1
|
Calianese DC, Noji T, Sullivan JA, Schoch K, Shashi V, McNiven V, Ramos LLP, Jordanova A, Kárteszi J, Ishikita H, Nagata S. Substrate specificity controlled by the exit site of human P4-ATPases, revealed by de novo point mutations in neurological disorders. Proc Natl Acad Sci U S A 2024; 121:e2415755121. [PMID: 39432785 DOI: 10.1073/pnas.2415755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/08/2024] [Indexed: 10/23/2024] Open
Abstract
The maintenance of lipid asymmetry on the plasma membrane is regulated by flippases, such as ATP8A2, ATP11A, and ATP11C, which translocate phosphatidylserine and phosphatidylethanolamine from the outer leaflet to the inner leaflet. We previously identified a patient-derived point mutation (Q84E) in ATP11A at the phospholipid entry site, which acquired the ability to flip phosphatidylcholine (PtdCho). This mutation led to elevated levels of sphingomyelin (SM) in the outer leaflet of the plasma membrane. We herein present two de novo ATP11A dominant mutations (E114G and S399L) in heterozygous patients exhibiting neurological and developmental disorders. These mutations, situated near the predicted phospholipid exit site, similarly confer the ability for ATP11A to recognize PtdCho as a substrate, resulting in its internalization into cells. Cells expressing these mutants had increased SM levels on their surface, attributed to the up-regulated expression of the sphingomyelin synthase-1 gene, rendering them more susceptible to SM phosphodiesterase-mediated cell lysis. Corresponding mutations in ATP11C and ATP8A2, paralogs of ATP11A, exerted similar effects on PtdCho-flipping activity and increased SM levels on the cell surface. Molecular dynamics simulations, based on the ATP11C structure, suggest that the E114G and S399L mutations enhance ATP11C's affinity toward PtdCho. These findings underscore the importance of the well-conserved exit and entry sites in determining phospholipid substrate specificity and indicate that aberrant flipping of PtdCho contributes to neurological disorders.
Collapse
Affiliation(s)
- David C Calianese
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoyasu Noji
- Theoretical Chemistry, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27705
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27705
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27705
| | - Vanda McNiven
- Fred A Litwin Family Centre in Genetic Medicine, University Health Network, Toronto, ON M5T 3L9, Canada
- Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Luiza Lorena Pires Ramos
- Molecular Neurogenomics group, Vlaams Instituut voor Biotechnologie Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, Antwerp 2610, Belgium
- Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia 1431, Bulgaria
| | - Albena Jordanova
- Molecular Neurogenomics group, Vlaams Instituut voor Biotechnologie Center for Molecular Neurology, Vlaams Instituut voor Biotechnologie, Antwerp 2610, Belgium
- Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia 1431, Bulgaria
| | - Judit Kárteszi
- Genetic Counselling, St. Raphael Hospital of Zala Castle-county, Zalaegerszeg 8900, Hungary
| | - Hiroshi Ishikita
- Theoretical Chemistry, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Metelerkamp Cappenberg T, De Schepper S, Vangestel C, De Lombaerde S, Wyffels L, Van den Wyngaert T, Mattis J, Gray B, Pak K, Stroobants S, Elvas F. First-in-human study of a novel cell death tracer [ 99mTc]Tc-Duramycin: safety, biodistribution and radiation dosimetry in healthy volunteers. EJNMMI Radiopharm Chem 2023; 8:20. [PMID: 37646865 PMCID: PMC10468453 DOI: 10.1186/s41181-023-00207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Imaging of cell death can provide an early indication of treatment response in cancer. [99mTc]Tc-Duramycin is a small-peptide SPECT tracer that recognizes both apoptotic and necrotic cells by binding to phosphatidylethanolamine present in the cell membrane. Preclinically, this tracer has shown to have favorable pharmacokinetics and selective tumor accumulation early after the onset of anticancer therapy. In this first-in-human study, we report the safety, biodistribution and internal radiation dosimetry of [99mTc]Tc-Duramycin in healthy human volunteers. RESULTS Six healthy volunteers (3 males, 3 females) were injected intravenously with [99mTc]Tc-Duramycin (dose: 6 MBq/kg; 473 ± 36 MBq). [99mTc]Tc-Duramycin was well tolerated in all subjects, with no serious adverse events reported. Following injection, a 30-min dynamic planar imaging of the abdomen was performed, and whole-body (WB) planar scans were acquired at 1, 2, 3, 6 and 23 h post-injection (PI), with SPECT acquisitions after each WB scan and one low-dose CT after the first SPECT. In vivo 99mTc activities were determined from semi-quantitative analysis of the images, and time-activity curves were generated. Residence times were calculated from the dynamic and WB planar scans. The mean effective dose was 7.61 ± 0.75 µSv/MBq, with the kidneys receiving the highest absorbed dose (planar analysis: 43.82 ± 4.07 µGy/MBq, SPECT analysis: 19.72 ± 3.42 μGy/MBq), followed by liver and spleen. The median effective dose was 3.61 mSv (range, 2.85-4.14). The tracer cleared slowly from the blood (effective half-life of 2.0 ± 0.4 h) due to high plasma protein binding with < 5% free tracer 3 h PI. Excretion was almost exclusively renal. CONCLUSION [99mTc]Tc-Duramycin demonstrated acceptable dosimetry (< 5 mSv) and a favorable safety profile. Due to slow blood clearance, optimal target-to-background ratios are expected 5 h PI. These data support the further assessment of [99mTc]Tc-Duramycin for clinical treatment response evaluation. TRIAL REGISTRATION NCT05177640, Registered April 30, 2021, https://clinicaltrials.gov/study/NCT05177640 .
Collapse
Affiliation(s)
| | - Stijn De Schepper
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christel Vangestel
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Stef De Lombaerde
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Leonie Wyffels
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Jeffrey Mattis
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Brian Gray
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Koon Pak
- Molecular Targeting Technologies, Inc., West Chester, PA, USA
| | - Sigrid Stroobants
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Filipe Elvas
- Department of Nuclear Medicine, Antwerp University Hospital (UZA), Edegem, Belgium.
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
3
|
Miyata Y, Segawa K. Protocol to analyze lipid asymmetry in the plasma membrane. STAR Protoc 2022; 3:101870. [PMID: 36595929 PMCID: PMC9692065 DOI: 10.1016/j.xpro.2022.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The plasma membrane containing cholesterol exhibits phospholipid asymmetry, with phosphatidylcholine and sphingomyelin enriched in its outer leaflet and phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) on the cytoplasmic side. We herein describe steps for bacterial expression of recombinant proteins that bind to membrane lipids, followed by affinity purification. Using fluorescence-labeled phospholipid analogs, we further detail the assay to detect flippase activity, which maintains the single-sided distribution of PtdSer and PtdEtn, in mammalian cells. For complete details on the use and execution of this protocol, please refer to Segawa et al. (2021).1.
Collapse
Affiliation(s)
- Yugo Miyata
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Katsumori Segawa
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan,Corresponding author
| |
Collapse
|
4
|
Behuria HG, Dash S, Sahu SK. Phospholipid Scramblases: Role in Cancer Progression and Anticancer Therapeutics. Front Genet 2022; 13:875894. [PMID: 35422844 PMCID: PMC9002267 DOI: 10.3389/fgene.2022.875894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phospholipid scramblases (PLSCRs) that catalyze rapid mixing of plasma membrane lipids result in surface exposure of phosphatidyl serine (PS), a lipid normally residing to the inner plasma membrane leaflet. PS exposure provides a chemotactic eat-me signal for phagocytes resulting in non-inflammatory clearance of apoptotic cells by efferocytosis. However, metastatic tumor cells escape efferocytosis through alteration of tumor microenvironment and apoptotic signaling. Tumor cells exhibit altered membrane features, high constitutive PS exposure, low drug permeability and increased multidrug resistance through clonal evolution. PLSCRs are transcriptionally up-regulated in tumor cells leading to plasma membrane remodeling and aberrant PS exposure on cell surface. In addition, PLSCRs interact with multiple cellular components to modulate cancer progression and survival. While PLSCRs and PS exposed on tumor cells are novel drug targets, many exogenous molecules that catalyze lipid scrambling on tumor plasma membrane are potent anticancer therapeutic molecules. In this review, we provide a comprehensive analysis of scramblase mediated signaling events, membrane alteration specific to tumor development and possible therapeutic implications of scramblases and PS exposure.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Santosh Kumar Sahu
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
5
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
6
|
Maruoka M, Zhang P, Mori H, Imanishi E, Packwood DM, Harada H, Kosako H, Suzuki J. Caspase cleavage releases a nuclear protein fragment that stimulates phospholipid scrambling at the plasma membrane. Mol Cell 2021; 81:1397-1410.e9. [PMID: 33725486 DOI: 10.1016/j.molcel.2021.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.
Collapse
Affiliation(s)
- Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Panpan Zhang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hiromi Mori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Eiichi Imanishi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan
| | - Hidetaka Kosako
- Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; AMED-FORCE, Japanese Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Center for Integrated Biosystems, Institute for Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Behuria HG, Sahu SK. An Anti-microbial Terpenoid Fraction from Gymnema sylvestre Induces Flip-flop of Fluorescent-Phospholipid Analogs in Model Membrane. Appl Biochem Biotechnol 2020; 192:1331-1345. [PMID: 32743703 DOI: 10.1007/s12010-020-03399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
Therapeutic potential of Gymnema sylvestre on diverse cell types is predominantly due to a variety of terpenoids and their derivatives. However, their bioavailability becomes limited due to poor solubility and lower lipophilic properties, provoking the search for novel membranotropic terpenoids and their mechanism of action. A terpenoid fraction purified from Gymnema sylvestre exhibited broad spectrum antimicrobial activity against both Gram positive and Gram negative bacteria with IC50 ˂ 0.1 mg/ml. Evaluation of its membranotropic effect in vitro on reconstituted model membrane revealed that the fraction induced flip-flop of fluorescent phospholipid analogs across the lipid bilayer. The terpenoid-induced lipid flipping was biphasic with a fast linear phase (rate constant (k1) = 3 to 5 S-1) and a second slow exponential phase (rate constant (k2) = (4 to 9) × 10-3 S-1). The lipid-flippase activity of the terpenoid fraction showed concentration and incubation-dependent cooperativity, indicating their lipophilic nature and membrane-destabilizing activity that facilitated lipid translocation. For the first time, our study reveals the flippase activity of a terpenoid fraction of Gymnema sylvestre that could be further explored for their membrane-mediated pharmacological properties. Graphical Abstract.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha, 757003, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, North Orissa University, Mayurbhanj, Baripada, Odisha, 757003, India.
| |
Collapse
|
8
|
Kitano VJF, Ohyama Y, Hayashida C, Ito J, Okayasu M, Sato T, Ogasawara T, Tsujita M, Kakino A, Shimada J, Sawamura T, Hakeda Y. LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells. J Cell Sci 2020; 133:jcs243840. [PMID: 32295848 DOI: 10.1242/jcs.243840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 11/20/2022] Open
Abstract
Osteoporosis is associated with vessel diseases attributed to hyperlipidemia, and bone resorption by multinucleated osteoclasts is related to lipid metabolism. In this study, we generated low-density lipoprotein receptor (LDLR)/lectin-like oxidized LDL receptor-1 (LOX-1, also known as Olr1) double knockout (dKO) mice. We found that, like LDLR single KO (sKO), LDLR/LOX-1 dKO impaired cell-cell fusion of osteoclast-like cells (OCLs). LDLR/LOX-1 dKO and LDLR sKO preosteoclasts exhibited decreased uptake of LDL. The cell surface cholesterol levels of both LDLR/LOX-1 dKO and LDLR sKO osteoclasts were lower than the levels of wild-type OCLs. Additionally, the amount of phosphatidylethanolamine (PE) on the cell surface was attenuated in LDLR/LOX-1 dKO and LDLR sKO preosteoclasts, whereas the PE distribution in wild-type OCLs was concentrated on the filopodia in contact with neighboring cells. Abrogation of the ATP binding cassette G1 (ABCG1) transporter, which transfers PE to the cell surface, caused decreased PE translocation to the cell surface and subsequent cell-cell fusion. The findings of this study indicate the involvement of a novel cascade (LDLR∼ABCG1∼PE translocation to cell surface∼cell-cell fusion) in multinucleation of OCLs.
Collapse
Affiliation(s)
- Victor J F Kitano
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Yoko Ohyama
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Chiyomi Hayashida
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Junta Ito
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, Department of Clinical Dietetics and Human Nutrition, Sakado, Saitama 350-0295, Japan
| | - Mari Okayasu
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Takuya Sato
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Toru Ogasawara
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Maki Tsujita
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akemi Kakino
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Jun Shimada
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yoshiyuki Hakeda
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| |
Collapse
|
9
|
Wu N, Cernysiov V, Davidson D, Song H, Tang J, Luo S, Lu Y, Qian J, Gyurova IE, Waggoner SN, Trinh VQH, Cayrol R, Sugiura A, McBride HM, Daudelin JF, Labrecque N, Veillette A. Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Rep 2020; 30:1129-1140.e5. [PMID: 31995754 PMCID: PMC7104872 DOI: 10.1016/j.celrep.2019.12.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.
Collapse
Affiliation(s)
- Ning Wu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Vitalij Cernysiov
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Dominique Davidson
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Hua Song
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jianlong Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yan Lu
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Jin Qian
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vincent Quoc-Huy Trinh
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Romain Cayrol
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Ayumu Sugiura
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, University of Montréal, Montréal, QC H3C3J7, Canada; Department of Microbiology, Infectious Diseases and Immunology, University of Montréal, Montréal, QC H3C3J7, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W1R7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
10
|
Winter WE, Greene DN, Beal SG, Isom JA, Manning H, Wilkerson G, Harris N. Clotting factors: Clinical biochemistry and their roles as plasma enzymes. Adv Clin Chem 2019; 94:31-84. [PMID: 31952574 DOI: 10.1016/bs.acc.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe structure and function of the multiple proteins of the coagulation system and their subcomponent domains. Coagulation is the process by which flowing liquid blood plasma is converted to a soft, viscous gel entrapping the cellular components of blood including red cells and platelets and thereby preventing extravasation of blood. This process is triggered by the minimal proteolysis of plasma fibrinogen. This transforms the latter to sticky fibrin monomers which polymerize into a network. The proteolysis of fibrinogen is a function of the trypsin-like enzyme termed thrombin. Thrombin in turn is activated by a cascade of trypsin-like enzymes that we term coagulation factors. In this review we examine the mechanics of the coagulation cascade with a view to the structure-function relationships of the proteins. We also note that two of the factors have no trypsin like protease domain but are essential cofactors or catalysts for the proteases. This review does not discuss the major role of platelets except to highlight their membrane function with respect to the factors. Coagulation testing is a major part of routine diagnostic clinical pathology. Testing is performed on specimens from individuals either with bleeding or with thrombotic disorders and those on anticoagulant medications. We examine the basic in-vitro laboratory coagulation tests and review the literature comparing the in vitro and in vivo processes. In vitro clinical testing typically utilizes plasma specimens and non-physiological or supraphysiological activators. Because the review focuses on coagulation factor structure, a brief overview of the evolutionary origins of the coagulation system is included.
Collapse
Affiliation(s)
- William E Winter
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - Dina N Greene
- Laboratory Services, Kaiser Permanente, Renton, WA, United States
| | - Stacy G Beal
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - James A Isom
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | | | | | - Neil Harris
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States.
| |
Collapse
|
11
|
Lee J, Park B, Moon B, Park J, Moon H, Kim K, Lee SA, Kim D, Min C, Lee DH, Lee G, Park D. A scaffold for signaling of Tim-4-mediated efferocytosis is formed by fibronectin. Cell Death Differ 2018; 26:1646-1655. [PMID: 30451988 DOI: 10.1038/s41418-018-0238-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
An essential step during clearance of apoptotic cells is the recognition of phosphatidylserine (PS) exposed on apoptotic cells by its receptors on phagocytes. Tim-4 directly binding to PS and functioning as a tethering receptor for phagocytosis of apoptotic cells has been extensively studied over the past decade. However, the molecular mechanisms by which Tim-4 collaborates with other engulfment receptors during efferocytosis remain elusive. By comparing efferocytosis induced by Tim-4 with that by Anxa5-GPI, an artificial tethering receptor, we found that Tim-4 possesses auxiliary machinery to induce a higher level of efferocytosis than Anxa5-GPI. To search for that, we performed a yeast two-hybrid screen and identified Fibronectin (Fn1) as a novel Tim-4-associating protein. Tim-4 directly associated with Fn1 and formed a complex with integrins via the association of Fn1. Through Tim-4-/- mice and cell-based assays, we found that modulation of the Fn1 level affected efferocytosis induced by Tim-4 and disruption of the interaction between Tim-4 and Fn1 abrogated Tim-4-mediated efferocytosis. In addition, Tim-4 depletion attenuated integrin signaling activation and perturbation of integrin signaling suppressed Tim-4-promoted efferocytosis. Taken together, the data suggest that Fn1 locates Tim-4 and integrins in close proximity by acting as a scaffold, resulting in synergistic cooperation of Tim-4 with integrins for efficient efferocytosis.
Collapse
Affiliation(s)
- Juyeon Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Boyeon Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Korea
| | - Byeongjin Moon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Jeongjun Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Kwanhyeong Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Sang-Ah Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea
| | - Chanhyuk Min
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Dae-Hee Lee
- Department of Oncology, College of Medicine, Korea University, Seoul, 08308, Korea
| | - Gwangrog Lee
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences and Aging Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
12
|
Abstract
Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with a substantial lack of mechanistic and regulatory understanding of when, how, and by what mechanisms migratory myeloid cells come to die and are recognized as needing to be removed, and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance are still a long way off.
Collapse
|
13
|
Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep 2017; 7:46715. [PMID: 28436434 PMCID: PMC5402267 DOI: 10.1038/srep46715] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
Osteoclasts, responsible for bone resorption, are multinucleated cells formed by cell-cell fusion of mononuclear pre-osteoclasts. Although osteoclast fusion is a pivotal step for osteoclastogenesis, little is known about the mechanism involved. To clarify the underlying process, we investigated dynamics of membrane phospholipids during osteoclastogenesis in vitro. We found that the cellular content of phospholipids, phosphatidylethanolamine (PE) in particular, was increased during osteoclast differentiation. Furthermore, PE was greatly increased in the outer leaflet of the plasma membrane bilayer during osteoclastogenesis, being concentrated in filopodia involved in cell-cell fusion. Immobilisation of the cell surface PE blocked osteoclast fusion, revealing the importance of PE abundance and distribution. To identify the molecules responsible for these PE dynamics, we screened a wide array of lipid-related genes by quantitative PCR and shRNA-mediated knockdown. Among them, a PE-biosynthetic enzyme, acyl-CoA:lysophosphatidylethanolamine acyltransferase 2 (LPEAT2), and two ATP-binding cassette (ABC) transporters, ABCB4 and ABCG1, were markedly increased during osteoclastogenesis, and their knockdown in pre-osteoclasts led to reduction in PE exposure on the cell surface and subsequent osteoclast fusion. These findings demonstrate that the PE dynamics play an essential role in osteoclast fusion, in which LPEAT2, ABCB4 and ABCG1 are key players for PE biosynthesis and redistribution.
Collapse
|
14
|
Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure. Proc Natl Acad Sci U S A 2016; 113:9509-14. [PMID: 27503893 DOI: 10.1073/pnas.1610403113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG(-/-)NPTN(-/-) cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG's association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling.
Collapse
|
15
|
Tsai WB, Long Y, Park JR, Chang JT, Liu H, Rodriguez-Canales J, Savaraj N, Feun LG, Davies MA, Wistuba II, Kuo MT. Gas6/Axl is the sensor of arginine-auxotrophic response in targeted chemotherapy with arginine-depleting agents. Oncogene 2016; 35:1632-42. [PMID: 26096933 PMCID: PMC4835044 DOI: 10.1038/onc.2015.237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023]
Abstract
Many human malignancies lack de novo biosynthesis of arginine (Arg) as the key enzyme argininosuccinate synthetase 1 (ASS1) is silenced. These tumors acquire ectopic Arg for survival, and depleting this source by Arg-depleting recombinant enzyme ADI-PEG20 results in cell death. Mechanisms underlying Arg auxotrophy in these tumors and how they respond to Arg-auxotrophic stress are poorly understood. Here, we report that an immediate-early event of Arg-auxotrophic response involves reactive oxygen species-mediated secretion of Gas6, which interacts with its receptor Axl and activates the downstream Ras/PI3K/Akt growth signal leading to accumulation of c-Myc by protein stabilization. Arg-auxotrophic challenge also transcriptionally upregulates c-Myc expression, which provides a feedback mechanism to enhance Axl expression. c-Myc is a positive regulator of ASS1, but elevated ASS1 provides a feedback mechanism to suppress c-Myc and Axl. Our results revealed multiple inter-regulatory pathways in Arg-auxotrophic response, consisting of Axl, c-Myc and ASS1, which regulate Arg homeostasis and ADI-PEG20 sensitivity. These pathways provide potential targets for improving the efficacy of treating Arg-auxotrophic tumors using Arg-deprivation strategies.
Collapse
Affiliation(s)
- Wen-Bin Tsai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yan Long
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Gangwon, Korea 200-701
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Hui Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Niramol Savaraj
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33135
| | - Lynn G. Feun
- Sylvester Comprehensive Cancer Center, University of Miami, VA Medical Center, Miami, Fl. 33125
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
16
|
Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors. Biosci Rep 2015; 36:e00287. [PMID: 26677203 PMCID: PMC4725246 DOI: 10.1042/bsr20150215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023] Open
Abstract
Decrease in intracellular amount of phospholipid scramblase 3 (PLSCR3) is accompanied by enhanced unconventional secretion during differentiation of mouse preadipocytic 3T3-L1 cells. Forced overexpression of PLSCR3 in 3T3-L1 cells inhibited adipogenesis by suppressing induction of late stage pro-adipogenic transcription factors. PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation.
Collapse
|
17
|
Deepak V, Ramachandran S, Balahmar RM, Pandian SRK, Sivasubramaniam SD, Nellaiah H, Sundar K. In vitro evaluation of anticancer properties of exopolysaccharides from Lactobacillus acidophilus in colon cancer cell lines. In Vitro Cell Dev Biol Anim 2015; 52:163-73. [DOI: 10.1007/s11626-015-9970-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
18
|
Segawa K, Kurata S, Nagata S. Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium. J Biol Chem 2015; 291:762-72. [PMID: 26567335 DOI: 10.1074/jbc.m115.690727] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
In plasma membranes, flippases translocate aminophospholipids such as phosphatidylserine and phosphatidylethanolamine from the extracellular to the cytoplasmic leaflet. Mammalian ATP11C, a type IV P-type ATPase, acts as a flippase at the plasma membrane. Here, by expressing 12 human type IV P-type ATPases in ATP11C-deficient cells, we determined that ATP8A2 and ATP11A can also act as plasma membrane flippases. As with ATP11C, ATP8A2 and ATP11A localized to the plasma membrane in a CDC50A-dependent manner. ATP11A was cleaved by caspases during apoptosis, and a caspase-resistant ATP11A blocked apoptotic PtdSer exposure. In contrast, ATP8A2 was not cleaved by caspase, and cells expressing ATP8A2 did not expose PtdSer during apoptosis. Similarly, high Ca(2+) concentrations inhibited the ATP11A and ATP11C PtdSer flippase activity, but ATP8A2 flippase activity was relatively resistant to Ca(2+). ATP11A and ATP11C were ubiquitously expressed in human and mouse adult tissues. In contrast, ATP8A2 was expressed in specific tissues, such as the brain and testis. Thus, ATP8A2 may play a specific role in translocating PtdSer in these tissues.
Collapse
Affiliation(s)
- Katsumori Segawa
- From the Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sachiko Kurata
- From the Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- From the Laboratory of Biochemistry & Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Rysavy NM, Shimoda LMN, Dixon AM, Speck M, Stokes AJ, Turner H, Umemoto EY. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BIOARCHITECTURE 2015; 4:127-37. [PMID: 25759911 DOI: 10.1080/19490992.2014.995516] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.
Collapse
Key Words
- ABCA, ABC binding cassette family A
- CRAC, calcium release activated channel
- GPMV, giant plasma membrane vesicle
- ITIM, immunoreceptor tyrosine based inhibitory motif
- PLA2, phospholipase A2
- PLSCR, phospholipid scramblase
- PMA, phorbol 12,13-myristate acetate
- RBL, rat basophilic leukemia
- RFU, relative fluorescence units
- ROI, region of interest
- TMEM, transmembrane protein
- TMEM16F
- WGA, wheat germ agglutinin
- mast cells
- membrane lipids
- phosphatidylserine
Collapse
Affiliation(s)
- Noel M Rysavy
- a Laboratory of Immunology and Signal Transduction ; Department of Biology; Chaminade University ; Honolulu , Hawai'i USA
| | | | | | | | | | | | | |
Collapse
|