1
|
Halder UC. In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic E. Coli. Indian J Microbiol 2024; 64:1153-1214. [PMID: 39282172 PMCID: PMC11399541 DOI: 10.1007/s12088-024-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 09/18/2024] Open
Abstract
Multidrug resistance is a paramount impediment to successful treatment of most hospital acquired bacterial infections. A plethora of bacterial genera exhibit differential levels of resistance to the existing antibiotics. Prevalent Uropathogenic Escherichia coli or UPEC conduce high mortality among them. Multi-Drug Resistant bacterial strains utilize precise mechanisms to bypass effects of antibiotics. This is probably due to their familiar genomic origin. In this article drug repositioning method have been utilised to target 23 enzymes of UPEC strains viz. CFT073, 536 and UTI89. 3-D drug binding motifs have been predicted using SPRITE and ASSAM servers that compare amino acid side chain similarities. From the hit results anti-viral drugs have been considered for their uniqueness and specificity. Out of 14 anti-viral drugs 3 anti-HIV drugs viz. Amprenavir, Darunavir and Saquinavir have selected for maximum binding score or drug targetability. Finally, active sites of the enzymes were analyzed using GASS-WEB for eloquent drug interference. Further analyses with the active sites of all the enzymes showed that the three selected anti-HIV drugs were very much potent to inhibit their active sites. Combination or sole application of Amprenavir, Darunavir and Saquinavir to MDR-UPEC infections may leads to cure and inhibition of mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01282-x.
Collapse
Affiliation(s)
- Umesh C Halder
- Department of Zoology, Raniganj Girls' College, Searsole -Rajbari, Raniganj, Paschim Bardhaman, West Bengal 713358 India
| |
Collapse
|
2
|
Mermer K, Jas E, Paluch J, Woźniakiewicz A, Woźniakiewicz M, Miśkowiec P, Chocholouš P, Sklenářová H, Kozak J. Flow analysis-solid phase extraction system and UHPLC-MS/MS analytical methodology for the determination of antiviral drugs in surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49546-49559. [PMID: 39080168 PMCID: PMC11324774 DOI: 10.1007/s11356-024-34466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
An automated flow analysis-solid phase extraction (FA-SPE) system and methodology of ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) analysis were developed for the determination of selected antiviral drugs (acyclovir, amantadine, rimantadine, and oseltamivir) in water samples. The proposed FA-SPE approach enables the integration of various extraction stages and elimination of the sample evaporation step and offers individual customisation of SPE parameters, inter alia sample, and eluate flow rate and volume. Using the developed FA-SPE procedure, e.g. a 100-fold preconcentration of the target analytes in 1 h was achieved. A method for chromatographic analysis was also developed to determine the selected antiviral drugs in combination with the use of the FA-SPE system. The developed FA-SPE UHPLC-MS/MS method was validated including the determination of linearity of analytical graphs, limits of detection (5.5-99.9 pg mL-1) and quantification (18.3-329.8 pg mL-1), intra-day (1.8-8.3%) and inter-day (3.0-9.2%) precision, recovery (95.6-105.3%), and matrix effects (- 12.9 to 13.2%). The proposed method was successfully applied to analyse tap, drinking, and river water samples, revealing the presence of amantadine at a concentration of 40.1 pg mL-1 in one sample. The environmental impact of the developed FA-SPE sample preparation procedure was also assessed using the AGREEprep metric tool and compared with five other literature methods, achieving the most sustainable outcome.
Collapse
Affiliation(s)
- Karolina Mermer
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Emilia Jas
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Justyna Paluch
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Aneta Woźniakiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Michał Woźniakiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Paweł Miśkowiec
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03, Hradec Králové, Czech Republic
| | - Hana Sklenářová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 03, Hradec Králové, Czech Republic
| | - Joanna Kozak
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Theerawatanasirikul S, Lueangaramkul V, Semkum P, Lekcharoensuk P. Antiviral mechanisms of sorafenib against foot-and-mouth disease virus via c-RAF and AKT/PI3K pathways. Vet Res Commun 2024; 48:329-343. [PMID: 37697209 DOI: 10.1007/s11259-023-10211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that poses a significant threat to the global livestock industry. However, specific antiviral treatments against FMDV are currently unavailable. This study aimed to evaluate the antiviral activity of anticancer drugs, including kinase and non-kinase inhibitors against FMDV replication in BHK-21 cells. Sorafenib, a multi-kinase inhibitor, demonstrated a significant dose-dependent reduction in FMDV replication. It exhibited a half maximal effective concentration (EC50) value of 2.46 µM at the pre-viral entry stage and 2.03 µM at the post-viral entry stage. Further intracellular assays revealed that sorafenib effectively decreased 3Dpol activity with a half maximal inhibitory concentration (IC50) of 155 nM, while not affecting 3Cpro function. The study indicates that sorafenib influences host protein pathways during FMDV infection, primarily by potentiating the c-RAF canonical pathway and AKT/PI3K pathway. Molecular docking analysis demonstrated specific binding of sorafenib to the active site of FMDV 3Dpol, interacting with crucial catalytic residues, including D245, D338, S298, and N307. Additionally, sorafenib exhibited significant binding affinity to the active site motifs of cellular kinases, namely c-RAF, AKT, and PI3K, which play critical roles in the viral life cycle. The findings suggest that sorafenib holds promise as a therapeutic agent against FMDV infection. Its mechanism of action may involve inhibiting FMDV replication by reducing 3Dpol activity and regulating cellular kinases. This study provides insights for the development of novel therapeutic strategies to combat FMDV infections.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| | - Varanya Lueangaramkul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
4
|
McInturff EL, France SP, Leverett CA, Flick AC, Lindsey EA, Berritt S, Carney DW, DeForest JC, Ding HX, Fink SJ, Gibson TS, Gray K, Hubbell AK, Johnson AM, Liu Y, Mahapatra S, McAlpine IJ, Watson RB, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2021. J Med Chem 2023; 66:10150-10201. [PMID: 37528515 DOI: 10.1021/acs.jmedchem.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.
Collapse
Affiliation(s)
- Emma L McInturff
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scott P France
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Carolyn A Leverett
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Simon Berritt
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co. Ltd., Beijing, 100085, China
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Kaitlyn Gray
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Aran K Hubbell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M Johnson
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiyang Liu
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Subham Mahapatra
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Indrawan J McAlpine
- Genesis Therapeutics, 11568 Sorrento Valley Road, Suite 8, San Diego, California 92121, United States
| | - Rebecca B Watson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Christopher J O'Donnell
- Groton Laboratories, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
5
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
6
|
Nugrahani I, Susanti E, Adawiyah T, Santosa S, Laksana AN. Non-Covalent Reactions Supporting Antiviral Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249051. [PMID: 36558183 PMCID: PMC9783875 DOI: 10.3390/molecules27249051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Viruses are the current big enemy of the world's healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development.
Collapse
|
7
|
Peng S, Wang H, Wang Z, Wang Q. Progression of Antiviral Agents Targeting Viral Polymerases. Molecules 2022; 27:7370. [PMID: 36364196 PMCID: PMC9654062 DOI: 10.3390/molecules27217370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Viral DNA and RNA polymerases are two kinds of very important enzymes that synthesize the genetic materials of the virus itself, and they have become extremely favorable targets for the development of antiviral drugs because of their relatively conserved characteristics. There are many similarities in the structure and function of different viral polymerases, so inhibitors designed for a certain viral polymerase have acted as effective universal inhibitors on other types of viruses. The present review describes the development of classical antiviral drugs targeting polymerases, summarizes a variety of viral polymerase inhibitors from the perspective of chemically synthesized drugs and natural product drugs, describes novel approaches, and proposes promising development strategies for antiviral drugs.
Collapse
Affiliation(s)
| | | | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
9
|
Malik P, Jain S, Jain P, Kumawat J, Dwivedi J, Kishore D. A comprehensive update on the structure and synthesis of potential drug targets for combating the coronavirus pandemic caused by SARS-CoV-2. Arch Pharm (Weinheim) 2022; 355:e2100382. [PMID: 35040187 PMCID: PMC9011541 DOI: 10.1002/ardp.202100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of the coronavirus pandemic COVID-19 created by its severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) variant, known for producing a very severe acute respiratory syndrome, has created an unprecedented situation by its continual assault around the world. The crisis caused by the SARS-CoV-2 variant has been a global challenge, calling to mitigate this unprecedented pandemic that has engulfed the whole world. Since the outbreak and spread of COVID-19, many researchers globally have been grappling to find new clinically trialed active drugs with anti-COVID-19 activity, from antimalarial drugs to JAK inhibitors, antiviral drugs, immune suppressants, and so forth. This article presents a brief discussion on the activity and synthesis of some active molecules such as favipiravir, hydroxychloroquine, pirfenidone, remdesivir, lopinavir, camostat, chloroquine, baricitinib, molnupiravir, and so forth, which are under trial.
Collapse
Affiliation(s)
- Prerna Malik
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Sonika Jain
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Pankaj Jain
- Department of PharmacyBanasthali VidyapithJaipurIndia
| | - Jyoti Kumawat
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Jaya Dwivedi
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | | |
Collapse
|
10
|
|
11
|
De Castro F, De Luca E, Benedetti M, Fanizzi FP. Platinum compounds as potential antiviral agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Li J, Boix E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021; 12:444-469. [PMID: 33660566 PMCID: PMC7939569 DOI: 10.1080/21505594.2021.1871823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to the recent outbreak of Coronavirus Disease of 2019 (COVID-19), it is urgent to develop effective and safe drugs to treat the present pandemic and prevent other viral infections that might come in the future. Proteins from our own innate immune system can serve as ideal sources of novel drug candidates thanks to their safety and immune regulation versatility. Some host defense RNases equipped with antiviral activity have been reported over time. Here, we try to summarize the currently available information on human RNases that can target viral pathogens, with special focus on enveloped single-stranded RNA (ssRNA) viruses. Overall, host RNases can fight viruses by a combined multifaceted strategy, including the enzymatic target of the viral genome, recognition of virus unique patterns, immune modulation, control of stress granule formation, and induction of autophagy/apoptosis pathways. The review also includes a detailed description of representative enveloped ssRNA viruses and their strategies to interact with the host and evade immune recognition. For comparative purposes, we also provide an exhaustive revision of the currently approved or experimental antiviral drugs. Finally, we sum up the current perspectives of drug development to achieve successful eradication of viral infections.
Collapse
Affiliation(s)
- Jiarui Li
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| | - Ester Boix
- Dpt. Of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Spain
| |
Collapse
|
13
|
Al-Ardhi FM, Novotny L, Alhunayan A, Al-Tannak NF. Comparison of remdesivir and favipiravir - the anti-Covid-19 agents mimicking purine RNA constituents. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:12-20. [PMID: 34782799 DOI: 10.5507/bp.2021.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
By December 2019, humanity was challenged by a new infectious respiratory disease named coronavirus disease of 2019 or COVID-19. This is a viral infection based on the presence of the previously non-problematic coronavirus with assigned number 2. This virus causes severe acute respiratory distress and is known now as SARS-CoV2. Since SARS-CoV2 is an RNA virus, remdesivir and favipiravir, both broad-spectrum RNA polymerase inhibitors, were repurposed for treating COVID-19 patients. Remdesivir and favipiravir are antimetabolites, and they are structurally related to the naturally occurring structural elements of RNA. Both agents are prodrugs and must be activated intracellularly to exert their effects through numerous and different mechanisms of action. Efforts have been exerted to determine their efficacy and safety against COVID-19 through clinical trials. Clinical trials have shown an association of remdesivir with increased frequency of adverse effects (in comparison to favipiravir). Nevertheless, the data obtained with remdesivir resulted in its approval by the FDA on the 22nd of October 2020 for COVID-19 treatment. At present, remdesivir is being recommended by several treatment guidelines for the treatment of COVID-19 patients. The evidence in favor of favipiravir is compromised by the small number and low-quality of trials conducted. Favipiravir has shown various benefits when administered in mild and moderate cases of COVID-19, while remdesivir was more beneficial in more severe cases of the disease. Since the two agents are suitable for different groups of patients, both drugs can play a significant role in fighting this pandemic. The goal of this work is to summarize the information available on two antimetabolites - remdesivir and favipiravir - and to compare clinical experience obtained so far with these two agents in COVID-19 patients.
Collapse
Affiliation(s)
- Faiha M Al-Ardhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Ladislav Novotny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Adel Alhunayan
- Faculty of Medicine, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Naser F Al-Tannak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Science Center, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| |
Collapse
|
14
|
Adhikari B, Sahu N. COVID-19 into Chemical Science Perspective: Chemical Preventive Measures and Drug Development. ChemistrySelect 2021; 6:2010-2028. [PMID: 33821213 PMCID: PMC8013609 DOI: 10.1002/slct.202100127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 facts and literature are discussed into chemical science intuition highlighting the direct role of chemistry to the ongoing global pandemic by covering structural identification of the virus, chemical preventive measures and development of drugs. We reviewed the four most promising repurposed drugs which are presently being investigated in mass clinical trials on COVID-19 infected persons and synthetic routes of these drugs with their recent advancement. Chemical preventive measures such as soap water, hand sanitizer and disinfectant are the only available options in the arsenal to fight against COVID-19, till an effective medicine or vaccine will be made available. As such the present review will focus on the mode of action of the major chemical preventives.
Collapse
Affiliation(s)
- Bimalendu Adhikari
- Department of ChemistryNational Institute of Technology Rourkela RourkelaOdisha769008India
| | - Nihar Sahu
- Department of ChemistryNational Institute of Technology Rourkela RourkelaOdisha769008India
| |
Collapse
|
15
|
Heravi MM, Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 2020; 10:44247-44311. [PMID: 35557843 PMCID: PMC9092475 DOI: 10.1039/d0ra09198g] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Heteroatoms as well as heterocyclic scaffolds are frequently present as the common cores in a plethora of active pharmaceuticals natural products. Statistically, more than 85% of all biologically active compounds are heterocycles or comprise a heterocycle and most frequently, nitrogen heterocycles as a backbone in their complex structures. These facts disclose and emphasize the vital role of heterocycles in modern drug design and drug discovery. In this review, we try to present a comprehensive overview of top prescribed drugs containing nitrogen heterocycles, describing their pharmacological properties, medical applications and their selected synthetic pathways. It is worth mentioning that the reported examples are actually limited to current top selling drugs, being or containing N-heterocycles and their synthetic information has been extracted from both scientific journals and the wider patent literature.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176, Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
16
|
Luo Z, Ang MJY, Chan SY, Yi Z, Goh YY, Yan S, Tao J, Liu K, Li X, Zhang H, Huang W, Liu X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6925296. [PMID: 32607499 PMCID: PMC7315394 DOI: 10.34133/2020/6925296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to reduce viral progression.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Shuangqian Yan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Tao
- Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaosong Li
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China
| |
Collapse
|