1
|
Nandagopal S, Terrio A, Vicente FZ, Megason SG, Jambhekar A, Lahav G. Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response. Cell Rep 2024; 43:115077. [PMID: 39671287 DOI: 10.1016/j.celrep.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024] Open
Abstract
Stem cells integrate multiple environmental signals to activate appropriate fate programs. To ensure coherent responses, alternative fates must be concomitantly inactivated. However, mechanisms that coordinate fates in a signal-specific manner are not fully understood. Here, we investigate the role of a network of basic-helix-loop-helix (bHLH) transcription factors in neural stem cells, which integrate leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) signaling to synergistically induce glial fibrillary acidic protein (GFAP), a key astrocyte-fate determinant. Using quantitative RNA-fluorescence in situ hybridization (FISH) and ectopic expression, we find that multiple bHLHs that promote alternative fates also repress GFAP but are all suppressed by BMP and, to a lesser extent, LIF. Mathematical modeling shows that synergy arises from this coordinated derepression of GFAP combined with its activation by LIF signaling. Finally, we determine how coordinated and tunable derepression results from extensive cross-regulation among bHLHs. Activation-derepression synergy could be broadly utilized to couple signaling and fate, particularly across the numerous developmental systems regulated by bHLH factors.
Collapse
Affiliation(s)
- Sandy Nandagopal
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Alexsandra Terrio
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Fernando Z Vicente
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Sean G Megason
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Chouly M, Bally-Cuif L. Generating neurons in the embryonic and adult brain: compared principles and mechanisms. C R Biol 2024; 347:199-221. [PMID: 39535540 DOI: 10.5802/crbiol.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
|
3
|
Liu Y, Wu Q, Jiang B, Hou T, Wu C, Wu M, Song H. Distinct Regulation of ASCL1 by the Cell Cycle and Chemotherapy in Small Cell Lung Cancer. Mol Cancer Res 2024; 22:613-624. [PMID: 38512021 PMCID: PMC11217739 DOI: 10.1158/1541-7786.mcr-23-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Small cell lung cancer (SCLC) is an aggressive and lethal malignancy. Achaete-scute homolog 1 (ASCL1) is essential for the initiation of SCLC in mice and the development of pulmonary neuroendocrine cells (PNEC), which are the major cells of origin for SCLC. However, the regulatory mechanism of ASCL1 in SCLC remains elusive. Here, we found that ASCL1 expression gradually increases as the tumors grow in a mouse SCLC model, and is regulated by the cell cycle. Mechanistically, CDK2-CyclinA2 complex phosphorylates ASCL1, which results in increased proteasome-mediated ASCL1 protein degradation by E3 ubiquitin ligase HUWE1 during mitosis. TCF3 promotes the multisite phosphorylation of ASCL1 through the CDK2-CyclinA2 complex and the interaction between ASCL1 and TCF3 protects ASCL1 from degradation. The dissociation of TCF3 from ASCL1 during mitosis accelerates the degradation of ASCL1. In addition, chemotherapy drugs greatly reduce the transcription of ASCL1 in SCLC cells. Depletion of ASCL1 sensitizes SCLC cells to chemotherapy drugs. Together, our study demonstrates that ASCL1 is a cell-cycle-regulated protein and provides a theoretical basis for applying cell-cycle-related antitumor drugs in SCLC treatment. Implications:Our study revealed a novel regulatory mechanism of ASCL1 by cell cycle and chemotherapy drugs in SCLC. Treating patients with SCLC with a combination of ASCL1-targeting therapy and chemotherapy drugs could potentially be beneficial.
Collapse
Affiliation(s)
- Yuning Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingzhe Wu
- Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Hou
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Abashkin DA, Karpov DS, Kurishev AO, Marilovtseva EV, Golimbet VE. ASCL1 Is Involved in the Pathogenesis of Schizophrenia by Regulation of Genes Related to Cell Proliferation, Neuronal Signature Formation, and Neuroplasticity. Int J Mol Sci 2023; 24:15746. [PMID: 37958729 PMCID: PMC10648210 DOI: 10.3390/ijms242115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia (SZ) is a common psychiatric neurodevelopmental disorder with a complex genetic architecture. Genome-wide association studies indicate the involvement of several transcription factors, including ASCL1, in the pathogenesis of SZ. We aimed to identify ASCL1-dependent cellular and molecular mechanisms associated with SZ. We used Capture-C, CRISPR/Cas9 systems and RNA-seq analysis to confirm the involvement of ASCL1 in SZ-associated pathogenesis, establish a mutant SH-SY5Y line with a functional ASCL1 knockout (ASCL1-del) and elucidate differentially expressed genes that may underlie ASCL1-dependent pathogenic mechanisms. Capture-C confirmed the spatial interaction of the ASCL1 promoter with SZ-associated loci. Transcriptome analysis showed that ASCL1 regulation may be through a negative feedback mechanism. ASCL1 dysfunction affects the expression of genes associated with the pathogenesis of SZ, as well as bipolar and depressive disorders. Genes differentially expressed in ASCL1-del are involved in cell mitosis, neuronal projection, neuropeptide signaling, and the formation of intercellular contacts, including the synapse. After retinoic acid (RA)-induced differentiation, ASCL1 activity is restricted to a small subset of genes involved in neuroplasticity. These data suggest that ASCL1 dysfunction promotes SZ development predominantly before the onset of neuronal differentiation by slowing cell proliferation and impeding the formation of neuronal signatures.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | | | | | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
| |
Collapse
|
6
|
Han JS, Fishman-Williams E, Decker SC, Hino K, Reyes RV, Brown NL, Simó S, Torre AL. Notch directs telencephalic development and controls neocortical neuron fate determination by regulating microRNA levels. Development 2023; 150:dev201408. [PMID: 37272771 PMCID: PMC10309580 DOI: 10.1242/dev.201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
The central nervous system contains a myriad of different cell types produced from multipotent neural progenitors. Neural progenitors acquire distinct cell identities depending on their spatial position, but they are also influenced by temporal cues to give rise to different cell populations over time. For instance, the progenitors of the cerebral neocortex generate different populations of excitatory projection neurons following a well-known sequence. The Notch signaling pathway plays crucial roles during this process, but the molecular mechanisms by which Notch impacts progenitor fate decisions have not been fully resolved. Here, we show that Notch signaling is essential for neocortical and hippocampal morphogenesis, and for the development of the corpus callosum and choroid plexus. Our data also indicate that, in the neocortex, Notch controls projection neuron fate determination through the regulation of two microRNA clusters that include let-7, miR-99a/100 and miR-125b. Our findings collectively suggest that balanced Notch signaling is crucial for telencephalic development and that the interplay between Notch and miRNAs is essential for the control of neocortical progenitor behaviors and neuron cell fate decisions.
Collapse
Affiliation(s)
- Jisoo S. Han
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | | | - Steven C. Decker
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Raenier V. Reyes
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Nadean L. Brown
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
8
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
9
|
Neurogenin 2 and Neuronal Differentiation 1 Control Proper Development of the Chick Trigeminal Ganglion and Its Nerve Branches. J Dev Biol 2023; 11:jdb11010008. [PMID: 36810460 PMCID: PMC9953625 DOI: 10.3390/jdb11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The trigeminal ganglion contains the cell bodies of sensory neurons comprising cranial nerve V, which relays information related to pain, touch, and temperature from the face and head to the brain. Like other cranial ganglia, the trigeminal ganglion is composed of neuronal derivatives of two critical embryonic cell types, neural crest and placode cells. Neurogenesis within the cranial ganglia is promoted by Neurogenin 2 (Neurog2), which is expressed in trigeminal placode cells and their neuronal derivatives, and transcriptionally activates neuronal differentiation genes such as Neuronal Differentiation 1 (NeuroD1). Little is known, however, about the role of Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. To address this, we depleted Neurog2 and NeuroD1 from trigeminal placode cells with morpholinos and demonstrated that Neurog2 and NeuroD1 influence trigeminal ganglion development. While knockdown of both Neurog2 and NeuroD1 affected innervation of the eye, Neurog2 and NeuroD1 had opposite effects on ophthalmic nerve branch organization. Taken together, our results highlight, for the first time, functional roles for Neurog2 and NeuroD1 during chick trigeminal gangliogenesis. These studies shed new light on the molecular mechanisms underlying trigeminal ganglion formation and may also provide insight into general cranial gangliogenesis and diseases of the peripheral nervous system.
Collapse
|
10
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
11
|
Cabrera Zapata LE, Cambiasso MJ, Arevalo MA. Epigenetic modifier Kdm6a/Utx controls the specification of hypothalamic neuronal subtypes in a sex-dependent manner. Front Cell Dev Biol 2022; 10:937875. [PMID: 36268511 PMCID: PMC9577230 DOI: 10.3389/fcell.2022.937875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Kdm6a is an X-chromosome-linked H3K27me2/3 demethylase that promotes chromatin accessibility and gene transcription and is critical for tissue/cell-specific differentiation. Previous results showed higher Kdm6a levels in XX than in XY hypothalamic neurons and a female-specific requirement for Kdm6a in mediating increased axogenesis before brain masculinization. Here, we explored the sex-specific role of Kdm6a in the specification of neuronal subtypes in the developing hypothalamus. Hypothalamic neuronal cultures were established from sex-segregated E14 mouse embryos and transfected with siRNAs to knockdown Kdm6a expression (Kdm6a-KD). We evaluated the effect of Kdm6a-KD on Ngn3 expression, a bHLH transcription factor regulating neuronal sub-specification in hypothalamus. Kdm6a-KD decreased Ngn3 expression in females but not in males, abolishing basal sex differences. Then, we analyzed Kdm6a-KD effect on Ascl1, Pomc, Npy, Sf1, Gad1, and Th expression by RT-qPCR. While Kdm6a-KD downregulated Ascl1 in both sexes equally, we found sex-specific effects for Pomc, Npy, and Th. Pomc and Th expressed higher in female than in male neurons, and Kdm6a-KD reduced their levels only in females, while Npy expressed higher in male than in female neurons, and Kdm6a-KD upregulated its expression only in females. Identical results were found by immunofluorescence for Pomc and Npy neuropeptides. Finally, using ChIP-qPCR, we found higher H3K27me3 levels at Ngn3, Pomc, and Npy promoters in male neurons, in line with Kdm6a higher expression and demethylase activity in females. At all three promoters, Kdm6a-KD induced an enrichment of H3K27me3 only in females. These results indicate that Kdm6a plays a sex-specific role in controlling the expression of transcription factors and neuropeptides critical for the differentiation of hypothalamic neuronal populations regulating food intake and energy homeostasis.
Collapse
Affiliation(s)
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kim HR, Moon JH, Lee JH, Lim YC. Inhibitor of DNA Binding 2 (ID2): A Novel Marker for Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:6479-6488. [PMID: 33783641 DOI: 10.1245/s10434-021-09832-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although aggressive invasion and sequential lymph node metastasis (LNM) significantly affect the prognosis of patients with head and neck squamous cell carcinoma (HNSCC), studies on identifying the factors that regulate this process remain scarce. This study found an inhibitor of DNA binding 2 (ID2) as a novel molecule involved in the regulation of invasion and LNM of HNSCC and further verified its functional role. METHODS The study examined the translational significance between ID2 expression levels and the presence of LNM as well as the prognosis for 119 patients with HNSCC after treatment. In addition, in vitro and in vivo experiments were performed using ID2 gene-modulated HNSCC cell lines to determine the functional role of ID2 in the invasion and LNM of HNSCC. RESULTS Elevated levels of ID2 expression were closely associated with the presence of LNM in 119 patients with HNSCC, resulting in a poor prognosis. Overexpression of ID2-induced invasion and LNM of HNSCC cells was observed in vitro and in vivo. By contrast, knockdown of the ID2 gene diminished invasion and LNM of HNSCC cells. In addition, the ID2 expression level increased the expression level of matrix metalloproteinase 1 (MMP1), a molecule downstream to ID2. Furthermore, silencing of MMP1 in ID2-overexpressed HNSCC cells rescued the elevated invasion and LNM capabilities of these cells, suggesting that ID2 enhances invasion and LNM partly via MMP1 activation. CONCLUSION In the invasion and LNM of HNSCC, ID2 plays an important role by modulating MMP1 expression, suggesting ID2-MMP1 axis to be a novel alternative therapeutic target for invasion and LNM of HNSCC.
Collapse
Affiliation(s)
- Hye Ryun Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jun Hwan Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Ali FR, Marcos D, Chernukhin I, Woods LM, Parkinson LM, Wylie LA, Papkovskaia TD, Davies JD, Carroll JS, Philpott A. Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Mol Cancer Res 2020; 18:1759-1766. [PMID: 33046535 PMCID: PMC7614603 DOI: 10.1158/1541-7786.mcr-20-0693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Pediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (MYC). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types. Using functional mutational approaches, we find that preventing CDK-dependent phosphorylation of ASCL1 in neuroblastoma cells drives coordinated suppression of the MYC-driven core circuit supporting neuroblast identity and proliferation, while simultaneously activating an enduring gene program driving mitotic exit and neuronal differentiation. IMPLICATIONS: These findings indicate that targeting phosphorylation of ASCL1 may offer a new approach to development of differentiation therapies in neuroblastoma. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/12/1759/F1.large.jpg.
Collapse
Affiliation(s)
- Fahad R Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lydia M Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Luke A Wylie
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - John D Davies
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
16
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
17
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
18
|
Fu Y, Yuan SS, Zhang LJ, Ji ZL, Quan XJ. Atonal bHLH transcription factor 1 is an important factor for maintaining the balance of cell proliferation and differentiation in tumorigenesis. Oncol Lett 2020; 20:2595-2605. [PMID: 32782577 PMCID: PMC7400680 DOI: 10.3892/ol.2020.11833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Establishing the link between cellular processes and oncogenesis may aid the elucidation of targeted and effective therapies against tumor cell proliferation and metastasis. Previous studies have investigated the mechanisms involved in maintaining the balance between cell proliferation, differentiation and migration. There is increased interest in determining the conditions that allow cancer stem cells to differentiate as well as the identification of molecules that may serve as novel drug targets. Furthermore, the study of various genes, including transcription factors, which serve a crucial role in cellular processes, may present a promising direction for future therapy. The present review described the role of the transcription factor atonal bHLH transcription factor 1 (ATOH1) in signaling pathways in tumorigenesis, particularly in cerebellar tumor medulloblastoma and colorectal cancer, where ATOH1 serves as an oncogene or tumor suppressor, respectively. Additionally, the present review summarized the associated therapeutic interventions for these two types of tumors and discussed novel clinical targets and approaches.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Sha-Sha Yuan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Jie Zhang
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhi-Li Ji
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Xiao-Jiang Quan
- Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing 101149, P.R. China.,Laboratory of Brain Development, Institut du Cerveau et de la Moelle Épinière, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
19
|
Aslanpour S, Rosin JM, Balakrishnan A, Klenin N, Blot F, Gradwohl G, Schuurmans C, Kurrasch DM. Ascl1 is required to specify a subset of ventromedial hypothalamic neurons. Development 2020; 147:dev180067. [PMID: 32253239 DOI: 10.1242/dev.180067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
Despite clear physiological roles, the ventromedial hypothalamus (VMH) developmental programs are poorly understood. Here, we asked whether the proneural gene achaete-scute homolog 1 (Ascl1) contributes to VMH development. Ascl1 transcripts were detected in embryonic day (E) 10.5 to postnatal day 0 VMH neural progenitors. The elimination of Ascl1 reduced the number of VMH neurons at E12.5 and E15.5, particularly within the VMH-central (VMHC) and -dorsomedial (VMHDM) subdomains, and resulted in a VMH cell fate change from glutamatergic to GABAergic. We observed a loss of Neurog3 expression in Ascl1-/- hypothalamic progenitors and an upregulation of Neurog3 when Ascl1 was overexpressed. We also demonstrated a glutamatergic to GABAergic fate switch in Neurog3-null mutant mice, suggesting that Ascl1 might act via Neurog3 to drive VMH cell fate decisions. We also showed a concomitant increase in expression of the central GABAergic fate determinant Dlx1/2 in the Ascl1-null hypothalamus. However, Ascl1 was not sufficient to induce an ectopic VMH fate when overexpressed outside the normal window of competency. Combined, Ascl1 is required but not sufficient to specify the neurotransmitter identity of VMH neurons, acting in a transcriptional cascade with Neurog3.
Collapse
Affiliation(s)
- Shaghayegh Aslanpour
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica M Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Natalia Klenin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Florence Blot
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Gerard Gradwohl
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Carol Schuurmans
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Deborah M Kurrasch
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
20
|
Neurog2 Acts as a Classical Proneural Gene in the Ventromedial Hypothalamus and Is Required for the Early Phase of Neurogenesis. J Neurosci 2020; 40:3549-3563. [PMID: 32273485 DOI: 10.1523/jneurosci.2610-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022] Open
Abstract
The tuberal hypothalamus is comprised of the dorsomedial, ventromedial, and arcuate nuclei, as well as parts of the lateral hypothalamic area, and it governs a wide range of physiologies. During neurogenesis, tuberal hypothalamic neurons are thought to be born in a dorsal-to-ventral and outside-in pattern, although the accuracy of this description has been questioned over the years. Moreover, the intrinsic factors that control the timing of neurogenesis in this region are poorly characterized. Proneural genes, including Achate-scute-like 1 (Ascl1) and Neurogenin 3 (Neurog3) are widely expressed in hypothalamic progenitors and contribute to lineage commitment and subtype-specific neuronal identifies, but the potential role of Neurogenin 2 (Neurog2) remains unexplored. Birthdating in male and female mice showed that tuberal hypothalamic neurogenesis begins as early as E9.5 in the lateral hypothalamic and arcuate and rapidly expands to dorsomedial and ventromedial neurons by E10.5, peaking throughout the region by E11.5. We confirmed an outside-in trend, except for neurons born at E9.5, and uncovered a rostrocaudal progression but did not confirm a dorsal-ventral patterning to tuberal hypothalamic neuronal birth. In the absence of Neurog2, neurogenesis stalls, with a significant reduction in early-born BrdU+ cells but no change at later time points. Further, the loss of Ascl1 yielded a similar delay in neuronal birth, suggesting that Ascl1 cannot rescue the loss of Neurog2 and that these proneural genes act independently in the tuberal hypothalamus. Together, our findings show that Neurog2 functions as a classical proneural gene to regulate the temporal progression of tuberal hypothalamic neurogenesis.SIGNIFICANCE STATEMENT Here, we investigated the general timing and pattern of neurogenesis within the tuberal hypothalamus. Our results confirmed an outside-in trend of neurogenesis and uncovered a rostrocaudal progression. We also showed that Neurog2 acts as a classical proneural gene and is responsible for regulating the birth of early-born neurons within the ventromedial hypothalamus, acting independently of Ascl1 In addition, we revealed a role for Neurog2 in cell fate specification and differentiation of ventromedial -specific neurons. Last, Neurog2 does not have cross-inhibitory effects on Neurog1, Neurog3, and Ascl1 These findings are the first to reveal a role for Neurog2 in hypothalamic development.
Collapse
|
21
|
Simpson KL, Stoney R, Frese KK, Simms N, Rowe W, Pearce SP, Humphrey S, Booth L, Morgan D, Dynowski M, Trapani F, Catozzi A, Revill M, Helps T, Galvin M, Girard L, Nonaka D, Carter L, Krebs MG, Cook N, Carter M, Priest L, Kerr A, Gazdar AF, Blackhall F, Dive C. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. NATURE CANCER 2020; 1:437-451. [PMID: 35121965 DOI: 10.1038/s43018-020-0046-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Although small cell lung cancer (SCLC) is treated as a homogeneous disease, biopsies and preclinical models reveal heterogeneity in transcriptomes and morphology. SCLC subtypes were recently defined by neuroendocrine transcription factor (NETF) expression. Circulating-tumor-cell-derived explant models (CDX) recapitulate donor patients' tumor morphology, diagnostic NE marker expression and chemotherapy responses. We describe a biobank of 38 CDX models, including six CDX pairs generated pretreatment and at disease progression revealing complex intra- and intertumoral heterogeneity. Transcriptomic analysis confirmed three of four previously described subtypes based on ASCL1, NEUROD1 and POU2F3 expression and identified a previously unreported subtype based on another NETF, ATOH1. We document evolution during disease progression exemplified by altered MYC and NOTCH gene expression, increased 'variant' cell morphology, and metastasis without strong evidence of epithelial to mesenchymal transition. This CDX biobank provides a research resource to facilitate SCLC personalized medicine.
Collapse
Affiliation(s)
- Kathryn L Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Ruth Stoney
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Kristopher K Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Nicole Simms
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - William Rowe
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Sam Humphrey
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Laura Booth
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Derrick Morgan
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Marek Dynowski
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Francesca Trapani
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alessia Catozzi
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mitchell Revill
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Thomas Helps
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Louise Carter
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew G Krebs
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Natalie Cook
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mathew Carter
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Lynsey Priest
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Alastair Kerr
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fiona Blackhall
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, Manchester, UK.
| |
Collapse
|
22
|
Hartenstein V, Omoto JJ, Lovick JK. The role of cell lineage in the development of neuronal circuitry and function. Dev Biol 2020; 475:165-180. [PMID: 32017903 DOI: 10.1016/j.ydbio.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
23
|
Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019; 20:E5306. [PMID: 31653121 PMCID: PMC6862971 DOI: 10.3390/ijms20215306] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The bHLH proteins are a family of eukaryotic transcription factors regulating expression of a wide range of genes involved in cell differentiation and development. They contain the Helix-Loop-Helix (HLH) domain, preceded by a stretch of basic residues, which are responsible for dimerization and binding to E-box sequences. In addition to the well-preserved DNA-binding bHLH domain, these proteins may contain various additional domains determining the specificity of performed transcriptional regulation. According to this, the family has been divided into distinct classes. Our aim was to emphasize the significance of existing disordered regions within the bHLH transcription factors for their functionality. Flexible, intrinsically disordered regions containing various motives and specific sequences allow for multiple interactions with transcription co-regulators. Also, based on in silico analysis and previous studies, we hypothesize that the bHLH proteins have a general ability to undergo spontaneous phase separation, forming or participating into liquid condensates which constitute functional centers involved in transcription regulation. We shortly introduce recent findings on the crucial role of the thermodynamically liquid-liquid driven phase separation in transcription regulation by disordered regions of regulatory proteins. We believe that further experimental studies should be performed in this field for better understanding of the mechanism of gene expression regulation (among others regarding oncogenes) by important and linked to many diseases the bHLH transcription factors.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
24
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
25
|
Schroeder N, Wuelling M, Hoffmann D, Brand-Saberi B, Vortkamp A. Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. PLoS One 2019; 14:e0218230. [PMID: 31449527 PMCID: PMC6709907 DOI: 10.1371/journal.pone.0218230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Atonal homolog 8 (Atoh8) is a transcription factor of the basic helix-loop-helix (bHLH) protein family, which is expressed in the cartilaginous elements of endochondral bones. To analyze its function during chondrogenesis we deleted Atoh8 in mice using a chondrocyte- (Atoh8flox/flox;Col2a1-Cre) and a germline- (Atoh8flox/flox;Prx1-Crefemale) specific Cre allele. In both strains, Atoh8 deletion leads to a reduced skeletal size of the axial and appendicular bones, but the stages of phenotypic manifestations differ. While we observed obviously shortened bones in Atoh8flox/flox;Col2a1-Cre mice only postnatally, the bones of Atoh8flox/flox;Prx1-Crefemale mice are characterized by a reduced bone length already at prenatal stages. Detailed histological and molecular investigations revealed reduced zones of proliferating and hypertrophic chondrocytes. In addition, Atoh8 deletion identified Atoh8 as a positive regulator of chondrocyte proliferation. As increased Atoh8 expression is found in the region of prehypertrophic chondrocytes where the expression of Ihh, a main regulator of chondrocyte proliferation and differentiation, is induced, we investigated a potential interaction of Atoh8 function and Ihh signaling. By activating Ihh signaling with Purmorphamine we demonstrate that Atoh8 regulates chondrocyte proliferation in parallel or downstream of Ihh signaling while it acts on the onset of hypertrophy upstream of Ihh likely by modulating Ihh expression levels.
Collapse
Affiliation(s)
- Nadine Schroeder
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Manuela Wuelling
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Andrea Vortkamp
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Single cell RNA-sequencing identified Dec2 as a suppressive factor for spermatogonial differentiation by inhibiting Sohlh1 expression. Sci Rep 2019; 9:6063. [PMID: 30988352 PMCID: PMC6465314 DOI: 10.1038/s41598-019-42578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
Gonocyte-to-spermatogonia transition is a critical fate determination process to initiate sperm production throughout the lifecycle. However, the molecular dynamics of this process has not been fully elucidated mainly due to the asynchronized differentiation stages of neonatal germ cells. In this study, we employed single cell RNA sequencing analyses of P1.5–5.5 germ cells to clarify the temporal dynamics of gene expression during gonocyte-to-spermatogonia transition. The analyses identified transcriptional modules, one of which regulates spermatogonial gene network in neonatal germ cells. Among them, we identified Dec2, a bHLH-type transcription factor, as a transcriptional repressor for a spermatogonial differentiation factor Sohlh1. Deficiency of Dec2 in mice induces significant reduction of undifferentiated spermatogonia, and transplantation assay using Dec2-depleted cells also demonstrated the impaired efficiency of engraftment, suggesting its role in maintaining spermatogonial stem cells (SSCs). Collectively, this study revealed the intrinsic role of a new SSC factor Dec2, which protects germ cells from inadequate differentiation during neonatal testis development.
Collapse
|
27
|
β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. PLoS Genet 2018; 14:e1007846. [PMID: 30557298 PMCID: PMC6312353 DOI: 10.1371/journal.pgen.1007846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/31/2018] [Accepted: 11/21/2018] [Indexed: 02/02/2023] Open
Abstract
During neuronal development, β-actin serves an important role in growth cone mediated axon guidance. Consistent with this notion, in vivo ablation of the β-actin gene leads to abnormalities in the nervous system. However, whether β-actin is involved in the regulation of neuronal gene programs is not known. In this study, we directly reprogramed β-actin+/+ WT, β-actin+/- HET and β-actin-/- KO mouse embryonic fibroblast (MEFs) into chemically induced neurons (CiNeurons). Using RNA-seq analysis, we profiled the transcriptome changes among the CiNeurons. We discovered that induction of neuronal gene programs was impaired in KO CiNeurons in comparison to WT ones, whereas HET CiNeurons showed an intermediate levels of induction. ChIP-seq analysis of heterochromatin markers demonstrated that the impaired expression of neuronal gene programs correlated with the elevated H3K9 and H3K27 methylation levels at gene loci in β-actin deficient MEFs, which is linked to the loss of chromatin association of the BAF complex ATPase subunit Brg1. Together, our study shows that heterochromatin alteration in β-actin null MEFs impedes the induction of neuronal gene programs during direct reprograming. These findings are in line with the notion that H3K9Me3-based heterochromatin forms a major epigenetic barrier during cell fate change. Although β-actin plays an important role in growth cone mediated axon guidance in neurons, the potential role of β-actin in controlling neuron differentiation remains unknown. Here, we converted β-actin+/+ WT, β-actin+/- HET and β-actin-/- KO mouse embryonic fibroblast (MEFs) into chemically induced neurons (CiNeurons) by direct reprograming. We found that the up-regulation of neuronal programs was impaired in β-actin-/- CiNeurons in comparison to WT ones. β-actin+/- HET CiNeurons showed an intermediate level of neuronal program expression, suggesting that β-actin dosage plays an important role during direct neuronal reprograming. Importantly, the impaired up-regulation of neuron-related genes was associated with the elevated H3K9 and H3K27 methylation levels at gene loci in KO MEFs. These epigenetic changes were accompanied by the impaired chromatin association of Brg1-containing chromatin remodeling BAF complex in β-actin null cells. Together our study demonstrates that β-actin is required for the optimal induction of neuronal gene programs during direct reprograming by presetting a favorable chromatin status.
Collapse
|
28
|
Le Dréau G, Escalona R, Fueyo R, Herrera A, Martínez JD, Usieto S, Menendez A, Pons S, Martinez-Balbas MA, Marti E. E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors' activity in an E-box-dependent manner. eLife 2018; 7:37267. [PMID: 30095408 PMCID: PMC6126921 DOI: 10.7554/elife.37267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins’ activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action. The brain and spinal cord are made up of a range of cell types that carry out different roles within the central nervous system. Each type of neuron is uniquely specialized to do its job. Neurons are produced early during development, when they differentiate from a group of cells called neural progenitor cells. Within these groups, molecules called proneural proteins control which types of neurons will develop from the neural progenitor cells, and how many of them. Proneural proteins work by binding to specific patterns in the DNA, called E-boxes, with the help of E proteins. E proteins are typically understood to be passive partners, working with each different proneural protein indiscriminately. However, Le Dréau, Escalona et al. discovered that E proteins in fact have a much more active role to play. Using chick embryos, it was found that E proteins influence the way different proneural proteins bind to DNA. The E proteins have preferences for certain E-boxes in the DNA, just like proneural proteins do. The E proteins enhanced the activity of the proneural proteins that share their E-box preference, and reined in the activity of proneural proteins that prefer other E-boxes. As a result, the E proteins controlled the ability of these proteins to instruct neural progenitor cells to produce specific, specialized neurons, and thus ensured that the distinct types of neurons were produced in appropriate amounts. These findings will help shed light on the roles E proteins play in the development of the central nervous system, and the processes that control growth and lead to cell diversity. The results may also have applications in the field of regenerative medicine, as proneural proteins play an important role in cell reprogramming.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - René Escalona
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Antonio Herrera
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Juan D Martínez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Anghara Menendez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Sebastian Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Marian A Martinez-Balbas
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Elisa Marti
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Azzarelli R, Simons BD, Philpott A. The developmental origin of brain tumours: a cellular and molecular framework. Development 2018; 145:145/10/dev162693. [PMID: 29759978 PMCID: PMC6001369 DOI: 10.1242/dev.162693] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation. Summary: Lineage-tracing work in glioma and medulloblastoma reveals similarities between neuronal development and brain tumours, identifying potential new therapeutic avenues that exploit vulnerabilities in tumour growth patterns.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Benjamin D Simons
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK .,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
30
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
31
|
de Melo J, Clark BS, Venkataraman A, Shiau F, Zibetti C, Blackshaw S. Ldb1- and Rnf12-dependent regulation of Lhx2 controls the relative balance between neurogenesis and gliogenesis in the retina. Development 2018; 145:dev.159970. [PMID: 29650591 DOI: 10.1242/dev.159970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
Abstract
Precise control of the relative ratio of retinal neurons and glia generated during development is essential for visual function. We show that Lhx2, which encodes a LIM-homeodomain transcription factor essential for specification and differentiation of retinal Müller glia, also plays a crucial role in the development of retinal neurons. Overexpression of Lhx2 with its transcriptional co-activator Ldb1 triggers cell cycle exit and inhibits both Notch signaling and retinal gliogenesis. Lhx2/Ldb1 overexpression also induces the formation of wide-field amacrine cells (wfACs). In contrast, Rnf12, which encodes a negative regulator of LDB1, is necessary for the initiation of retinal gliogenesis. We also show that Lhx2-dependent neurogenesis and wfAC formation requires Ascl1 and Neurog2, and that Lhx2 is necessary for their expression, although overexpression of Lhx2/Ldb1 does not elevate expression of these proneural bHLH factors. Finally, we demonstrate that the relative level of the LHX2-LDB1 complex in the retina decreases in tandem with the onset of gliogenesis. These findings show that control of Lhx2 function by Ldb1 and Rnf12 underpins the coordinated differentiation of neurons and Müller glia in postnatal retina.
Collapse
Affiliation(s)
- Jimmy de Melo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anand Venkataraman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cristina Zibetti
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Mora N, Oliva C, Fiers M, Ejsmont R, Soldano A, Zhang TT, Yan J, Claeys A, De Geest N, Hassan BA. A Temporal Transcriptional Switch Governs Stem Cell Division, Neuronal Numbers, and Maintenance of Differentiation. Dev Cell 2018; 45:53-66.e5. [DOI: 10.1016/j.devcel.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023]
|
33
|
Neurogenetic asymmetries in the catshark developing habenulae: mechanistic and evolutionary implications. Sci Rep 2018; 8:4616. [PMID: 29545638 PMCID: PMC5854604 DOI: 10.1038/s41598-018-22851-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/01/2018] [Indexed: 12/25/2022] Open
Abstract
Analysis of the establishment of epithalamic asymmetry in two non-conventional model organisms, a cartilaginous fish and a lamprey, has suggested that an essential role of Nodal signalling, likely to be ancestral in vertebrates, may have been largely lost in zebrafish. In order to decipher the cellular mechanisms underlying this divergence, we have characterised neurogenetic asymmetries during habenular development in the catshark Scyliorhinus canicula and addressed the mechanism involved in this process. As in zebrafish, neuronal differentiation starts earlier on the left side in the catshark habenulae, suggesting the conservation of a temporal regulation of neurogenesis. At later stages, marked, Alk4/5/7 dependent, size asymmetries having no clear counterparts in zebrafish also develop in neural progenitor territories, with a larger size of the proliferative, pseudostratified neuroepithelium, in the right habenula relative to the left one, but a higher cell number on the left of a more lateral, later formed population of neural progenitors. These data show that mechanisms resulting in an asymmetric, preferential maintenance of neural progenitors act both in the left and the right habenulae, on different cell populations. Such mechanisms may provide a substrate for quantitative variations accounting for the variability in size and laterality of habenular asymmetries across vertebrates.
Collapse
|
34
|
Slota LA, McClay DR. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo. Dev Biol 2018; 435:138-149. [PMID: 29331498 PMCID: PMC5837949 DOI: 10.1016/j.ydbio.2017.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms.
Collapse
Affiliation(s)
- Leslie A Slota
- Department of Biology, Duke University, Durham, NC 27708, United States
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
35
|
Abstract
Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program.
Collapse
|
36
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
37
|
Engineering new neurons: in vivo reprogramming in mammalian brain and spinal cord. Cell Tissue Res 2017; 371:201-212. [PMID: 29170823 DOI: 10.1007/s00441-017-2729-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Neurons are postmitotic. Once lost because of injury or degeneration, they do not regenerate in most regions of the mammalian central nervous system. Recent advancements nevertheless clearly reveal that new neurons can be reprogrammed from non-neuronal cells, especially glial cells, in the adult mammalian brain and spinal cord. Here, we give a brief overview concerning cell fate reprogramming in vivo and then focus on the underlying molecular and cellular mechanisms. Specifically, we critically review the cellular sources and the reprogramming factors for in vivo neuronal conversion. Influences of environmental cues and the challenges ahead are also discussed. The ability of inducing new neurons from an abundant and broadly distributed non-neuronal cell source brings new perspectives regarding regeneration-based therapies for traumatic brain and spinal cord injuries and degenerative diseases.
Collapse
|
38
|
NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors. Stem Cell Reports 2017; 9:1516-1529. [PMID: 29033307 PMCID: PMC5829327 DOI: 10.1016/j.stemcr.2017.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022] Open
Abstract
Loss of spiral ganglion neurons (SGNs) significantly contributes to hearing loss. Otic progenitor cell transplantation is a potential strategy to replace lost SGNs. Understanding how key transcription factors promote SGN differentiation in otic progenitors accelerates efforts for replacement therapies. A pro-neural transcription factor, Neurogenin1 (Neurog1), is essential for SGN development. Using an immortalized multipotent otic progenitor (iMOP) cell line that can self-renew and differentiate into otic neurons, NEUROG1 was enriched at the promoter of cyclin-dependent kinase 2 (Cdk2) and neurogenic differentiation 1 (NeuroD1) genes. Changes in H3K9ac and H3K9me3 deposition at the Cdk2 and NeuroD1 promoters suggested epigenetic regulation during iMOP proliferation and differentiation. In self-renewing iMOP cells, overexpression of NEUROG1 increased CDK2 to drive proliferation, while knockdown of NEUROG1 decreased CDK2 and reduced proliferation. In iMOP-derived neurons, overexpression of NEUROG1 accelerated acquisition of neuronal morphology, while knockdown of NEUROG1 prevented differentiation. Our findings suggest that NEUROG1 can promote proliferation or neuronal differentiation.
Collapse
|
39
|
The Potential of Targeting Brain Pathology with Ascl1/Mash1. Cells 2017; 6:cells6030026. [PMID: 28832532 PMCID: PMC5617972 DOI: 10.3390/cells6030026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The proneural factor Achaete-scute complex-like 1 (Ascl1/Mash1) acts as a pioneering transcription factor that initializes neuronal reprogramming. It drives neural progenitors and non-neuronal cells to exit the cell cycle, and promotes neuronal differentiation by activating neuronal target genes, even those that are normally repressed. Importantly, force-expression of Ascl1 was shown to drive proliferative reactive astroglia formed during stroke and glioblastoma stem cells towards neuronal differentiation, and this could potentially diminish CNS damage resulting from their proliferation. As a pro-neural factor, Ascl1 also has the general effect of enhancing neurite growth by damaged or surviving neurons. Here, a hypothesis that brain pathologies associated with traumatic/ischemic injury and malignancy could be targeted with pro-neural factors that drives neuronal differentiation is formulated and explored. Although a good number of caveats exist, exogenous over-expression of Ascl1, alone or in combination with other factors, may be worth further consideration as a therapeutic approach in brain injury and cancer.
Collapse
|
40
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
41
|
Luo S, Horvitz HR. The CDK8 Complex and Proneural Proteins Together Drive Neurogenesis from a Mesodermal Lineage. Curr Biol 2017; 27:661-672. [PMID: 28238659 DOI: 10.1016/j.cub.2017.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022]
Abstract
At least some animal species can generate neurons from mesoderm or endoderm, but the underlying mechanisms remain unknown. We screened for C. elegans mutants in which the presumptive mesoderm-derived I4 neuron adopts a muscle-like cell fate. From this screen, we identified HLH-3, the C. elegans homolog of a mammalian proneural protein (Ascl1) used for in vitro neuronal reprogramming, as required for efficient I4 neurogenesis. We discovered that the CDK-8 Mediator kinase module acts together with a second proneural protein, HLH-2, and in parallel to HLH-3 to promote I4 neurogenesis. Genetic analysis revealed that CDK-8 most likely promotes I4 neurogenesis by inhibiting the CDK-7/CYH-1 (CDK7/cyclin H) kinase module of the transcription initiation factor TFIIH. Ectopic expression of HLH-2 and HLH-3 together promoted expression of neuronal features in non-neuronal cells. These findings reveal that the Mediator CDK8 kinase module can promote non-ectodermal neurogenesis and suggest that inhibiting CDK7/cyclin H might similarly promote neurogenesis.
Collapse
Affiliation(s)
- Shuo Luo
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Kamata YU, Sumida T, Kobayashi Y, Ishikawa A, Kumamaru W, Mori Y. Introduction of ID2 Enhances Invasiveness in ID2-null Oral Squamous Cell Carcinoma Cells via the SNAIL Axis. Cancer Genomics Proteomics 2017; 13:493-497. [PMID: 27807072 DOI: 10.21873/cgp.20012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
AIM Inhibitor of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors that generally stimulate cell proliferation and inhibit differentiation. However, the role of ID2 in cancer progression remains ambiguous. Here, we investigated the function of ID2 in ID2-null oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We introduced an ID2 cDNA construct into ID2-null OSCC cells and compared them with empty-vector-transfected cells in terms of cell proliferation, invasion, and activity and expression of matrix metalloproteinase (MMP). RESULTS ID2 introduction resulted in enhanced malignant phenotypes. The ID2-expressing cells showed increased N-cadherin, vimentin, and E-cadherin expression and epithelial-mesenchymal transition. In addition, cell invasion drastically increased with increased expression and activity of MMP2. Immunoprecipitation revealed a direct interaction between ID2 and zinc finger transcription factor, snail family transcriptional repressor 1 (SNAIL1). CONCLUSION ID2 expression triggered a malignant phenotype, especially of invasive properties, through the ID2-SNAIL axis. Thus, ID2 represents a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Y U Kamata
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoki Sumida
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yosuke Kobayashi
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Ishikawa
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Wataru Kumamaru
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihide Mori
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
43
|
Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results Probl Cell Differ 2017; 61:183-210. [PMID: 28409305 DOI: 10.1007/978-3-319-53150-2_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.
Collapse
|
44
|
Kasim M, Heß V, Scholz H, Persson PB, Fähling M. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma. Front Mol Neurosci 2016; 9:156. [PMID: 28066180 PMCID: PMC5174122 DOI: 10.3389/fnmol.2016.00156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/07/2016] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy.
Collapse
Affiliation(s)
- Mumtaz Kasim
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Vicky Heß
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Pontus B Persson
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Michael Fähling
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
45
|
Okumura M, Chihara T. Function of pioneer neurons specified by the basic helix-loop-helix transcription factor atonal in neural development. Neural Regen Res 2016; 11:1394-1395. [PMID: 27857730 PMCID: PMC5090829 DOI: 10.4103/1673-5374.191201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Misako Okumura
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
46
|
Min Z, Lin H, Zhu X, Gao L, Khand AA, Tao Q. Ascl1 represses the mesendoderm induction in Xenopus. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1006-1015. [PMID: 27624953 DOI: 10.1093/abbs/gmw092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Ascl1 is a multi-functional regulator of neural development in invertebrates and vertebrates. Ectopic expression of Ascl1 can generate functional neurons from non-neural somatic cells. The abnormal expression of ASCL1 has been reported in several types of carcinomas. We have previously identified Ascl1 as a crucial maternal regulator of the germ layer pattern formation in Xenopus Functional studies have indicated that the maternally-supplied Ascl1 renders embryonic cells a propensity to adopt neural fates on one hand, and represses the mesendoderm formation on the other. However, it remains unclear how Ascl1 achieves its repressor function during the activation of mesendoderm genes by VegT. Here, we performed series of gain- and loss-of-function experiments and found that: (i) VegT, the maternal mesendoderm determinant in Xenopus, is required for the deposition of H3K27ac and H3K9ac at its target gene loci during mesendoderm induction; (ii) Ascl1 and VegT antagonistically modulate the deposition of acetylated histone marks at mesendoderm gene loci; (iii) Ascl1 overexpression reduces the VegT-occupancy at mesendoderm gene loci; (iv) Ascl1 but not Neurog2 possesses a repressive activity during mesendoderm induction. These findings reveal a novel repressive function for Ascl1 in inhibiting non-neural fates during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- Zheying Min
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xuechen Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Li Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Aftab A Khand
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| |
Collapse
|
47
|
Sumida T, Ishikawa A, Nakano H, Yamada T, Mori Y, Desprez PY. Targeting ID2 expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells. Genes Cells 2016; 21:915-20. [PMID: 27364596 DOI: 10.1111/gtc.12389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
Abstract
Inhibitors of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We previously determined that ID1 was highly expressed in aggressive salivary gland cancer (SGC) cells in culture. Here, we show that ID2 is also expressed in aggressive SGC cells. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. Moreover, ID2 knockdown almost completely suppresses invasion and the expression of matrix metalloproteinase 9. In conclusion, ID2 expression maintains an aggressive phenotype in SGC cells, and ID2 repression triggers a reduction in cell aggressiveness. ID2 therefore represents a potential therapeutic target during SGC progression. ID proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. ID2 therefore represents a potential therapeutic target during SGC progression.
Collapse
Affiliation(s)
- Tomoki Sumida
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Akiko Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, 454, Shitsukawa, Toon, 7910295, Japan
| | - Hiroyuki Nakano
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Tomohiro Yamada
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Yoshihide Mori
- Section of Oral & Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 8128582, Japan
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, California, 94107, USA
| |
Collapse
|
48
|
Abstract
Building a nervous system requires a precise sequence of genetic transitions, mediated in part by the temporal and spatial regulation of transcription factors. Quan et al. add to our understanding of this regulation by describing an evolutionarily conserved post-translational mechanism that rapidly extinguishes proneural protein activity in neural precursors.
Collapse
Affiliation(s)
- Richard S Mann
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Clare E Howard
- Department of Biochemistry and Molecular Biophysics, Zuckerman Mind Brain Behavior Institute, Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| |
Collapse
|
49
|
The Sumo protease Senp7 is required for proper neuronal differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1490-8. [PMID: 27039038 DOI: 10.1016/j.bbamcr.2016.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/17/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
Abstract
Covalent attachment of the Small ubiquitin-like modifier (Sumo) polypeptide to proteins regulates many processes in the eukaryotic cell. In the nervous system, Sumo has been associated with the synapsis and with neurodegenerative diseases. However, its involvement in regulating neuronal differentiation remains largely unknown. Here we show that net Sumo deconjugation is observed during neurogenesis and that Sumo overexpression impairs this process. In an attempt to shed light on the underlying mechanisms, we have analyzed the expression profile of genes coding for components of the sumoylation pathway following induction of neuronal differentiation. Interestingly, we observed strong upregulation of the Senp7 protease at both mRNA and protein levels under differentiation conditions. Sumo proteases, by removing Sumo from targets, are key regulators of sumoylation. Strikingly, loss-of-function analysis demonstrated that Senp7 is required for neuronal differentiation not only in a model cell line, but also in the developing neural tube. Finally, reporter-based analysis of the Senp7 promoter indicated that Senp7 was transiently activated at early stages of neuronal differentiation. Thus, the Sumo protease Senp7 adds to the list of factors involved in vertebrate neurogenesis.
Collapse
|
50
|
Gao L, Zhu X, Chen G, Ma X, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. Development 2015; 143:492-503. [PMID: 26700681 PMCID: PMC4760308 DOI: 10.1242/dev.126292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Maternally expressed proteins function in vertebrates to establish the major body axes of the embryo and to establish a pre-pattern that sets the stage for later-acting zygotic signals. This pre-patterning drives the propensity of Xenopus animal cap cells to adopt neural fates under various experimental conditions. Previous studies found that the maternally expressed transcription factor, encoded by the Xenopus achaete scute-like gene ascl1, is enriched at the animal pole. Asc1l is a bHLH protein involved in neural development, but its maternal function has not been studied. Here, we performed a series of gain- and loss-of-function experiments on maternal ascl1, and present three novel findings. First, Ascl1 is a repressor of mesendoderm induced by VegT, but not of Nodal-induced mesendoderm. Second, a previously uncharacterized N-terminal domain of Ascl1 interacts with HDAC1 to inhibit mesendoderm gene expression. This N-terminal domain is dispensable for its neurogenic function, indicating that Ascl1 acts by different mechanisms at different times. Ascl1-mediated repression of mesendoderm genes was dependent on HDAC activity and accompanied by histone deacetylation in the promoter regions of VegT targets. Finally, maternal Ascl1 is required for animal cap cells to retain their competence to adopt neural fates. These results establish maternal Asc1l as a key factor in establishing pre-patterning of the early embryo, acting in opposition to VegT and biasing the animal pole to adopt neural fates. The data presented here significantly extend our understanding of early embryonic pattern formation. Summary: The proneural factor ASCL1 recruits HDAC1 to repress VegT-induced, but not Nodal-induced, mesendoderm formation via a previously uncharacterized N-terminal domain.
Collapse
Affiliation(s)
- Li Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xuechen Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Geng Chen
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xin Ma
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhang
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Aftab A Khand
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Huijuan Shi
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Fei Gu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Yuemeng Chen
- Tianjin Normal University College of Life Science, Binshuixidao (extension line) 393, Xinqing District, Tianjin 300387, China
| | - Haiyan Zhang
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Lei He
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| |
Collapse
|