-noise ratio (CNR) that is approximately 51 ± 23 times greater than that of Dotarem. This study of superior visualization of AAA suggests that it has the potential to detect elastase in vivo and supports the feasibility of probing serine protease activity in T1-weighted MRI.
Collapse
Affiliation(s)
- Phuong Tu Huynh
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Huy Duc Vu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Junghwa Ryu
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| | - Hee Su Kim
- Korea Basic Science Institute (Daegu Center), Kyungpook University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hoesu Jung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 88, Dongnae-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Sung Won Youn
- Department of Radiology, Daegu Catholic University School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
5
|
Lok S, Lau TNH, Trost B, Tong AHY, Wintle RF, Engstrom MD, Stacy E, Waits LP, Scrafford M, Scherer SW. Chromosomal-level reference genome assembly of the North American wolverine (Gulo gulo luscus): a resource for conservation genomics. G3 (BETHESDA, MD.) 2022; 12:jkac138. [PMID: 35674384 PMCID: PMC9339297 DOI: 10.1093/g3journal/jkac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Elise Stacy
- Environmental Science Program, University of Idaho, Moscow, ID 83844, USA
- Wildlife Conservation Society, Arctic Beringia, Fairbanks, AK 99709, USA
| | - Lisette P Waits
- Department of Fish and Wildlife, University of Idaho, Moscow, ID 83844, USA
| | - Matthew Scrafford
- Wildlife Conservation Society Canada, Thunder Bay, ON P7A 4K9, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
7
|
Scott J, Deng Q, Vendrell M. Near-Infrared Fluorescent Probes for the Detection of Cancer-Associated Proteases. ACS Chem Biol 2021; 16:1304-1317. [PMID: 34315210 PMCID: PMC8383269 DOI: 10.1021/acschembio.1c00223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Proteases are enzymes capable of catalyzing protein breakdown, which is critical across many biological processes. There are several families of proteases, each of which perform key functions through the degradation of specific proteins. As our understanding of cancer improves, it has been demonstrated that several proteases can be overactivated during the progression of cancer and contribute to malignancy. Optical imaging systems that employ near-infrared (NIR) fluorescent probes to detect protease activity offer clinical promise, both for early detection of cancer as well as for the assessment of personalized therapy. In this Review, we review the design of NIR probes and their successful application for the detection of different cancer-associated proteases.
Collapse
Affiliation(s)
- Jamie
I. Scott
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Qinyi Deng
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| |
Collapse
|