1
|
Rivera-Maya OB, Ortiz-Robles CD, Palacios-Valladares JR, Calderón-Aranda ES. Dopamine D1-Like Receptor Stimulation Induces CREB, Arc, and BDNF Dynamic Changes in Differentiated SH-SY5Y Cells. Neurochem Res 2024; 50:35. [PMID: 39601897 PMCID: PMC11602804 DOI: 10.1007/s11064-024-04293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The dopamine D1-like receptor is a dopamine (DA) receptor regulating diverse brain functions. Once the dopamine D1-like receptor is activated, it induces activation of the Protein Kinase A (PKA) that phosphorylates the cAMP Response Element-Binding (CREB) transcription factor, which once active elicits the expression of the critical synaptic elements Activity-regulated cytoskeleton-associated (Arc) and the Brain-Derived Neurotrophic Factor (BDNF). The temporality and subcellular localization of proteins impact brain function. However, there is no information about the temporality of CREB activation and Arc and BDNF levels induced through dopamine D1-like receptor activation. In this study, we aimed to assess the specific effect of dopamine D1-like receptor activation on the temporality of CREB-phosphorylation (p-CREBS133) and the spatiotemporal induction of Arc and BDNF. Using SY-SY5Y cells differentiated with Retinoic Acid (RA), the dopamine D1-like receptor activation with a specific agonist transiently increased p-CREBS133 at 30 min of stimulation. It induced two spikes of Arc protein at 15 min and 6 h, forming clusters near the cell membrane. BDNF secretion temporarily increased, reaching a maximum at 6 h, while secretion was lower at 24 h compared to the unstimulated group. Our results provide new insight into the role of dopamine D1-like receptor activation on CREB activation, Arc, and BDNF increase, showing that these effects occur temporally and for Arc in subcellular specific sites. This study highlights the dopaminergic system as a critical regulator of subcellular events relevant to neuron plasticity. Future research should address the study of the implications for brain function and behavior.
Collapse
Affiliation(s)
- Omar B Rivera-Maya
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Christian D Ortiz-Robles
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José R Palacios-Valladares
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Emma S Calderón-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
2
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Areti A, Komirishetty P, Zochodne DW. Collaborative Roles for RAC1, ERM Proteins and PTEN During Adult Sensory Axon Regeneration. Mol Neurobiol 2024:10.1007/s12035-024-04273-7. [PMID: 38904854 DOI: 10.1007/s12035-024-04273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
The role of local of growth cone (GC) manipulation in adult regenerative systems is largely unexplored despite substantial translational importance. Here we investigated collaboration among Rac1 GTPase, its partnering ERM proteins and PTEN in adult sensory neurons and adult nerve regeneration. We confirmed expression of both Rac1 and ERM in adults and noted substantial impacts on neurite outgrowth in naïve and pre-injured adult sensory neurons. PTEN inhibition added to this outgrowth. Rac1 activation acted directly on adult GCs facilitating both attractive turning and advancement. In vivo regeneration indices including electrophysiological recovery, return of sensation, walking, repopulation of myelinated axons and reinnervation of the target epidermis indicated benefits of local Rac1 activation. These indices suggested maximal GC activation whereas local PTEN inhibition offered only limited added improvement. Our findings provide support for the concept of manipulating adult GCs, by emphasizing local Rac1 activation in directing therapy for nerve repair.
Collapse
Affiliation(s)
- Aparna Areti
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada
| | - Prashanth Komirishetty
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132 Clinical Sciences Building 11350-83 Ave, T6G 2G3, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Fuentes-Flores A, Geronimo-Olvera C, Girardi K, Necuñir-Ibarra D, Patel SK, Bons J, Wright MC, Geschwind D, Hoke A, Gomez-Sanchez JA, Schilling B, Rebolledo DL, Campisi J, Court FA. Senescent Schwann cells induced by aging and chronic denervation impair axonal regeneration following peripheral nerve injury. EMBO Mol Med 2023; 15:e17907. [PMID: 37860842 DOI: 10.15252/emmm.202317907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Following peripheral nerve injury, successful axonal growth and functional recovery require Schwann cell (SC) reprogramming into a reparative phenotype, a process dependent upon c-Jun transcription factor activation. Unfortunately, axonal regeneration is greatly impaired in aged organisms and following chronic denervation, which can lead to poor clinical outcomes. While diminished c-Jun expression in SCs has been associated with regenerative failure, it is unclear whether the inability to maintain a repair state is associated with the transition into an axonal growth inhibition phenotype. We here find that reparative SCs transition into a senescent phenotype, characterized by diminished c-Jun expression and secretion of inhibitory factors for axonal regeneration in aging and chronic denervation. In both conditions, the elimination of senescent SCs by systemic senolytic drug treatment or genetic targeting improved nerve regeneration and functional recovery, increased c-Jun expression and decreased nerve inflammation. This work provides the first characterization of senescent SCs and their influence on axonal regeneration in aging and chronic denervation, opening new avenues for enhancing regeneration and functional recovery after peripheral nerve injuries.
Collapse
Affiliation(s)
- Andrés Fuentes-Flores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Cristian Geronimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Karina Girardi
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - David Necuñir-Ibarra
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Megan C Wright
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Daniel Geschwind
- Departments of Neurology, Psychiatry, and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, San Juan de Alicante, Spain
| | | | - Daniela L Rebolledo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
5
|
Wit CB, Hiesinger PR. Neuronal filopodia: From stochastic dynamics to robustness of brain morphogenesis. Semin Cell Dev Biol 2023; 133:10-19. [PMID: 35397971 DOI: 10.1016/j.semcdb.2022.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.
Collapse
Affiliation(s)
- Charlotte B Wit
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - P Robin Hiesinger
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
7
|
Shao Z, Yang Y, Hu Z. Editorial: Regulation of synaptic structure and function. Front Mol Neurosci 2022; 15:1060367. [PMID: 36311012 PMCID: PMC9615913 DOI: 10.3389/fnmol.2022.1060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Zhiyong Shao
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Yang Yang
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD, Australia
- Zhitao Hu
| |
Collapse
|
8
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
9
|
Nedozralova H, Basnet N, Ibiricu I, Bodakuntla S, Biertümpfel C, Mizuno N. In situ cryo-electron tomography reveals local cellular machineries for axon branch development. J Biophys Biochem Cytol 2022; 221:213057. [PMID: 35262630 PMCID: PMC8916118 DOI: 10.1083/jcb.202106086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Neurons are highly polarized cells forming an intricate network of dendrites and axons. They are shaped by the dynamic reorganization of cytoskeleton components and cellular organelles. Axon branching allows the formation of new paths and increases circuit complexity. However, our understanding of branch formation is sparse due to the lack of direct in-depth observations. Using in situ cellular cryo-electron tomography on primary mouse neurons, we directly visualized the remodeling of organelles and cytoskeleton structures at axon branches. Strikingly, branched areas functioned as hotspots concentrating organelles to support dynamic activities. Unaligned actin filaments assembled at the base of premature branches accompanied by filopodia-like protrusions. Microtubules and ER comigrated into preformed branches to support outgrowth together with accumulating compact, ∼500-nm mitochondria and locally clustered ribosomes. We obtained a roadmap of events supporting the hypothesis of local protein synthesis selectively taking place at axon branches, allowing them to serve as unique control hubs for axon development and downstream neural network formation.
Collapse
Affiliation(s)
- Hana Nedozralova
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Iosune Ibiricu
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Savino E, Guarnieri FC, Tsai JW, Corradi A, Benfenati F, Valtorta F. An Emerging Role of PRRT2 in Regulating Growth Cone Morphology. Cells 2021; 10:2666. [PMID: 34685646 PMCID: PMC8534124 DOI: 10.3390/cells10102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in the PRRT2 gene are the main cause for a group of paroxysmal neurological diseases including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. In the mature central nervous system, the protein has both a functional and a structural role at the synapse. Indeed, PRRT2 participates in the regulation of neurotransmitter release, as well as of actin cytoskeleton dynamics during synaptogenesis. Here, we show a role of the protein also during early stages of neuronal development. We found that PRRT2 accumulates at the growth cone in cultured hippocampal neurons. Overexpression of the protein causes an increase in the size and the morphological complexity of growth cones. In contrast, the growth cones of neurons derived from PRRT2 KO mice are smaller and less elaborated. Finally, we demonstrated that the aberrant shape of PRRT2 KO growth cones is associated with a selective alteration of the growth cone actin cytoskeleton. Our data support a key role of PRRT2 in the regulation of growth cone morphology during neuronal development.
Collapse
Affiliation(s)
- Elisa Savino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (E.S.); (F.C.G.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Fabrizia Claudia Guarnieri
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (E.S.); (F.C.G.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Anna Corradi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; (A.C.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy; (A.C.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (E.S.); (F.C.G.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
11
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
12
|
Gallo G. The bioenergetics of neuronal morphogenesis and regeneration: Frontiers beyond the mitochondrion. Dev Neurobiol 2020; 80:263-276. [PMID: 32750228 DOI: 10.1002/dneu.22776] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
The formation of axons and dendrites during development, and their regeneration following injury, are energy intensive processes. The underlying assembly and dynamics of the cytoskeleton, axonal transport mechanisms, and extensive signaling networks all rely on ATP and GTP consumption. Cellular ATP is generated through oxidative phosphorylation (OxP) in mitochondria, glycolysis and "regenerative" kinase systems. Recent investigations have focused on the role of the mitochondrion in axonal development and regeneration emphasizing the importance of this organelle and OxP in axon development and regeneration. In contrast, the understanding of alternative sources of ATP in neuronal morphogenesis and regeneration remains largely unexplored. This review focuses on the current state of the field of neuronal bioenergetics underlying morphogenesis and regeneration and considers the literature on the bioenergetics of non-neuronal cell motility to emphasize the potential contributions of non-mitochondrial energy sources.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Wen W, Wang Y, Li H, Xu H, Xu M, Frank JA, Ma M, Luo J. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Regulates Neurite Outgrowth Through the Activation of Akt/mTOR and Erk/mTOR Signaling Pathways. Front Mol Neurosci 2020; 13:560020. [PMID: 33071755 PMCID: PMC7541815 DOI: 10.3389/fnmol.2020.560020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Neurite outgrowth is essential for brain development and the recovery of brain injury and neurodegenerative diseases. In this study, we examined the role of the neurotrophic factor MANF in regulating neurite outgrowth. We generated MANF knockout (KO) neuro2a (N2a) cell lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and demonstrated that MANF KO N2a cells failed to grow neurites in response to RA stimulation. Using MANF siRNA, this finding was confirmed in human SH-SY5Y neuronal cell line. Nevertheless, MANF overexpression by adenovirus transduction or addition of MANF into culture media facilitated the growth of longer neurites in RA-treated N2a cells. MANF deficiency resulted in inhibition of Akt, Erk, mTOR, and P70S6, and impaired protein synthesis. MANF overexpression on the other hand facilitated the growth of longer neurites by activating Akt, Erk, mTOR, and P70S6. Pharmacological blockade of Akt, Erk or mTOR eliminated the promoting effect of MANF on neurite outgrowth. These findings suggest that MANF positively regulated neurite outgrowth by activating Akt/mTOR and Erk/mTOR signaling pathways.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Yongchao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Murong Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
14
|
Brosig A, Fuchs J, Ipek F, Kroon C, Schrötter S, Vadhvani M, Polyzou A, Ledderose J, van Diepen M, Holzhütter HG, Trimbuch T, Gimber N, Schmoranzer J, Lieberam I, Rosenmund C, Spahn C, Scheerer P, Szczepek M, Leondaritis G, Eickholt BJ. The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Rep 2020; 29:2028-2040.e8. [PMID: 31722215 PMCID: PMC6856728 DOI: 10.1016/j.celrep.2019.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN. Neuronal axon growth and branching is globally regulated by PI3K/PTEN signaling PRG2 inhibits PTEN and stabilizes PIP3 and F-actin PRG2 localizes to nanoclusters on the axonal membrane and coincides with branching PRG2 promotes axonal filopodia and branching dependent on PI3K/PTEN
Collapse
Affiliation(s)
- Annika Brosig
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Joachim Fuchs
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fatih Ipek
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Cristina Kroon
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Schrötter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Genetics and Complex Diseases, T.H. Chan Harvard School of Public Health, Boston, MA 02120, USA
| | - Mayur Vadhvani
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michiel van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine and Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Christian Rosenmund
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Spahn
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Britta J Eickholt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
15
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
17
|
Vargas JY, Loria F, Wu Y, Córdova G, Nonaka T, Bellow S, Syan S, Hasegawa M, van Woerden GM, Trollet C, Zurzolo C. The Wnt/Ca 2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 2019; 38:e101230. [PMID: 31625188 PMCID: PMC6885744 DOI: 10.15252/embj.2018101230] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-based transient tubular connections that allow direct communication between distant cells. TNTs play an important role in several physiological (development, immunity, and tissue regeneration) and pathological (cancer, neurodegeneration, and pathogens transmission) processes. Here, we report that the Wnt/Ca2+ pathway, an intracellular cascade that is involved in actin cytoskeleton remodeling, has a role in TNT formation and TNT-mediated transfer of cargoes. Specifically, we found that Ca2+ /calmodulin-dependent protein kinase II (CaMKII), a transducer of the Wnt/Ca2+ pathway, regulates TNTs in a neuronal cell line and in primary neurons. We identified the β isoform of CaMKII as a key molecule in modulating TNT formation and transfer, showing that this depends on the actin-binding activity of the protein. Finally, we found that the transfer of vesicles and aggregated α-synuclein between primary neurons can be regulated by the activation of the Wnt/Ca2+ pathway. Our findings suggest that Wnt/Ca2+ pathway could be a novel promising target for therapies designed to impair TNT-mediated propagation of pathogens.
Collapse
Affiliation(s)
- Jessica Y Vargas
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Frida Loria
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
- Present address:
Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Departamento de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| | - Yuan‐Ju Wu
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Gonzalo Córdova
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Takashi Nonaka
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Sylvie Syan
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Masato Hasegawa
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Geeske M van Woerden
- Department of NeuroscienceErasmus Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus Medical CenterRotterdamThe Netherlands
| | - Capucine Trollet
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| |
Collapse
|
18
|
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski MJ, Ma D, Huang F, Mattoo S, Suter DM. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol Biol Cell 2019; 30:1817-1833. [PMID: 31116646 PMCID: PMC6727743 DOI: 10.1091/mbc.e18-04-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin-independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sherlene Brown
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Erica Zbornik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael J Mlodzianoski
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Donghan Ma
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Fang Huang
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907.,Department of Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907.,Department of Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
19
|
Effect of tolytoxin on tunneling nanotube formation and function. Sci Rep 2019; 9:5741. [PMID: 30952909 PMCID: PMC6450976 DOI: 10.1038/s41598-019-42161-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Tunneling nanotubes (TNTs) are actin-containing membrane protrusions that play an essential role in long-range intercellular communication. They are involved in development of various diseases by allowing transfer of pathogens or protein aggregates as well as organelles such as mitochondria. Increase in TNT formation has been linked to many pathological conditions. Here we show that nM concentrations of tolytoxin, a cyanobacterial macrolide that targets actin by inhibition of its polymerization, significantly decrease the number of TNT-connected cells, as well as transfer of mitochondria and α-synuclein fibrils in two different cell lines of neuronal (SH-SY5Y) and epithelial (SW13) origin. As the cytoskeleton of the tested cell remain preserved, this macrolide could serve as a valuable tool for future therapies against diseases propagated by TNTs.
Collapse
|
20
|
Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun 2019; 10:342. [PMID: 30664666 PMCID: PMC6341166 DOI: 10.1038/s41467-018-08178-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
The orchestration of intercellular communication is essential for multicellular organisms. One mechanism by which cells communicate is through long, actin-rich membranous protrusions called tunneling nanotubes (TNTs), which allow the intercellular transport of various cargoes, between the cytoplasm of distant cells in vitro and in vivo. With most studies failing to establish their structural identity and examine whether they are truly open-ended organelles, there is a need to study the anatomy of TNTs at the nanometer resolution. Here, we use correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structural organization of neuronal TNTs. Our data indicate that they are composed of a bundle of open-ended individual tunneling nanotubes (iTNTs) that are held together by threads labeled with anti-N-Cadherin antibodies. iTNTs are filled with parallel actin bundles on which different membrane-bound compartments and mitochondria appear to transfer. These results provide evidence that neuronal TNTs have distinct structural features compared to other cell protrusions. The architecture of functional TNTs is still under debate. Here, the authors combine correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structure of TNTs in neuronal cells, showing that they form structures that are distinct form other membrane protrusions.
Collapse
|
21
|
ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2018; 11:294-304. [PMID: 30639851 PMCID: PMC6327879 DOI: 10.1016/j.isci.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by motor neuron cell death. However, not all motor neurons are equally susceptible. Most of what we know about the surviving motor neurons comes from gene expression profiling; less is known about their functional traits. We found that resistant motor neurons cultured from SOD1 ALS mouse models have enhanced axonal outgrowth and dendritic branching. They also have an increase in the number and size of actin-based structures like growth cones and filopodia. These phenotypes occur in cells cultured from presymptomatic mice and mutant SOD1 models that do not develop ALS but not in embryonic motor neurons. Enhanced outgrowth and upregulation of filopodia can be induced in wild-type adult cells by expressing mutant SOD1. These results demonstrate that mutant SOD1 can enhance the regenerative capability of ALS-resistant motor neurons. Capitalizing on this mechanism could lead to new therapeutic strategies. Motor neurons from end-stage SOD1 ALS mice have enhanced neurite outgrowth/branching Increased outgrowth occurs only in adult neurons and is independent of ALS symptoms SOD1G93A adult motor neurons have larger growth cones and more axonal filopodia Acute SOD1G93A expression upregulates outgrowth in wild-type adult motor neurons
Collapse
|
22
|
Miller KE, Suter DM. An Integrated Cytoskeletal Model of Neurite Outgrowth. Front Cell Neurosci 2018; 12:447. [PMID: 30534055 PMCID: PMC6275320 DOI: 10.3389/fncel.2018.00447] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.
Collapse
Affiliation(s)
- Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States.,Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
23
|
Rosas NM, Alvarez Juliá A, Alzuri SE, Frasch AC, Fuchsova B. Alanine Scanning Mutagenesis of the C-Terminal Cytosolic End of Gpm6a Identifies Key Residues Essential for the Formation of Filopodia. Front Mol Neurosci 2018; 11:314. [PMID: 30233315 PMCID: PMC6131581 DOI: 10.3389/fnmol.2018.00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal membrane glycoprotein M6a (Gpm6a) is a protein with four transmembrane regions and the N- and the C-ends facing the cytosol. It functions in processes of neuronal development, outgrowth of neurites, and formation of filopodia, spines, and synapsis. Molecular mechanisms by which Gpm6a acts in these processes are not fully comprehended. Structural similarities of Gpm6a with tetraspanins led us to hypothesize that, similarly to tetraspanins, the cytoplasmic tails function as connections with cytoskeletal and/or signaling proteins. Here, we demonstrate that the C- but not the N-terminal cytosolic end of Gpm6a is required for the formation of filopodia by Gpm6a in cultured neurons from rat hippocampus and in neuroblastoma cells N2a. Further immunofluorescence microcopy and flow cytometry analysis show that deletion of neither the N- nor the C-terminal intracellular domains interferes with the recognition of Gpm6a by the function-blocking antibody directed against the extracellular part of Gpm6a. Expression levels of both truncation mutants were not affected but we observed decrease in the amount of both truncated proteins on cell surface suggesting that the incapacity of the Gpm6a lacking C-terminus to induce filopodium formation is not due to the lower amount of Gpm6a on cell surface. Following colocalization assays shows that deletion of the C- but not the N-terminus diminishes the association of Gpm6a with clathrin implying involvement of clathrin-mediated trafficking events. Next, using comprehensive alanine scanning mutagenesis of the C-terminus we identify K250, K255, and E258 as the key residues for the formation of filopodia by Gpm6a. Substitution of these charged residues with alanine also diminishes the amount of Gpm6a on cell surface and in case of K255 and E258 leads to the lower amount of total expressed protein. Subsequent bioinformatic analysis of Gpm6a amino acid sequence reveals that highly conserved and functional residues cluster preferentially within the C- and not within the N-terminus and that K250, K255, and E258 are predicted as part of sorting signals of transmembrane proteins. Altogether, our results provide evidence that filopodium outgrowth induced by Gpm6a requires functionally critical residues within the C-terminal cytoplasmic tail.
Collapse
Affiliation(s)
- Nicolás M Rosas
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Sofia E Alzuri
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
24
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
25
|
McNeely KC, Cupp TD, Little JN, Janisch KM, Shrestha A, Dwyer ND. Mutation of Kinesin-6 Kif20b causes defects in cortical neuron polarization and morphogenesis. Neural Dev 2017; 12:5. [PMID: 28359322 PMCID: PMC5374676 DOI: 10.1186/s13064-017-0082-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How neurons change their cytoskeleton to adopt their complex polarized morphology is still not understood. Growing evidence suggests that proteins that help build microtubule structures during cell division are also involved in building and remodeling the complex cytoskeletons of neurons. Kif20b (previously called MPP1 or Mphosph1) is the most divergent member of the Kinesin-6 family of "mitotic" kinesins that also includes Kif23/MKLP1 and Kif20a/MKLP2. We previously isolated a loss-of-function mouse mutant of Kif20b and showed that it had a thalamocortical axon guidance defect and microcephaly. METHODS We demonstrate here, using the mouse mutant, that Kif20b is required for neuron morphogenesis in the embryonic neocortex. In vivo and in vitro cortical neurons were labeled and imaged to analyze various aspects of morphogenesis. RESULTS Loss of Kif20b disrupts polarization as well as neurite outgrowth, branching and caliber. In vivo, mutant cortical neurons show defects in orientation, and have shorter thinner apical dendrites that branch closer to the cell body. In vitro, without external polarity cues, Kif20b mutant neurons show a strong polarization defect. This may be due in part to loss of the polarity protein Shootin1 from the axonal growth cone. Those mutant neurons that do succeed in polarizing have shorter axons with more branches, and longer minor neurites. These changes in shape are not due to alterations in cell fate or neuron layer type. Surprisingly, both axons and minor neurites of mutant neurons have increased widths and longer growth cone filopodia, which correlate with abnormal microtubule organization. Live analysis of axon extension shows that Kif20b mutant axons display more variable growth with increased retraction. CONCLUSIONS These results demonstrate that Kif20b is required cell-autonomously for proper morphogenesis of cortical pyramidal neurons. Kif20b regulates neuron polarization, and axon and dendrite branching, outgrowth, and caliber. Kif20b protein may act by bundling microtubules into tight arrays and by localizing effectors such as Shootin1. Thus it may help shape neurites, sustain consistent axon growth, and inhibit branching. This work advances our understanding of how neurons regulate their cytoskeleton to build their elaborate shapes. Finally, it suggests that neuronal connectivity defects may be present in some types of microcephaly.
Collapse
Affiliation(s)
- Katrina C McNeely
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Timothy D Cupp
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Kerstin M Janisch
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ayushma Shrestha
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
26
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
27
|
Zhang SX, Duan LH, He SJ, Zhuang GF, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res 2017; 27:253-273. [PMID: 28106075 DOI: 10.1038/cr.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/24/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Neurite initiation is critical for neuronal morphogenesis and early neural circuit development. Recent studies showed that local actin aggregation underneath the cell membrane determined the site of neurite initiation. An immediately arising question is what signaling mechanism initiated actin aggregation. Here we demonstrate that local clustering of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), a phospholipid with relatively few known signaling functions, is necessary and sufficient for aggregating actin and promoting neuritogenesis. In contrast, the related and more extensively studied phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol (3,4,5)-trisphosphate (PIP3) molecules did not have such functions. Specifically, we showed that beads coated with PI(3,4)P2 promoted actin aggregation and neurite initiation, while pharmacological interference with PI(3,4)P2 synthesis inhibited both processes. PI(3,4)P2 clustering occurred even when actin aggregation was pharmacologically blocked, demonstrating that PI(3,4)P2 functioned as the upstream signaling molecule. Two enzymes critical for PI(3,4)P2 generation, namely, SH2 domain-containing inositol 5-phosphatase and class II phosphoinositide 3-kinase α, were complementarily and non-redundantly required for actin aggregation and neuritogenesis, as well as for subsequent dendritogenesis. Finally, we demonstrate that neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex functioned downstream of PI(3,4)P2 to mediate neuritogenesis and dendritogenesis. Together, our results identify PI(3,4)P2 as an important signaling molecule during early development and demonstrate its critical role in regulating actin aggregation and neuritogenesis.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Feng Zhuang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Chia JX, Efimova N, Svitkina TM. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors. Mol Biol Cell 2016; 27:mbc.E16-04-0253. [PMID: 27682586 PMCID: PMC5170553 DOI: 10.1091/mbc.e16-04-0253] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing, or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact together with a key role of microtubule dynamics in neurite outgrowth led to the concept that microtubules directly drive plasma membrane protrusion, either in the course of polymerization or motor-driven sliding. Surprisingly, a possibility that unextinguished actin polymerization drives neurite outgrowth in the presence of actin drugs was not explored. We show that cultured hippocampal neurons treated with cytochalasin D or latrunculin B contained dense accumulations of branched actin filaments at ∼50% of neurite tips at all tested drug concentrations (1-10 μM). Actin polymerization was required for neurite outgrowth, because only low concentrations of either inhibitor increased the length and/or a number of neurites, whereas high concentrations inhibited neurite outgrowth. Importantly, neurites undergoing active elongation invariably contained a bright F-actin patch at the tip, whereas actin-depleted neurites never elongated, even though they still contained dynamic microtubules. Stabilization of microtubules by taxol treatment did not stop elongation of cytochalasin d-treated neurites. We conclude that actin polymerization is indispensable for neurite elongation.
Collapse
Affiliation(s)
- Jonathan X Chia
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104
| | - Nadia Efimova
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104
| |
Collapse
|
29
|
Sainath R, Ketschek A, Grandi L, Gallo G. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation. Dev Neurobiol 2016; 77:454-473. [PMID: 27429169 DOI: 10.1002/dneu.22420] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin-dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria-dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl-l-carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Rajiv Sainath
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Andrea Ketschek
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Leah Grandi
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| | - Gianluca Gallo
- Temple University School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, 3500 N Broad St, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Pacheco A, Gallo G. Actin filament-microtubule interactions in axon initiation and branching. Brain Res Bull 2016; 126:300-310. [PMID: 27491623 DOI: 10.1016/j.brainresbull.2016.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
Abstract
Neurons begin life as spherical cells. A major hallmark of neuronal development is the formation of elongating processes from the cell body which subsequently differentiate into dendrites and the axon. The formation and later development of neuronal processes is achieved through the concerted organization of actin filaments and microtubules. Here, we review the literature regarding recent advances in the understanding of cytoskeletal interactions in neurons focusing on the initiation of processes from neuronal cell bodies and the collateral branching of axons. The complex crosstalk between cytoskeletal elements is mediated by a cohort of proteins that either bind both cytoskeletal systems or allow one to regulate the other. Recent studies have highlighted the importance of microtubule plus-tip proteins in the regulation of the dynamics and organization of actin filaments, while also providing a mechanism for the subcellular capture and guidance of microtubule tips by actin filaments. Although the understanding of cytoskeletal crosstalk and interactions in neuronal morphogenesis has advanced significantly in recent years the appreciation of the neuron as an integrated cytoskeletal system remains a frontier.
Collapse
Affiliation(s)
- Almudena Pacheco
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Temple University, Lewis Kats School of Medicine, Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, 3500 North Broad Street, Philadelphia, PA 19140, United States.
| |
Collapse
|
31
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Gallo G. Coordination of the axonal cytoskeleton during the emergence of axon collateral branches. Neural Regen Res 2016; 11:709-11. [PMID: 27335541 PMCID: PMC4904448 DOI: 10.4103/1673-5374.182684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gianluca Gallo
- Temple University, Lewis Kats School of Medicine, Department of Anatomy and cell Biology, Shriners Hospitals Pediatric Research Center, Philadelphia, PA, USA
| |
Collapse
|
33
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
34
|
Alvarez Juliá A, Frasch AC, Fuchsova B. Neuronal filopodium formation induced by the membrane glycoprotein M6a (Gpm6a) is facilitated by coronin-1a, Rac1, and p21-activated kinase 1 (Pak1). J Neurochem 2016; 137:46-61. [PMID: 26809475 DOI: 10.1111/jnc.13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023]
Abstract
Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.
Collapse
Affiliation(s)
- Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
35
|
Ketschek A, Spillane M, Dun XP, Hardy H, Chilton J, Gallo G. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches. Dev Neurobiol 2016; 76:1092-110. [PMID: 26731339 DOI: 10.1002/dneu.22377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/10/2022]
Abstract
Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA-mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch-inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092-1110, 2016.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| | - Xin-Peng Dun
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth Science Park, Research Way, Plymouth, PL6 8BU, United Kingdom
| | - Holly Hardy
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - John Chilton
- RILD Building, University of Exeter Medical School, Wellcome Wolfson Medical Research Centre, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
36
|
Zhang SX, Duan LH, Qian H, Yu X. Actin Aggregations Mark the Sites of Neurite Initiation. Neurosci Bull 2016; 32:1-15. [PMID: 26779918 DOI: 10.1007/s12264-016-0012-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022] Open
Abstract
A salient feature of neurons is their intrinsic ability to grow and extend neurites, even in the absence of external cues. Compared to the later stages of neuronal development, such as neuronal polarization and dendrite morphogenesis, the early steps of neuritogenesis remain relatively unexplored. Here we showed that redistribution of cortical actin into large aggregates preceded neuritogenesis and determined the site of neurite initiation. Enhancing actin polymerization by jasplakinolide treatment effectively blocked actin redistribution and neurite initiation, while treatment with the actin depolymerizing agents latrunculin A or cytochalasin D accelerated neurite formation. Together, these results demonstrate a critical role of actin dynamics and reorganization in neurite initiation. Further experiments showed that microtubule dynamics and protein synthesis are not required for neurite initiation, but are required for later neurite stabilization. The redistribution of actin during early neuronal development was also observed in the cerebral cortex and hippocampus in vivo.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, 98195, USA
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
37
|
Gallo G. Localized regulation of the axon shaft during the emergence of collateral branches. Neural Regen Res 2015; 10:1206-8. [PMID: 26487837 PMCID: PMC4590222 DOI: 10.4103/1673-5374.162694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Department of Anatomy and Cell Biology, Philadelphia, PA, USA
| |
Collapse
|
38
|
Leondaritis G, Eickholt BJ. Short Lives with Long-Lasting Effects: Filopodia Protrusions in Neuronal Branching Morphogenesis. PLoS Biol 2015; 13:e1002241. [PMID: 26334727 PMCID: PMC4559444 DOI: 10.1371/journal.pbio.1002241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl. A new study provides novel insight into how calcium signalling can control the branching of dendrites during nervous system development.
Collapse
Affiliation(s)
- George Leondaritis
- Department of Pharmacology, Medical School, University of Ioannina, Ioannina, Greece
| | - Britta Johanna Eickholt
- Institute of Biochemistry & Neuro Cure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
39
|
Chen KW, Chang YJ, Chen L. SH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth. Commun Integr Biol 2015; 8:e1044189. [PMID: 26479731 PMCID: PMC4594490 DOI: 10.1080/19420889.2015.1044189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 10/26/2022] Open
Abstract
Morphogenesis during development is fundamental to the differentiation of several cell types. As neurite outgrowth marks neuritogenesis, formation of filopodia precede the formation of dendrites and axons. While the structure of filopodia is well-known, the initiation of filopodia during neurite outgrowth is not clear. SH2B1 is known to promote neurite outgrowth of PC12 cells, hippocampal and cortical neurons. As a signaling adaptor protein, SH2B1 interacts with several neurotrophin receptors, and regulates signaling as well as gene expression. Our recent findings suggest that SH2B1 can be recruited to the plasma membrane and F-actin fractions by IRSp53. IRSp53 bends plasma membrane and facilitates actin bundling to set the stage for filopodium formation. We further demonstrate that SH2B1-IRSp53 complexes enhance the formation of filopodia, dendrites and dendritic branches of hippocampal and cortical neurons. While the molecular mechanism underlying filopodium initiation is not clear, we propose that SH2B1-neurotrophin interacting sites may mark the putative sites of filopodium initiation.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Chang
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| | - Linyi Chen
- Institute of Molecular Medicine; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China ; Brain Research Center; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China ; Department of Medical Science; National Tsing Hua University ; Hsinchu, Taiwan, Republic of China
| |
Collapse
|
40
|
Ketschek A, Jones S, Spillane M, Korobova F, Svitkina T, Gallo G. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching. Dev Neurobiol 2015; 75:1441-61. [PMID: 25846486 DOI: 10.1002/dneu.22294] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
The localized debundling of the axonal microtubule array and the entry of microtubules into axonal filopodia are two defining features of collateral branching. We report that nerve growth factor (NGF), a branch-inducing signal, increases the frequency of microtubule debundling along the axon shaft of chicken embryonic sensory neurons. Sites of debundling correlate strongly with the localized targeting of microtubules into filopodia. Platinum replica electron microscopy suggests physical interactions between debundled microtubules and axonal actin filaments. However, as evidenced by depolymerization of actin filaments and inhibition of myosin II, actomyosin force generation does not promote debundling. In contrast, loss of actin filaments or inhibition of myosin II activity promotes debundling, indicating that axonal actomyosin forces suppress debundling. MAP1B is a microtubule associated protein that represses axon branching. Following treatment with NGF, microtubules penetrating filopodia during the early stages of branching exhibited lower levels of associated MAP1B. NGF increased and decreased the levels of MAP1B phosphorylated at a GSK-3β site (pMAP1B) along the axon shaft and within axonal filopodia, respectively. The levels of MAP1B and pMAP1B were not altered at sites of debundling, relative to the rest of the axon. Unlike the previously determined effects of NGF on the axonal actin cytoskeleton, the effects of NGF on microtubule debundling were not affected by inhibition of protein synthesis. Collectively, these data indicate that NGF promotes localized axonal microtubule debundling, that actomyosin forces antagonize microtubule debundling, and that NGF regulates pMAP1B in axonal filopodia during the early stages of collateral branch formation.
Collapse
Affiliation(s)
- Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Steven Jones
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Farida Korobova
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
41
|
Dopamine transporter is enriched in filopodia and induces filopodia formation. Mol Cell Neurosci 2015; 68:120-30. [PMID: 25936602 DOI: 10.1016/j.mcn.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022] Open
Abstract
Dopamine transporter (DAT, SLC6A3) controls dopamine (DA) neurotransmission by mediating re-uptake of extracellular DA into DA neurons. DA uptake depends on the amount of DAT at the cell surface, and is therefore regulated by DAT subcellular distribution. Hence we used spinning disk confocal microscopy to demonstrate DAT localization in membrane protrusions that contained filamentous actin and myosin X (MyoX), a molecular motor located in filopodia tips, thus confirming that these protrusions are filopodia. DAT was enriched in filopodia. In contrast, R60A and W63A DAT mutants with disrupted outward-facing conformation were not accumulated in filopodia, suggesting that this conformation is necessary for DAT filopodia targeting. Three independent approaches of filopodia counting showed that DAT expression leads to an increase in the number of filopodia per cell, indicating that DAT can induce filopodia formation. Depletion of MyoX by RNA interference resulted in a significant loss of filopodia but did not completely eliminate filopodia, implying that DAT-enriched filopodia can be formed without MyoX. In cultured postnatal DA neurons MyoX was mainly localized to growth cones that displayed highly dynamic DAT-containing filopodia. We hypothesize that the concave shape of the DAT molecule functions as the targeting determinant for DAT accumulation in outward-curved membrane domains, and may also allow high local concentrations of DAT to induce an outward membrane bending. Such targeting and membrane remodeling capacities may be part of the mechanism responsible for DAT enrichment in the filopodia and its targeting to the axonal processes of DA neurons.
Collapse
|
42
|
The emerging framework of mammalian auditory hindbrain development. Cell Tissue Res 2015; 361:33-48. [DOI: 10.1007/s00441-014-2110-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
|
43
|
Pita-Thomas W, Steketee MB, Moysidis SN, Thakor K, Hampton B, Goldberg JL. Promoting filopodial elongation in neurons by membrane-bound magnetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:559-67. [PMID: 25596077 DOI: 10.1016/j.nano.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Filopodia are 5-10 μm long processes that elongate by actin polymerization, and promote axon growth and guidance by exerting mechanical tension and by molecular signaling. Although axons elongate in response to mechanical tension, the structural and functional effects of tension specifically applied to growth cone filopodia are unknown. Here we developed a strategy to apply tension specifically to retinal ganglion cell (RGC) growth cone filopodia through surface-functionalized, membrane-targeted superparamagnetic iron oxide nanoparticles (SPIONs). When magnetic fields were applied to surface-bound SPIONs, RGC filopodia elongated directionally, contained polymerized actin filaments, and generated retrograde forces, behaving as bona fide filopodia. Data presented here support the premise that mechanical tension induces filopodia growth but counter the hypothesis that filopodial tension directly promotes growth cone advance. Future applications of these approaches may be used to induce sustained forces on multiple filopodia or other subcellular microstructures to study axon growth or cell migration. From the clinical editor: Mechanical tension to the tip of filopodia is known to promote axonal growth. In this article, the authors used superparamagnetic iron oxide nanoparticles (SPIONs) targeted specifically to membrane molecules, then applied external magnetic field to elicit filopodial elongation, which provided a tool to study the role of mechanical forces in filopodia dynamics and function.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Anatomy and Neurobiology, Washington University, St. Louis, MO, USA
| | - Michael B Steketee
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stavros N Moysidis
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kinjal Thakor
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Blake Hampton
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, Shiley Eye Center, UC San Diego, San Diego, CA, USA.
| |
Collapse
|
44
|
Formoso K, Billi SC, Frasch AC, Scorticati C. Tyrosine 251 at the C-terminus of neuronal glycoprotein M6a is critical for neurite outgrowth. J Neurosci Res 2014; 93:215-29. [PMID: 25242528 DOI: 10.1002/jnr.23482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/12/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Neuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
45
|
Sinnar SA, Antoku S, Saffin JM, Cooper JA, Halpain S. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol Biol Cell 2014; 25:2152-60. [PMID: 24829386 PMCID: PMC4091828 DOI: 10.1091/mbc.e13-12-0749] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study shows that capping protein (CP) is essential for mammalian cell migration in vitro and in vivo. The authors also show that CP is present in filopodia of multiple cell types and that it regulates filopodial structure and function. Thus CP function in both lamellipodia and filopodia may contribute to efficient migration. Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP's role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells.
Collapse
Affiliation(s)
- Shamim A Sinnar
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Susumu Antoku
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jean-Michel Saffin
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Jon A Cooper
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Shelley Halpain
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
46
|
Jones SL, Korobova F, Svitkina T. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. ACTA ACUST UNITED AC 2014; 205:67-81. [PMID: 24711503 PMCID: PMC3987141 DOI: 10.1083/jcb.201401045] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The axon initial segment of differentiated neurons contains a dense submembranous cytoskeleton that overlays microtubule bundles and includes two sparse actin populations: short, stable actin filaments and longer, dynamic non-oriented filaments. The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling.
Collapse
Affiliation(s)
- Steven L Jones
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | |
Collapse
|
47
|
Silver L, Michael JV, Goldfinger LE, Gallo G. Activation of PI3K and R-Ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans. Dev Neurobiol 2014; 74:918-33. [PMID: 24578264 DOI: 10.1002/dneu.22174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3-kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG-coated substrates. The R-Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R-Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N-terminus-deleted constitutively active R-Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R-Ras-PI3K signaling may be a viable approach for manipulating axon extension on CSPGs.
Collapse
Affiliation(s)
- Lee Silver
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St., Philadelphia, Pennsylvania, 19140; Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | | | | | | |
Collapse
|
48
|
Abstract
Development of the nervous system requires efficient extension and guidance of axons and dendrites culminating in synapse formation. Axonal growth and navigation during embryogenesis are controlled by extracellular cues. Many of the same extracellular signals also regulate axonal branching. The emergence of collateral branches from the axon augments the complexity of nervous system innervation and provides an additional mechanism for target selection. Rho-family GTPases play an important role in regulating intracellular cytoskeletal and signaling pathways that facilitate axonal morphological changes. RhoA/G and Rac1 GTPase functions are complex and they can induce or inhibit branch formation, depending on neuronal type, cell context or signaling mechanisms. Evidence of a role of Cdc42 in axon branching is mostly lacking. In contrast, Rac3 has thus far been implicated in the regulation of axon branching. Future analysis of the upstream regulators and downstream effectors mediating the effects of Rho-family GTPase will provide insights into the cellular processes effected, and shed light on the sometimes opposing roles of these GTPases in the regulation of axon branching.
Collapse
Affiliation(s)
- Mirela Spillane
- Shriners Hospitals Pediatric Research Center; Center for Neural Repair and Rehabilitation; Temple University; Department of Anatomy and Cell Biology; Philadelphia, PA USA
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center; Center for Neural Repair and Rehabilitation; Temple University; Department of Anatomy and Cell Biology; Philadelphia, PA USA
| |
Collapse
|
49
|
Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J Neurosci 2013; 33:17278-89. [PMID: 24174661 DOI: 10.1523/jneurosci.1085-13.2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrin-1 is a secreted protein that directs long-range axon guidance during early stages of neural circuit formation and continues to be expressed in the mammalian forebrain during the postnatal period of peak synapse formation. Here we demonstrate a synaptogenic function of netrin-1 in rat and mouse cortical neurons and investigate the underlying mechanism. We report that netrin-1 and its receptor DCC are widely expressed by neurons in the developing mammalian cortex during synapse formation and are enriched at synapses in vivo. We detect DCC protein distributed along the axons and dendrites of cultured cortical neurons and provide evidence that newly translated netrin-1 is selectively transported to dendrites. Using gain and loss of function manipulations, we demonstrate that netrin-1 increases the number and strength of excitatory synapses made between developing cortical neurons. We show that netrin-1 increases the complexity of axon and dendrite arbors, thereby increasing the probability of contact. At sites of contact, netrin-1 promotes adhesion, while locally enriching and reorganizing the underlying actin cytoskeleton through Src family kinase signaling and m-Tor-dependent protein translation to locally cluster presynaptic and postsynaptic proteins. Finally, we demonstrate using whole-cell patch-clamp electrophysiology that netrin-1 increases the frequency and amplitude of mEPSCs recorded from cortical pyramidal neurons. These findings identify netrin-1 as a synapse-enriched protein that promotes synaptogenesis between mammalian cortical neurons.
Collapse
|
50
|
Spillane M, Ketschek A, Merianda TT, Twiss JL, Gallo G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep 2013; 5:1564-75. [PMID: 24332852 DOI: 10.1016/j.celrep.2013.11.022] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022] Open
Abstract
The branching of axons is a fundamental aspect of nervous system development and neuroplasticity. We report that branching of sensory axons in the presence of nerve growth factor (NGF) occurs at sites populated by stalled mitochondria. Translational machinery targets to presumptive branching sites, followed by recruitment of mitochondria to these sites. The mitochondria promote branching through ATP generation and the determination of localized hot spots of active axonal mRNA translation, which contribute to actin-dependent aspects of branching. In contrast, mitochondria do not have a role in the regulation of the microtubule cytoskeleton during NGF-induced branching. Collectively, these observations indicate that sensory axons exhibit multiple potential sites of translation, defined by presence of translational machinery, but active translation occurs following the stalling and respiration of mitochondria at these potential sites of translation. This study reveals a local role for axonal mitochondria in the regulation of the actin cytoskeleton and axonal mRNA translation underlying branching.
Collapse
Affiliation(s)
- Mirela Spillane
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Andrea Ketschek
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Tanuja T Merianda
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19210, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|