1
|
Thanapaul RJRS, Alamneh YA, Finnegan DK, Antonic V, Abu-Taleb R, Czintos C, Boone D, Su W, Sajja VS, Getnet D, Roberds A, Walsh TJ, Bobrov AG. Development of a Combat-Relevant Murine Model of Wound Mucormycosis: A Platform for the Pre-Clinical Investigation of Novel Therapeutics for Wound-Invasive Fungal Diseases. J Fungi (Basel) 2024; 10:364. [PMID: 38786719 PMCID: PMC11122444 DOI: 10.3390/jof10050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions. Our study establishes combat-relevant murine models of wound mucormycosis using Rhizopus arrhizus and Lichtheimia corymbifera, two Mucorales species that cause wound mucormycosis worldwide. These models recapitulate the characteristics of combat-related wounds from explosions, including blast overpressure exposure, full-thickness skin injury, fascial damage, and muscle crush. The independent inoculation of both pathogens caused sustained infections and enlarged wounds. Histopathological analysis confirmed the presence of necrosis and fungal hyphae in the wound bed and adjacent muscle tissue. Semi-quantification of fungal burden by colony-forming units corroborated the infection. Treatment with liposomal amphotericin B, 30 mg/kg, effectively controlled R. arrhizus growth and significantly reduced residual fungal burden in infected wounds (p < 0.001). This study establishes the first combat-relevant murine model of wound mucormycosis, paving the way for developing and evaluating novel antifungal therapies against combat-associated WIFDs.
Collapse
Affiliation(s)
- Rex J. R. Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Daniel K. Finnegan
- Veterinary Services Program, Pathology Department, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Christine Czintos
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dylan Boone
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Wanwen Su
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Venkatasivasai S. Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Thomas J. Walsh
- Departments of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23220, USA
| | - Alexander G. Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
2
|
Ali SG, Jalal M, Ahmad H, Umar K, Ahmad A, Alshammari MB, Khan HM. Biosynthesis of Gold Nanoparticles and Its Effect against Pseudomonas aeruginosa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248685. [PMID: 36557818 PMCID: PMC9781250 DOI: 10.3390/molecules27248685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Jalal
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Hilal Ahmad
- SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
- Correspondence: (K.U.); (A.A.)
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (K.U.); (A.A.)
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haris Manzoor Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
Rajasenan S, Osmani AH, Osmani SA. Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genet Biol 2022; 163:103739. [PMID: 36089227 DOI: 10.1016/j.fgb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
Fungal biofilm founder cells experience self-generated hypoxia leading to dramatic changes in their cell biology. For example, during Aspergillus nidulans biofilm formation microtubule (MT) disassembly is triggered causing dispersal of EB1 from MT tips. This process is dependent on SrbA, a sterol regulatory element-binding transcription factor required for adaptation to hypoxia. We show that SrbA, an ER resident protein prior to activation, is proteolytically activated during early stages of biofilm formation and that, like SrbA itself, its activating proteases are also required for normal biofilm MT disassembly. In addition to SrbA, the AtrR transcription factor is also found to be required to modulate cellular responses to gaseous signaling during biofilm development. Using co-cultures, we further show that cells lacking srbA or atrR are capable of responding to biofilm generated gaseous microenvironments but are actually more sensitive to this signal than wild type cells. SrbA is a regulator of ergosterol biosynthetic genes and we find that the levels of seven GFP-tagged Erg proteins differentially accumulate during biofilm formation with various dependencies on SrbA for their accumulation. This uncovers a complex pattern of regulation with biofilm accumulation of only some Erg proteins being dependent on SrbA with others accumulating to higher levels in its absence. Because different membrane sterols are known to influence cell permeability to gaseous molecules, including oxygen, we propose that differential regulation of ergosterol biosynthetic proteins by SrbA potentially calibrates the cell's responsiveness to gaseous signaling which in turn modifies the cell biology of developing biofilm cells.
Collapse
Affiliation(s)
- Shobhana Rajasenan
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
5
|
In Vitro and In Vivo Activity of Luliconazole (NND-502) against Planktonic Cells and Biofilms of Azole Resistant Aspergillus fumigatus. J Fungi (Basel) 2022; 8:jof8040350. [PMID: 35448581 PMCID: PMC9025574 DOI: 10.3390/jof8040350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Aspergillus fumigatus has become a significant threat in clinical settings. Cases of invasive infections with azole-resistant A. fumigatus isolates (ARAF) increased recently. Developing strategies for dealing with ARAF has become crucial. We here investigated the in-vitro and in-vivo activity of the imidazole luliconazole (LLCZ) against clinical ARAF. In total, the LLCZ minimum inhibitory concentrations (MICs) were tested for 101 A. fumigatus isolates (84 ARAF and 17 azole-susceptible A. fumigatus as wild-type controls) according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Additionally, antifungal activity was assessed in vitro, including an XTT planktonic growth kinetics assay and biofilm assays (crystal violet and XTT assay). Further, a single-dose LLCZ treatment (152 mg/L) was tested for seven days in vivo in a Galleria mellonella infection model. LLCZ showed an MIC50 of 0.002 mg/L and no significant difference was found between triazole-resistant and wild-type isolates. Growth inhibition took place between 6 and 12 h after the start of incubation. LLCZ inhibited biofilm formation when added in the pre-adhesion stages. In vivo, single-dose LLCZ-treated larvae show a significantly higher survival percentage than the control group (20%). In conclusion, LLCZ has activity against planktonic cells and early biofilms of ARAF.
Collapse
|
6
|
Yang L, Tian Z, Zhou L, Zhu L, Sun C, Huang M, Peng J, Guo G. In vitro Antifungal Activity of a Novel Antimicrobial Peptide AMP-17 Against Planktonic Cells and Biofilms of Cryptococcus neoformans. Infect Drug Resist 2022; 15:233-248. [PMID: 35115792 PMCID: PMC8800587 DOI: 10.2147/idr.s344246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Background Cryptococcus neoformans is a common human fungal pathogen in immunocompromised people, as well as a prevalent cause of meningitis in HIV-infected individuals. With the emergence of clinical fungal resistance and the shortage of antifungal drugs, it is urgent to discover novel antifungal agents. AMP-17, a novel antimicrobial peptide from Musca domestica, has antifungal activity against C. neoformans. However, its antifungal and anti-biofilm activities remain unclear. Thus, this study aimed to evaluate the antifungal activity of AMP-17 against planktonic cells and biofilms of C. neoformans. Methods The minimum inhibitory concentration (MIC), the biofilm inhibitory and eradicating concentration (BIC and BEC) were determined by the broth microdilution assay or the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay, respectively. The inhibitory and killing activities of AMP-17 against C. neoformans were investigated through the time-inhibition/killing kinetic curves. The potential antifungal mechanism of AMP-17 was detected by flow cytometry, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The efficiency of AMP-17 against biofilm formation or preformed biofilm was evaluated by crystal violet staining and XTT reduction assays. The morphology of pre-biofilms was tested by optical microscopy (OM) and CLSM. Results AMP-17 exhibited in vitro antifungal activity against C. neoformans planktonic cells and biofilms, with MICs of 4~16 μg/ml, BIC80 and BEC80 of 16~32 μg/ml, 64~128 μg/ml, respectively. In addition, the 2× and 4× MIC of AMP-17 exhibited similar inhibition levels compared to the 2× and 4× MIC of the clinical drugs FLC and AMB in C. neoformans growth. Moreover, the time-kill results showed that AMP-17 (8× MIC) did not significantly eliminate colony forming units (CFU) after 6 h of treatment; however, there was 2.9-log reduction in CFU of C. neoformans. Furthermore, increasing of the permeability of the fungal cell membrane was observed with the treatment of AMP-17, since the vast change as fungal leakage and cell membrane disruption. However, the DNA binding assay of AMP-17 indicated that the peptide did not target DNA. Besides, AMP-17 was superior in inhibiting and eradicating biofilms of C. neoformans compared with FLC. Conclusion AMP-17 exhibited potential in vitro antifungal activity against the planktonic cells and biofilms of C. neoformans, and it may disrupt fungal cell membranes through multi-target interactions, which provides a promising therapeutic strategy and experimental basis for Cryptococcus-associated infections.
Collapse
Affiliation(s)
- Longbing Yang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhuqing Tian
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Luoxiong Zhou
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- School of Public Health, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Lijuan Zhu
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Chaoqin Sun
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Mingjiao Huang
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Jian Peng
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Guo Guo
- School of Basic Medical Sciences, The Key and Characteristic Laboratory of Modern Pathogen Biology, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Correspondence: Guo Guo, Building Wuben, School of Basic Medical Sciences, Guizhou Medical University, College Town, Gui’an New District, Guiyang, 550025, People’s Republic of China, Tel/fax +86 851 882 59268, Email
| |
Collapse
|
7
|
Mat-Rani S, Chotprasert N, Srimaneekarn N, Choonharuangdej S. Fungicidal Effect of Lemongrass Essential Oil on Candida albicans Biofilm Pre-established on Maxillofacial Silicone Specimens. J Int Soc Prev Community Dent 2021; 11:525-530. [PMID: 34760796 PMCID: PMC8533043 DOI: 10.4103/jispcd.jispcd_63_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Aims: This in-vitro study aimed to evaluate the efficacy of lemongrass (Cymbopogon citratus) essential oil in eradicating Candida albicans biofilm pre-established on the maxillofacial silicone specimens. Materials and Methods: Two maxillofacial silicones, namely, MDX4-4210 and Multisil Epithetik, were used for the fabrication of 6 mm diameter disks (n = 21 for each brand of silicone). A 48-h mature C. albicans ATCC 10231 biofilm was pre-established on sterile silicone specimen. These disks were then exposed to various concentrations of lemongrass essential oil ranging from 0.31% to 5% (v/v), 20% (v/v) nystatin, and RPMI-1640 medium for 18–20 h. After exposure, the remaining viable fungal biofilm was examined by the XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide]-reduction assay. All data were analyzed by using a regression coefficient and a post hoc Tukey HSD multiple comparisons test (α = 0.05). Results: Different brands of silicone used for fabrication did not significantly affect the formation of mature C. albicans biofilm (P =0.302). A 5% (v/v) lemongrass essential oil significantly eliminated fungal biofilm by approximately 95% (P =0.031). However, less than 50% of the fungal biofilm was eliminated by the tested oil at a concentration as low as 0.31% (v/v). Furthermore, the fungicidal efficacy against C. albicans biofilm of lemongrass essential oil at 2.5% (v/v) was as potent as that of 20% (v/v) nystatin suspension (P = 0.99). Conclusion: Lemongrass essential oil expressed fungicidal effect on C. albicans biofilm pre-established on the disks fabricated from different brands of silicone. Additionally, the fungicidal effectiveness of the oil against the mature fungal biofilm was dose-dependent.
Collapse
Affiliation(s)
| | - Natdhanai Chotprasert
- Maxillofacial Prosthodontics, Department of Prosthodontics, Mahidol University, Bangkok, Thailand
| | | | - Suwan Choonharuangdej
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
9
|
Tits J, Berman J, Cammue BPA, Thevissen K. Combining Miconazole and Domiphen Bromide Results in Excess of Reactive Oxygen Species and Killing of Biofilm Cells. Front Cell Dev Biol 2021; 8:617214. [PMID: 33553152 PMCID: PMC7858260 DOI: 10.3389/fcell.2020.617214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/04/2022] Open
Abstract
Fungal biofilm-related infections are increasingly occurring. We previously identified a fungicidal antibiofilm combination, consisting of miconazole (MCZ) and the quaternary ammonium compound domiphen bromide (DB). DB eliminates tolerance rather than altering the susceptibility to MCZ of various Candida spp. Here we studied the mode of action of the MCZ-DB combination in more detail. We found that DB's action increases the permeability of the plasma membrane as well as that of the vacuolar membrane of Candida spp. Furthermore, the addition of DB affects the intracellular azole distribution. MCZ is a fungicidal azole that, apart from its well-known inhibition of ergosterol biosynthesis, also induces accumulation of reactive oxygen species (ROS). Interestingly, the MCZ-DB combination induced significantly more ROS in C. albicans biofilms as compared to single compound treatment. Co-administration of the antioxidant ascorbic acid resulted in abolishment of the ROS generated by MCZ-DB combination as well as its fungicidal action. In conclusion, increased intracellular MCZ availability due to DB's action results in excess of ROS and enhanced fungal cell killing.
Collapse
Affiliation(s)
- Jana Tits
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Pereira TC, de Menezes RT, de Oliveira HC, de Oliveira LD, Scorzoni L. In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin B against Cryptococcus neoformans. Pathog Dis 2021; 79:6070654. [PMID: 33417701 DOI: 10.1093/femspd/ftab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a yeast that mainly affects immunocompromised individuals and causes meningoencephalitis depending on the immune status of the host. The present study aimed to validate the efficacy of selective serotonin reuptake inhibitors, fluoxetine hydrochloride (FLH) and paroxetine hydrochloride (PAH), alone and in combination with amphotericin B (AmB) against C. neoformans. Susceptibility tests were conducted using the broth microdilution method and synergistic effects of combining FLH and PAH with AmB were analyzed using the checkerboard assay. Effects of minimum inhibitory concentration (MIC) and synergistic concentration were evaluated in biofilms by quantifying the biomass, measuring the viability by counting the colony-forming units (CFU/mL) and examining the size of the induced capsules. Cryptococcus neoformans was susceptible to FLH and PAH and the synergistic effect of FLH and PAH in combination with AmB reduced the MIC of AmB by up to 8-fold. The isolated substances and combination with AmB were able to reduce biofilm biomass and biofilm viability. In addition, FLH and PAH alone or in combination with AmB significantly decreased the size of the yeast capsules. Collectively, our results indicate the use of FLH and PAH as a promising prototype for the development of anti-cryptococcal drugs.
Collapse
Affiliation(s)
- Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Prof. Algacyr Munhoz Mader, 3775 Curitiba, PR 81350-010, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo, 777 São José dos Campos, São Paulo 12245-000, Brazil
| |
Collapse
|
11
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
12
|
Munusamy K, Loke MF, Vadivelu J, Tay ST. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microb Pathog 2020; 152:104614. [PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
Collapse
Affiliation(s)
- Komathy Munusamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Tits J, Cools F, De Cremer K, De Brucker K, Berman J, Verbruggen K, Gevaert B, Cos P, Cammue BPA, Thevissen K. Combination of Miconazole and Domiphen Bromide Is Fungicidal against Biofilms of Resistant Candida spp. Antimicrob Agents Chemother 2020; 64:e01296-20. [PMID: 32690639 PMCID: PMC7508569 DOI: 10.1128/aac.01296-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence and recurrence of mucosal biofilm-related Candida infections, such as oral and vulvovaginal candidiasis, are serious clinical issues. Vaginal infections caused by Candida spp., for example, affect 70 to 75% of women at least once during their lives. Miconazole (MCZ) is the preferred topical treatment against these fungal infections, yet it has only moderate antibiofilm activity. Through screening of a drug-repurposing library, we identified the quaternary ammonium compound domiphen bromide (DB) as an MCZ potentiator against Candida biofilms. DB displayed synergistic anti-Candida albicans biofilm activity with MCZ, reducing the number of viable biofilm cells 1,000-fold. In addition, the MCZ-DB combination also resulted in significant killing of biofilm cells of azole-resistant C. albicans, C. glabrata, and C. auris isolates. In vivo, the MCZ-DB combination had significantly improved activity in a vulvovaginal candidiasis rat model compared to that of single-compound treatments. Data from an artificial evolution experiment indicated that the development of resistance against the combination did not occur, highlighting the potential of MCZ-DB combination therapy to treat Candida biofilm-related infections.
Collapse
Affiliation(s)
- Jana Tits
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Freya Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Sahal G, Woerdenbag HJ, Hinrichs WLJ, Visser A, Tepper PG, Quax WJ, van der Mei HC, Bilkay IS. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112188. [PMID: 31470085 DOI: 10.1016/j.jep.2019.112188] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cymbopogon citratus (lemongrass) essential oil has been widely used as a traditional medicine and is well known for antimicrobial properties. Therefore, it might be a potent anti-infective and biofilm inhibitive against Candida tropicalis infections. Until now, no ideal coating or cleaning method based on an essential oil has been described to prevent biofilm formation of Candida strains on silicone rubber maxillofacial prostheses, voice prostheses and medical devices susceptible to C. tropicalis infections. AIM OF THE STUDY To investigate the antifungal and biofilm inhibitory effects of Cymbopogon citratus oil. Clinical isolates of C. tropicalis biofilms on different biomaterials were used to study the inhibitory effect. MATERIALS AND METHODS The efficacy of Cymbopogon citratus, Cuminum cyminum, Citrus limon and Cinnamomum verum essential oils were compared on biofilm formation of three C. tropicalis isolates on 24 well polystyrene plates. C. citratus oil coated silicone rubber surfaces were prepared using hypromellose ointment as a vehicle. The antifungal tests to determine minimum inhibitory and minimum fungicidal concentrations were assessed by a microbroth dilution method and biofilm formation was determined by a crystal violet binding assay. RESULTS C. tropicalis strains formed more biofilm on hydrophobic materials than on hydrophilic glass. C. citratus oil showed a high antifungal effect against all C. tropicalis strains. For comparison, C. limon oil and C. cyminum oil showed minor to no killing effect against the C. tropicalis strains. C. citratus oil had the lowest minimal inhibitory concentration of all essential oils tested and inhibited biofilm formation of all C. tropicalis strains. C. citratus oil coating on silicone rubber resulted in a 45-76% reduction in biofilm formation of all C. tropicalis strains. CONCLUSION Cymbopogon citratus oil has good potential to be used as an antifungal and antibiofilm agent on silicone rubber prostheses and medical devices on which C. tropicalis biofilms pose a serious risk for skin infections and may cause a shorter lifespan of the prosthesis.
Collapse
Affiliation(s)
- Gulcan Sahal
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division) Beytepe, 06800, Ankara, Turkey.
| | - Herman J Woerdenbag
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| | - Wouter L J Hinrichs
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| | - Anita Visser
- University of Groningen, University Medical Center Groningen, Department of Oral and Maxillofacial Surgery and Maxillofacial Prosthodontics, PO Box 30.001, 9700, RB, Groningen, the Netherlands.
| | - Pieter G Tepper
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| | - Wim J Quax
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| | - Henny C van der Mei
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands.
| | - Isil Seyis Bilkay
- Hacettepe University, Faculty of Sciences, Department of Biology (Biotechnology Division) Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
15
|
Jung J, Li L, Yeh CK, Ren X, Sun Y. Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109961. [DOI: 10.1016/j.msec.2019.109961] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/20/2019] [Accepted: 07/06/2019] [Indexed: 11/16/2022]
|
16
|
Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical β-Peptides To Prevent Candida albicans Biofilm Formation. Antimicrob Agents Chemother 2019; 63:AAC.02653-18. [PMID: 31209011 DOI: 10.1128/aac.02653-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/03/2019] [Indexed: 02/03/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for mucosal candidiasis and systemic candidemia in humans. Often, these infections are associated with the formation of drug-resistant biofilms on the surfaces of tissues or medical devices. Increased incidence of C. albicans resistance to current antifungals has heightened the need for new strategies to prevent or eliminate biofilm-related fungal infections. In prior studies, we designed 14-helical β-peptides to mimic the structural properties of natural antimicrobial α-peptides (AMPs) in an effort to develop active and selective antifungal compounds. These amphiphilic, cationic, helical β-peptides exhibited antifungal activity against planktonic C. albicans cells and inhibited biofilm formation in vitro and in vivo Recent studies have suggested the use of antivirulence agents in combination with antifungals. In this study, we investigated the use of compounds that target C. albicans polymorphism, such as 1-dodecanol, isoamyl alcohol, and farnesol, to attempt to improve β-peptide efficacy for preventing C. albicans biofilms. Isoamyl alcohol, which prevents hyphal formation, reduced the minimum biofilm prevention concentrations (MBPCs) of β-peptides by up to 128-fold. Combinations of isoamyl alcohol and antifungal β-peptides resulted in less than 10% hemolysis at the antifungal MBPCs. Overall, our results suggest potential benefits of combination therapies comprised of morphogenesis modulators and antifungal AMP peptidomimetics for preventing C. albicans biofilm formation.
Collapse
|
17
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Garcia-Perez JE, Mathé L, Humblet-Baron S, Braem A, Lagrou K, Van Dijck P, Liston A. A Framework for Understanding the Evasion of Host Immunity by Candida Biofilms. Front Immunol 2018; 9:538. [PMID: 29616035 PMCID: PMC5864854 DOI: 10.3389/fimmu.2018.00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Candida biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which Candida biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form Candida. Despite the induction of effective anti-Candida immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance.
Collapse
Affiliation(s)
- Josselyn E Garcia-Perez
- Laboratory of Translational Immunology, VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lotte Mathé
- Center for Microbiology VIB - KU Leuven, Heverlee, Belgium.,Department of Materials Engineering (MTM), KU Leuven, Heverlee, Belgium
| | - Stephanie Humblet-Baron
- Laboratory of Translational Immunology, VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Annabel Braem
- Surface and Interface Engineered Materials, Department of Materials Engineering (MTM), KU Leuven, Heverlee, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Center for Microbiology VIB - KU Leuven, Heverlee, Belgium.,Department of Materials Engineering (MTM), KU Leuven, Heverlee, Belgium
| | - Adrian Liston
- Laboratory of Translational Immunology, VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Kumari P, Mishra R, Arora N, Chatrath A, Gangwar R, Roy P, Prasad R. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 2017; 8:2161. [PMID: 29163441 PMCID: PMC5681911 DOI: 10.3389/fmicb.2017.02161] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptococcosis is an emerging and recalcitrant systemic infection occurring in immunocompromised patients. This invasive fungal infection is difficult to treat due to the ability of Cryptococcus neoformans and Cryptococcus laurentii to form biofilms resistant to standard antifungal treatment. The toxicity concern of these drugs has stimulated the search for natural therapeutic alternatives. Essential oil and their active components (EO-ACs) have shown to possess the variety of biological and pharmacological properties. In the present investigation the effect of six (EO-ACs) sourced from Oregano oil (Carvacrol), Cinnamon oil (Cinnamaldehyde), Lemongrass oil (Citral), Clove oil (Eugenol), Peppermint oil (Menthol) and Thyme oil (thymol) against three infectious forms; planktonic cells, biofilm formation and preformed biofilm of C. neoformans and C. laurentii were evaluated as compared to standard drugs. Data showed that antibiofilm activity of the tested EO-ACs were in the order: thymol>carvacrol>citral>eugenol=cinnamaldehyde>menthol respectively. The three most potent EO-ACs, thymol, carvacrol, and citral showed excellent antibiofilm activity at a much lower concentration against C. laurentii in comparison to C. neoformans indicating the resistant nature of the latter. Effect of the potent EO-ACs on the biofilm morphology was visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed the absence of extracellular polymeric matrix (EPM), reduction in cellular density and alteration in the surface morphology of biofilm cells. Further, to realize the efficacy of the EO-ACs in terms of human safety, cytotoxicity assays and co-culture model were evaluated. Thymol and carvacrol as compared to citral were the most efficient in terms of human safety in keratinocyte- Cryptococcus sp. co-culture infection model suggesting that these two can be further exploited as cost-effective and non-toxic anti-cryptococcal drugs.
Collapse
Affiliation(s)
- Poonam Kumari
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Neha Arora
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Apurva Chatrath
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Rashmi Gangwar
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Ramasare Prasad
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
21
|
Reen FJ, Phelan JP, Woods DF, Shanahan R, Cano R, Clarke S, McGlacken GP, O'Gara F. Harnessing Bacterial Signals for Suppression of Biofilm Formation in the Nosocomial Fungal Pathogen Aspergillus fumigatus. Front Microbiol 2016; 7:2074. [PMID: 28066389 PMCID: PMC5177741 DOI: 10.3389/fmicb.2016.02074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Faced with the continued emergence of antibiotic resistance to all known classes of antibiotics, a paradigm shift in approaches toward antifungal therapeutics is required. Well characterized in a broad spectrum of bacterial and fungal pathogens, biofilms are a key factor in limiting the effectiveness of conventional antibiotics. Therefore, therapeutics such as small molecules that prevent or disrupt biofilm formation would render pathogens susceptible to clearance by existing drugs. This is the first report describing the effect of the Pseudomonas aeruginosa alkylhydroxyquinolone interkingdom signal molecules 2-heptyl-3-hydroxy-4-quinolone and 2-heptyl-4-quinolone on biofilm formation in the important fungal pathogen Aspergillus fumigatus. Decoration of the anthranilate ring on the quinolone framework resulted in significant changes in the capacity of these chemical messages to suppress biofilm formation. Addition of methoxy or methyl groups at the C5-C7 positions led to retention of anti-biofilm activity, in some cases dependent on the alkyl chain length at position C2. In contrast, halogenation at either the C3 or C6 positions led to loss of activity, with one notable exception. Microscopic staining provided key insights into the structural impact of the parent and modified molecules, identifying lead compounds for further development.
Collapse
Affiliation(s)
- F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - John P Phelan
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland Cork, Ireland
| | - Rachel Shanahan
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Rafael Cano
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Sarah Clarke
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Gerard P McGlacken
- Department of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork - National University of Ireland Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of IrelandCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| |
Collapse
|
22
|
How promising are combinatorial drug strategies in combating Candida albicans biofilms? Future Med Chem 2016; 8:1383-5. [PMID: 27463947 DOI: 10.4155/fmc-2016-0127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
23
|
Benaducci T, Sardi JDCO, Lourencetti NMS, Scorzoni L, Gullo FP, Rossi SA, Derissi JB, de Azevedo Prata MC, Fusco-Almeida AM, Mendes-Giannini MJS. Virulence of Cryptococcus sp. Biofilms In Vitro and In Vivo using Galleria mellonella as an Alternative Model. Front Microbiol 2016; 7:290. [PMID: 27014214 PMCID: PMC4783715 DOI: 10.3389/fmicb.2016.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/23/2016] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans and C. gattii are fungal pathogens that are most commonly found in infections of the central nervous system, which cause life-threatening meningoencephalitis and can grow as a biofilm. Biofilms are structures conferring protection and resistance of microorganism to the antifungal drugs. This study compared the virulence of planktonic and biofilm cells of C. neoformans and C. gattii in Galleria mellonella model, as well as, the quantification of gene transcripts LAC1, URE1, and CAP59 by real time PCR. All three of the genes showed significantly increased expressions in the biofilm conditions for two species of Cryptococcus, when compared to planktonic cells. C. neoformans and C. gattii cells in the biofilm forms were more virulent than the planktonic cells in G. mellonella. This suggests that the biofilm conditions may contribute to the virulence profile. Our results contribute to a better understanding of the agents of cryptococcosis in the host-yeast aspects of the interaction.
Collapse
Affiliation(s)
- Tatiane Benaducci
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Janaina de C O Sardi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Natalia M S Lourencetti
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Fernanda P Gullo
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Suélen A Rossi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Jaqueline B Derissi
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | | | - Ana M Fusco-Almeida
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
24
|
Brown NA, Urban M, Hammond-Kosack KE. The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiol Rev 2016; 40:19-40. [PMID: 26468211 PMCID: PMC4703069 DOI: 10.1093/femsre/fuv042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed.
Collapse
Affiliation(s)
- Neil A Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| |
Collapse
|
25
|
Williams C, Rajendran R, Ramage G. Aspergillus Biofilms in Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:1-11. [PMID: 27271678 DOI: 10.1007/5584_2016_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biofilm phenotype of Aspergillus species is an important and accepted clinical entity. While industrially these biofilms have been used extensively in important biofermentations, their role in clinical infection is less well defined. A recent flurry of activity has demonstrated that these interesting filamentous moulds have the capacity to form biofilms both in vitro and in vivo, and through various investigations have shown that these are exquisitely resistant to antifungal therapies through a range of adaptive resistance mechanisms independent of defined genetic changes. This review will explore the clinical importance of these biofilms and provide contemporary information with respect to their clinical management.
Collapse
Affiliation(s)
- Craig Williams
- Institute of Healthcare Policy and Practice, University of West of Scotland, High St, Paisley, PA1 2BE, UK.
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School and Hospital, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School and Hospital, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
26
|
d'Enfert C, Janbon G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res 2015; 16:fov111. [PMID: 26678748 DOI: 10.1093/femsyr/fov111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Biofilms are a source of therapeutic failures because of their intrinsic tolerance to antimicrobials. Candida glabrata is one of the pathogenic yeasts that is responsible for life-threatening disseminated infections and able to form biofilms on medical devices such as vascular and urinary catheters. Recent progresses in the functional genomics of C. glabrata have been applied to the study of biofilm formation, revealing the contribution of an array of genes to this process. In particular, the Yak1 kinase and the Swi/Snf chromatin remodeling complex have been shown to relieve the repression exerted by subtelomeric silencing on the expression of the EPA6 and EPA7 genes, thus allowing the encoded adhesins to exert their key roles in biofilm formation. This provides a framework to evaluate the contribution of other genes that have been genetically linked to biofilm development and, based on the function of their orthologs in Saccharomyces cerevisiae, appear to have roles in adaptation to nutrient deprivation, calcium signaling, cell wall remodeling and adherence. Future studies combining the use of in vitro and animal models of biofilm formation, omics approaches and forward or reverse genetics are needed to expand the current knowledge of C. glabrata biofilm formation and reveal the mechanisms underlying their antifungal tolerance.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, F-75015 Paris, France INRA, USC2019, F-75015 Paris, France
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, F-75015 Paris, France INRA, USC2019, F-75015 Paris, France
| |
Collapse
|
27
|
Cordeiro RDA, Serpa R, Marques FJDF, de Melo CVS, Evangelista AJDJ, Mota VF, Brilhante RSN, Bandeira TDJPG, Rocha MFG, Sidrim JJC. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms. Can J Microbiol 2015; 61:827-36. [DOI: 10.1139/cjm-2015-0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosana Serpa
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Valquíria Ferreira Mota
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tereza de Jesus Pinheiro Gomes Bandeira
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- School of Medicine – Christus College – UNICHRISTUS – Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Medical Sciences, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
28
|
Jiang F, Yeh CK, Wen J, Sun Y. N-trimethylchitosan/alginate layer-by-layer self assembly coatings act as "fungal repellents" to prevent biofilm formation on healthcare materials. Adv Healthc Mater 2015; 4:469-75. [PMID: 25295485 DOI: 10.1002/adhm.201400428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Indexed: 12/18/2022]
Abstract
Fungal biofilm formation on healthcare materials is a significant clinical concern, often leading to medical-device-related infections, which are difficult to treat. A novel fungal repellent strategy is developed to control fungal biofilm formation. Methylacrylic acid (MAA) is grated onto poly methyl methacrylate (PMMA)-based biomaterials via plasma-initiated grafting polymerization. A cationic polymer, trimethylchitosan (TMC), is synthesized by reacting chitosan with methyl iodide. Sodium alginate (SA) is used as an anionic polymer. TMC/SA multilayers are coated onto the MAA-grafted PMMA via layer-by-layer self-assembly. The TMC/SA multilayer coatings significantly reduce fungal initial adhesion, and effectively prevent fungal biofilm formation. It is concluded that the anti-adhesive property of the surface is due to its hydrophilicity, and that the biofilm-inhibiting action is attributed to the antifungal activity of TMC as well as the chelating function of TMC and SA, which may have acted as fungal repellents. Phosphate buffered saline (PBS)-immersion tests show that the biofilm-modulating effect of the multilayer coatings is stable for more than 4 weeks. Furthermore, the presence of TMC/SA multilayer coatings improves the biocompatibility of the original PMMA, offering a simple, yet effective, strategy for controlling fungal biofilm formation.
Collapse
Affiliation(s)
- Fuguang Jiang
- Department of Chemistry; University of Massachusetts; Lowell MA 01854 USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry; University of Texas Health Science Center at San Antonio and Geriatric Research; Education and Clinical Center; Audie L. Murphy Division; South Texas Veterans Health Care System; San Antonio TX 78229 USA
| | - Jianchuan Wen
- Department of Chemistry; University of Massachusetts; Lowell MA 01854 USA
| | - Yuyu Sun
- Department of Chemistry; University of Massachusetts; Lowell MA 01854 USA
| |
Collapse
|
29
|
The Role of Antifungals against Candida Biofilm in Catheter-Related Candidemia. Antibiotics (Basel) 2014; 4:1-17. [PMID: 27025612 PMCID: PMC4790322 DOI: 10.3390/antibiotics4010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Catheter-related bloodstream infection (C-RBSI) is one of the most frequent nosocomial infections. It is associated with high rates of morbidity and mortality. Candida spp. is the third most common cause of C-RBSI after coagulase-negative staphylococci and Staphylococcus aureus and is responsible for approximately 8% of episodes. The main cause of catheter-related candidemia is the ability of some Candida strains-mainly C. albicans and C. parapsilosis-to produce biofilms. Many in vitro and in vivo models have been designed to assess the activity of antifungal drugs against Candida biofilms. Echinocandins have proven to be the most active antifungal drugs. Potential options in situations where the catheter cannot be removed include the combination of systemic and lock antifungal therapy. However, well-designed and -executed clinical trials must be performed before firm recommendations can be issued.
Collapse
|
30
|
Rajendran R, Sherry L, Lappin DF, Nile CJ, Smith K, Williams C, Munro CA, Ramage G. Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiol 2014; 14:303. [PMID: 25476750 PMCID: PMC4262977 DOI: 10.1186/s12866-014-0303-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Biofilm formation by Candida albicans has shown to be highly variable and is directly associated with pathogenicity and poor clinical outcomes in patients at risk. The aim of this study was to test the hypotheses that the extracellular DNA release by C. albicans is strain dependent and is associated with biofilm heterogeneity. Results Initially, biofilm formed by C. albicans high biofilm formers (HBF) or low biofilm formers (LBF) were treated with DNase to find whether eDNA play a role in their biofilm formation. Digestion of biofilm eDNA significantly reduced the HBF biofilm biomass by five fold compared to untreated controls. In addition, quantification of eDNA over the period of biofilm formation by SYBR green assay demonstrate a significantly higher level of 2 to 6 fold in HBF compared to LBF. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase genes, a marker of autolysis, were upregulated in 24 h biofilm formation by HBF compared to LBF, indicating autolysis pathway possibly involved in causing variation. The biofilm biomass and eDNA release by single (∆cht2, ∆cht3) and double knockout (∆cht2/∆cht3) chitinase mutants were significantly less compared to their parental strain CA14, confirming the role of chitinases in eDNA release and biofilm formation. Correlation analysis found a positive correlation between chitinases and HWP1, suggesting eDNA may release during the hyphal growth. Finally, we showed a combinational treatment of biofilms with DNase or chitinase inhibitor (acetazolamide) plus amphotericin B significantly improved antifungal susceptibility by 2 to 8 fold. Conclusions Collectively, these data show that eDNA release by C. albicans clinical isolates is variable and is associated with differential biofilm formation. Digestion of biofilm eDNA by DNase may provide a novel therapeutic strategies to destabilise biofilm growth and improves antifungal sensitivity. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0303-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Leighann Sherry
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - David F Lappin
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Chris J Nile
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Karen Smith
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley, UK.
| | - Craig Williams
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley, UK.
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|
31
|
Bojsen R, Regenberg B, Folkesson A. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase. BMC Microbiol 2014; 14:305. [PMID: 25472667 PMCID: PMC4258017 DOI: 10.1186/s12866-014-0305-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. Results We used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response of growing biofilms to antifungal drugs was similar to the response of exponentially growing planktonic cells. The response in mature biofilm was similar to that of non-growing planktonic cells. These results confirmed the importance of growth phase on drug efficacy. Conclusions We showed that in vitro susceptibility to antifungal drugs was independent of biofilm or planktonic growth mode. Instead, drug tolerance was a consequence of growth arrest achievable by both planktonic and biofilm populations. Our results suggest that efficient strategies for treatment of yeast biofilm might be developed by targeting of non-dividing cells.
Collapse
Affiliation(s)
- Rasmus Bojsen
- Department of Systems Biology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | | | | |
Collapse
|
32
|
Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrob Agents Chemother 2014; 59:421-6. [PMID: 25367916 DOI: 10.1128/aac.04229-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mucosal biofilm-related fungal infections are very common, and the incidence of recurrent oral and vulvovaginal candidiasis is significant. As resistance to azoles (the preferred treatment) is occurring, we aimed at identifying compounds that increase the activity of miconazole against Candida albicans biofilms. We screened 1,600 compounds of a drug-repositioning library in combination with a subinhibitory concentration of miconazole. Synergy between the best identified potentiators and miconazole was characterized by checkerboard analyses and fractional inhibitory concentration indices. Hexachlorophene, pyrvinium pamoate, and artesunate act synergistically with miconazole in affecting C. albicans biofilms. Synergy was most pronounced for artesunate and structural homologues thereof. No synergistic effect could be observed between artesunate and fluconazole, caspofungin, or amphotericin B. Our data reveal enhancement of the antibiofilm activity of miconazole by artesunate, pointing to potential combination therapy consisting of miconazole and artesunate to treat C. albicans biofilm-related infections.
Collapse
|
33
|
Wang X, Dong D, Cheng J, Fan X, Zhao Y. Relationship between biofilms and clinical features in patients with sinus fungal ball. Eur Arch Otorhinolaryngol 2014; 272:2363-9. [PMID: 25359193 DOI: 10.1007/s00405-014-3361-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/19/2014] [Indexed: 02/07/2023]
Abstract
The presence of bacterial biofilms (BBF) and fungal biofilms (FBF) is associated with greater disease severity in chronic rhinosinusitis. However, researches on biofilms in fungal rhinosinusitis are rare. This study investigated the relationship between biofilms and clinical features in patients with sinus fungal ball (SFB). Sixty-four SFB patients undergoing endoscopic sinus surgery and 21 controls were enrolled in this study. Mucosal samples from nasal sinuses were collected for biofilm detection under confocal scanning laser microscopy (CSLM). The general clinical data, Lund-Mackay computed tomography (CT) score, Lund-Kennedy endoscopy score, Global Osteitis Scoring Scale (GOSS) score, Sinonasal Outcome Test (SNOT)-22 score and visual analog scale (VAS) score were recorded. Associations between these parameters and biofilms were assessed. Under CSLM, the positive rates of BBF and FBF were 45.3 % (29/64) and 21.9 % (14/64), respectively in the SFB group but none in controls. When sub-classified according to biofilm status, the BBF-positive subgroup had significantly higher Lund-Mackay score and GOSS score than the BBF-negative one, but there were no differences in demographic characteristics, health-related quality-of-life and endoscopic inflammatory severity. BBF and FBF coexisted on the sinus mucosa of the patients with SFB. BBF was associated with more severe disease, but the distribution of FBF did not affect the severity of SFB.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Construction East Road, Zhengzhou, 450000, China
| | | | | | | | | |
Collapse
|
34
|
Fletcher MH, Jennings MC, Wuest WM. Draining the moat: disrupting bacterial biofilms with natural products. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Ramage G, Robertson SN, Williams C. Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents 2014; 43:114-20. [DOI: 10.1016/j.ijantimicag.2013.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
36
|
Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 2014; 13:1545-59. [PMID: 24467693 PMCID: PMC3993910 DOI: 10.1021/pr401075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Cryptococcus neoformans, a pathogenic yeast, causes
meningoencephalitis, especially in immunocompromised patients, leading
in some cases to death. Microbes in biofilms can cause persistent
infections, which are harder to treat. Cryptococcal biofilms are becoming
common due to the growing use of brain valves and other medical devices.
Using shotgun proteomics we determine the differences in protein abundance
between biofilm and planktonic cells. Applying bioinformatic tools,
we also evaluated the metabolic pathways involved in biofilm maintenance
and protein interactions. Our proteomic data suggest general changes
in metabolism, protein turnover, and global stress responses. Biofilm
cells show an increase in proteins related to oxidation–reduction,
proteolysis, and response to stress and a reduction in proteins related
to metabolic process, transport, and translation. An increase in pyruvate-utilizing
enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived
energy acquisition. Additionally, we assign putative roles to 33 proteins
previously categorized as hypothetical. Many changes in metabolic
enzymes were identified in studies of bacterial biofilm, potentially
revealing a conserved strategy in biofilm lifestyle.
Collapse
Affiliation(s)
- Lucélia Santi
- Department of Chemical Physiology, The Scripps Research Institute , North Torrey Pines Road, Suite 11, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|