1
|
Srivastava Y, Donta M, Mireles LL, Paulucci-Holthauzen A, Shi L, Bedford MT, Waxham MN, McCrea PD. Exploring the PDZ, DUF, and LIM Domains of Pdlim5 in Dendrite Branching. Int J Mol Sci 2024; 25:8326. [PMID: 39125895 PMCID: PMC11312917 DOI: 10.3390/ijms25158326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The branched architecture of neuronal dendrites is a key factor in how neurons form ordered networks and discoveries continue to be made identifying proteins and protein-protein interactions that direct or execute the branching and extension of dendrites. Our prior work showed that the molecular scaffold Pdlim5 and delta-catenin, in conjunction, are two proteins that help regulate the branching and elongation of dendrites in cultured hippocampal neurons and do so through a phosphorylation-dependent mechanism triggered by upstream glutamate signaling. In this report we have focused on Pdlim5's multiple scaffolding domains and how each contributes to dendrite branching. The three identified regions within Pdlim5 are the PDZ, DUF, and a trio of LIM domains; however, unresolved is the intra-molecular conformation of Pdlim5 as well as which domains are essential to regulate dendritic branching. We address Pdlim5's structure and function by examining the role of each of the domains individually and using deletion mutants in the context of the full-length protein. Results using primary hippocampal neurons reveal that the Pdlim5 DUF domain plays a dominant role in increasing dendritic branching. Neither the PDZ domain nor the LIM domains alone support increased branching. The central role of the DUF domain was confirmed using deletion mutants in the context of full-length Pdlim5. Guided by molecular modeling, additional domain mapping studies showed that the C-terminal LIM domain forms a stable interaction with the N-terminal PDZ domain, and we identified key amino acid residues at the interface of each domain that are needed for this interaction. We posit that the central DUF domain of Pdlim5 may be subject to modulation in the context of the full-length protein by the intra-molecular interaction between the N-terminal PDZ and C-terminal LIM domains. Overall, our studies reveal a novel mechanism for the regulation of Pdlim5's function in the regulation of neuronal branching and highlight the critical role of the DUF domain in mediating these effects.
Collapse
Affiliation(s)
- Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxsam Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Lydia L. Mireles
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | | | - Leilei Shi
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T. Bedford
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. Neal Waxham
- Department of Neurobiology & Anatomy, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Genetics & Epigenetics, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
- Program in Neuroscience, University of Texas MD Anderson Cancer Center, UT Health GSBS, Houston, TX 77030, USA
| |
Collapse
|
2
|
Evans R, Ramisetty S, Kulkarni P, Weninger K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023; 13:124. [PMID: 36671509 PMCID: PMC9856150 DOI: 10.3390/biom13010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
Collapse
Affiliation(s)
- Rachel Evans
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Actin Contributes to the Hyperexpression of Baculovirus Polyhedrin (polh) and p10 as a Component of Transcription Initiation Complex (TIC). Viruses 2022; 14:v14010153. [PMID: 35062357 PMCID: PMC8779803 DOI: 10.3390/v14010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexpression of polh and p10, two very late genes, is one of the remarkable characteristics in the baculovirus life cycle. However, the mechanisms underlying the hyperexpression of these two genes are still incompletely understood. In this study, actin was identified as a highly potential binding partner of polh and p10 promoters by conducting DNA pull-down and LC–MS/MS analyses. Inhibiting actin dynamics delayed and decreased the transcription of polh and p10. Actin interacted with viral RNA polymerase and transcription regulators, and the nuclear import of viral polymerase was inhibited with the disruption of actin dynamics. Simultaneously, the high enrichment of actin in polh and p10 promoters discovered via a chromatin immunoprecipitation (ChIP) assay indicated that actin was a component of the viral polymerase TIC. Moreover, overexpression of actin surprisingly upregulated the expression of luciferase (Luc) under the control of polh and p10 promoters. Taken together, actin participated in the hyperexpression of polh and p10 as a component of TIC. These results facilitate the promotion of the expression efficiency of foreign genes in the baculovirus expression vector system (BEVS).
Collapse
|
4
|
Truong Quang BA, Peters R, Cassani DAD, Chugh P, Clark AG, Agnew M, Charras G, Paluch EK. Extent of myosin penetration within the actin cortex regulates cell surface mechanics. Nat Commun 2021; 12:6511. [PMID: 34764258 PMCID: PMC8586027 DOI: 10.1038/s41467-021-26611-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
In animal cells, shape is mostly determined by the actomyosin cortex, a thin cytoskeletal network underlying the plasma membrane. Myosin motors generate tension in the cortex, and tension gradients result in cellular deformations. As such, many cell morphogenesis studies have focused on the mechanisms controlling myosin activity and recruitment to the cortex. Here, we demonstrate using super-resolution microscopy that myosin does not always overlap with actin at the cortex, but remains restricted towards the cytoplasm in cells with low cortex tension. We propose that this restricted penetration results from steric hindrance, as myosin minifilaments are considerably larger than the cortical actin meshsize. We identify myosin activity and actin network architecture as key regulators of myosin penetration into the cortex, and show that increasing myosin penetration increases cortical tension. Our study reveals that the spatial coordination of myosin and actin at the cortex regulates cell surface mechanics, and unveils an important mechanism whereby myosin size controls its action by limiting minifilament penetration into the cortical actin network. More generally, our findings suggest that protein size could regulate function in dense cytoskeletal structures. Cellular deformations are largely driven by contractile forces generated by myosin motors in the submembraneous actin cortex. Here we show that these forces are controlled not simply by cortical myosin levels, but rather by myosins spatial arrangement, specifically the extent of their overlap with cortical actin.
Collapse
Affiliation(s)
- Binh An Truong Quang
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Ruby Peters
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Davide A D Cassani
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Andrew G Clark
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.,University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany
| | - Meghan Agnew
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
| |
Collapse
|
5
|
A Proteomic Study for the Discovery of Beef Tenderness Biomarkers and Prediction of Warner-Bratzler Shear Force Measured on Longissimus thoracis Muscles of Young Limousin-Sired Bulls. Foods 2021; 10:foods10050952. [PMID: 33925360 PMCID: PMC8145402 DOI: 10.3390/foods10050952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Beef tenderness is of central importance in determining consumers’ overall liking. To better understand the underlying mechanisms of tenderness and be able to predict it, this study aimed to apply a proteomics approach on the Longissimus thoracis (LT) muscle of young Limousin-sired bulls to identify candidate protein biomarkers. A total of 34 proteins showed differential abundance between the tender and tough groups. These proteins belong to biological pathways related to muscle structure, energy metabolism, heat shock proteins, response to oxidative stress, and apoptosis. Twenty-three putative protein biomarkers or their isoforms had previously been identified as beef tenderness biomarkers, while eleven were novel. Using regression analysis to predict shear force values, MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and OGN (Mimecan) were the major proteins retained in the regression model, together explaining 79% of the variability. The results of this study confirmed the existing knowledge but also offered new insights enriching the previous biomarkers of tenderness proposed for Longissimus muscle.
Collapse
|
6
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
7
|
Yeoman B, Shatkin G, Beri P, Banisadr A, Katira P, Engler AJ. Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Rep 2021; 34:108816. [PMID: 33691109 PMCID: PMC7997775 DOI: 10.1016/j.celrep.2021.108816] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 11/05/2022] Open
Abstract
Significant changes in cell stiffness, contractility, and adhesion, i.e., mechanotype, are observed during a variety of biological processes. Whether cell mechanics merely change as a side effect of or driver for biological processes is still unclear. Here, we sort genotypically similar metastatic cancer cells into strongly adherent (SA) versus weakly adherent (WA) phenotypes to study how contractility and adhesion differences alter the ability of cells to sense and respond to gradients in material stiffness. We observe that SA cells migrate up a stiffness gradient, or durotax, while WA cells largely ignore the gradient, i.e., adurotax. Biophysical modeling and experimental validation suggest that differences in cell migration and durotaxis between weakly and strongly adherent cells are driven by differences in intra-cellular actomyosin activity. These results provide a direct relationship between cell phenotype and durotaxis and suggest how, unlike other senescent cells, metastatic cancer cells navigate against stiffness gradients.
Collapse
Affiliation(s)
- Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA; Computational Sciences Research Center, San Diego State University, San Diego, CA 92182, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
De Pasquale D, Marino A, Tapeinos C, Pucci C, Rocchiccioli S, Michelucci E, Finamore F, McDonnell L, Scarpellini A, Lauciello S, Prato M, Larrañaga A, Drago F, Ciofani G. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. MATERIALS & DESIGN 2020; 192:108742. [PMID: 32394995 PMCID: PMC7212088 DOI: 10.1016/j.matdes.2020.108742] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells. The developed nanoplatform consists of boron nitride nanotubes (BNNTs) loaded with doxorubicin (Dox) and coated with cell membranes (CM) extracted from GBM cells (Dox-CM-BNNTs). We demonstrated as Dox-CM-BNNTs are able to specifically target and kill GBM cells in vitro, leaving unaffected healthy brain cells, upon successful crossing an in vitro blood-brain barrier model. The excellent targeting performances of the nanoplatform can be ascribed to the protein component of the membrane coating, and proteomic analysis of differently expressed membrane proteins present on the CM of GBM cells and of healthy astrocytes allowed the identification of potential candidates involved in the process of homotypic cancer cell recognition.
Collapse
Affiliation(s)
- Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Silvia Rocchiccioli
- National Research Council, Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Elena Michelucci
- National Research Council, Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Finamore
- National Research Council, Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Liam McDonnell
- Fondazione Pisana per la Scienza - ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, Italy
| | - Alice Scarpellini
- Istituto Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, 16163 Genova, Italy
| | - Simone Lauciello
- Istituto Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, 16163 Genova, Italy
| | - Mirko Prato
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Via Morego 30, 16163 Genova, Italy
| | - Aitor Larrañaga
- University of the Basque Country, Department of Mining-Metallurgy Engineering and Materials Science & POLYMAT, Barrio Sarriena, 48013 Bilbao, Spain
| | - Filippo Drago
- Istituto Italiano di Tecnologia, Nanochemistry Department, Via Morego 30, 16163 Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
9
|
Abstract
Filamentous actin (F-actin) organization within cells is regulated by a large number of actin-binding proteins that control actin nucleation, growth, cross-linking and/or disassembly. This protocol describes a technique – the actin co-sedimentation, or pelleting, assay – to determine whether a protein or protein domain binds F-actin and to measure the affinity of the interaction (i.e., the dissociation equilibrium constant). In this technique, a protein of interest is first incubated with F-actin in solution. Then, differential centrifugation is used to sediment the actin filaments, and the pelleted material is analyzed by SDS-PAGE. If the protein of interest binds F-actin, it will co-sediment with the actin filaments. The products of the binding reaction (i.e., F-actin and the protein of interest) can be quantified to determine the affinity of the interaction. The actin pelleting assay is a straightforward technique for determining if a protein of interest binds F-actin and for assessing how changes to that protein, such as ligand binding, affect its interaction with F-actin.
Collapse
Affiliation(s)
- Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine
| | | | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
10
|
Volkov OA, Kinch L, Ariagno C, Deng X, Zhong S, Grishin N, Tomchick DR, Chen Z, Phillips MA. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog. eLife 2016; 5. [PMID: 27977001 PMCID: PMC5201418 DOI: 10.7554/elife.20198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/11/2016] [Indexed: 02/06/2023] Open
Abstract
Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of Trypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomeric TbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving a cis-to-trans proline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved. DOI:http://dx.doi.org/10.7554/eLife.20198.001
Collapse
Affiliation(s)
- Oleg A Volkov
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lisa Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Carson Ariagno
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiaoyi Deng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shihua Zhong
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute,University of Texas Southwestern Medical Center, Dallas, United States
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Margaret A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
11
|
Colpan M, Moroz NA, Gray KT, Cooper DA, Diaz CA, Kostyukova AS. Tropomyosin-binding properties modulate competition between tropomodulin isoforms. Arch Biochem Biophys 2016; 600:23-32. [PMID: 27091317 DOI: 10.1016/j.abb.2016.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023]
Abstract
The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| | - Natalia A Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Kevin T Gray
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Dillon A Cooper
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Christian A Diaz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, United States.
| |
Collapse
|
12
|
Yeon JH, Heinkel F, Sung M, Na D, Gsponer J. Systems-wide Identification of cis-Regulatory Elements in Proteins. Cell Syst 2016; 2:89-100. [PMID: 27135163 DOI: 10.1016/j.cels.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/15/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Protein interactions in cis that can activate or autoinhibit protein function play an important role in the fine-tuning of regulatory and signaling processes in the cell, but thus far cis-regulatory elements (CREs) in proteins have not been systematically identified and studied. Here, we introduce a computational tool that identifies intrinsically disordered protein segments that contribute to protein function regulation via interactions in cis. We apply this tool to estimate the prevalence of CREs in the human proteome and reveal that cis regulation is enriched in several signaling pathways, including the MAP kinase pathway, for which we provide a detailed map of its "cis regulome." We also show that disease-causing mutations are highly enriched in CREs, but not in motifs that classically mediate protein-protein interactions of disordered protein segments. Our approach should facilitate the discovery and characterization of CREs in proteins and the identification of disease-causing mutations that disrupt protein regulation in cis.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Department of Integrative Bioscience, University of Brain Education, 284-31 Gyocheonjisan-gil, Mokcheon-eup, Dongnam-gu, Cheonan, Chungcheongnam-do 31228, Republic of Korea
| | - Florian Heinkel
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Minhui Sung
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
13
|
Sun L, Zheng J, Wang Q, Song R, Liu H, Meng R, Tao T, Si Y, Jiang W, He J. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability. FASEB J 2015; 30:578-89. [PMID: 26432781 DOI: 10.1096/fj.15-275586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/21/2015] [Indexed: 01/12/2023]
Abstract
The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1.
Collapse
Affiliation(s)
- Licui Sun
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Junfang Zheng
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Qiqi Wang
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ran Song
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Hua Liu
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Ran Meng
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Tao Tao
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Yang Si
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Wenguo Jiang
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Junqi He
- *Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China; Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University-Cardiff University Joint Centre for Biomedical Research, Cancer Institute of Capital Medical University, Beijing, China; and Metastasis and Angiogenesis Research Group, Department of Surgery, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
14
|
Nishimura M, Fujii T, Hiyoshi H, Makino F, Inoue H, Motooka D, Kodama T, Ohkubo T, Kobayashi Y, Nakamura S, Namba K, Iida T. A repeat unit of Vibrio diarrheal T3S effector subverts cytoskeletal actin homeostasis via binding to interstrand region of actin filaments. Sci Rep 2015; 5:10870. [PMID: 26039684 PMCID: PMC4650670 DOI: 10.1038/srep10870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
A novel bacterial type III secretion effector, VopV, from the enteric pathogen Vibrio parahaemolyticus has been identified as a key factor in pathogenicity due to its interaction with cytoskeletal actin. One of the repeat units in the long repetitive region of VopV, named VopVrep1, functions as an actin-binding module. Despite its importance in pathogenesis, the manner in which the effector binds to actin and the subsequent effects on actin dynamics remain unclear. Here, we report the molecular basis of the VopVrep1/actin interaction. VopVrep1 exists as an unstructured protein in solution but potently and specifically binds filamentous actin (F-actin) and not globular actin (G-actin). The F-actin/VopVrep1 complex was directly visualized at 9.6-Å resolution using electron cryomicroscopy (cryoEM) and helical image reconstitution. The density map revealed the binding site of VopVrep1 at the interface between two actin strands, which is close to the binding site of the bicyclic heptapeptide toxin phalloidin. Consistent with this observation, VopVrep1 alone prevented the depolymerization of F-actin. Overall, VopVrep1 demonstrated unique characteristics in comparison to known actin-binding proteins, but was relatively similar to phalloidin. The phalloidin-like behavior, targeting the interstrand region of actin filaments to stabilize the filament structure, likely contributes to the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Mitsuhiro Nishimura
- 1] Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takashi Fujii
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirotaka Hiyoshi
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Inoue
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Daisuke Motooka
- 1] Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Toshio Kodama
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Yuji Kobayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- 1] Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan [2] Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Cao X, Xia H, Li N, Xiong K, Wang Z, Wu S. A mechanical refractory period of chondrocytes after dynamic hydrostatic pressure. Connect Tissue Res 2015; 56:212-8. [PMID: 25531199 DOI: 10.3109/03008207.2014.1001383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Mechanical stimulation, a crucial factor for maintaining the cartilaginous phenotype and promoting the chondrogenesis, has been widely used in autologous chondrocyte transplantation. This study was designed to investigate a novel concept of mechanical refractory period of chondrocytes after dynamic hydrostatic pressure (dHP). MATERIALS AND METHODS dHP protocols (0.1 Hz, 2 MPa) were applied. The variation in type II collagen (Col II) expression induced by each dHP unit was measured. The dynamic remodeling of F-actin during the mechanical protocols was observed morphologically and mechanically by laser confocal microscopy and optical magnetic twisting cytometry (OMTC), respectively. About 20 ng/ml VEGF was used to stabilize the F-actin and restrain the mechanical refractory period. RESULTS Compared with the remarkable increase of Col II (16-fold) induced by the initial dHP unit, the chondrocytes entered a mechanical refractory period and the second unit hardly elevated Col II expression (only 2.9-fold). This refractory period recovered partially within 2 h. The uniform, parallel, and coarse fibers of F-actin before dHP became thin, sparse, and disordered, and the cell stiffness decreased concomitantly. The variations in both the morphology and the mechanical property of F-actin were highly synchronous to the mechanical refractory period and recovered in a time-dependent manner. VEGF postponed the appearance of this refractory period and maintained the high expression of Col II by VEGF/p38/MAPKAPK-2/LIMK/cofilin pathway. CONCLUSION A mechanical refractory period of chondrocytes has been discovered and defined in this study. The F-actin depolymerization is the putative mechanism, and this refractory period can be postponed by VEGF-induced F-actin stabilization.
Collapse
Affiliation(s)
- Xu Cao
- Department of Orthopedics and
| | | | | | | | | | | |
Collapse
|
16
|
García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 2014; 113:20-36. [PMID: 25183310 DOI: 10.1160/th14-04-0298] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023]
Abstract
The endothelial barrier of the vasculature is of utmost importance for separating the blood stream from underlying tissues. This barrier is formed by tight and adherens junctions (TJ and AJ) that form intercellular endothelial contacts. TJ and AJ are integral membrane structures that are connected to the actin cytoskeleton via various adaptor molecules. Consequently, the actin cytoskeleton plays a crucial role in regulating the stability of endothelial cell contacts and vascular permeability. While a circumferential cortical actin ring stabilises junctions, the formation of contractile stress fibres, e. g. under inflammatory conditions, can contribute to junction destabilisation. However, the role of actin-binding proteins (ABP) in the control of vascular permeability has long been underestimated. Naturally, ABP regulate permeability via regulation of actin remodelling but some actin-binding molecules can also act independently of actin and control vascular permeability via various signalling mechanisms such as activation of small GTPases. Several studies have recently been published highlighting the importance of actin-binding molecules such as cortactin, ezrin/radixin/moesin, Arp2/3, VASP or WASP for the control of vascular permeability by various mechanisms. These proteins have been described to regulate vascular permeability under various pathophysiological conditions and are thus of clinical relevance as targets for the development of treatment strategies for disorders that are characterised by vascular hyperpermeability such as sepsis. This review highlights recent advances in determining the role of ABP in the control of endothelial cell contacts and vascular permeability.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schnoor
- Dr. Michael Schnoor, CINVESTAV del IPN, Department for Molecular Biomedicine, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360 Mexico City, Mexico, Tel.: +52 55 5747 3321, Fax: +52 55 5747 3938, E-mail:
| |
Collapse
|
17
|
Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in cancer. Front Physiol 2013; 4:370. [PMID: 24381558 PMCID: PMC3865727 DOI: 10.3389/fphys.2013.00370] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
Cells maintain intracellular pH (pHi) within a narrow range (7.1–7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
Collapse
Affiliation(s)
- Mehdi Damaghi
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, Moffitt Cancer Center and Research Institute Tampa, FL, USA
| |
Collapse
|
18
|
Renault L, Deville C, van Heijenoort C. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Cytoskeleton (Hoboken) 2013; 70:686-705. [DOI: 10.1002/cm.21140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Célia Deville
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Carine van Heijenoort
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| |
Collapse
|