1
|
Rohr RP, Loeuille N. Effects of evolution on niche displacement and emergent population properties, a discussion on optimality. OIKOS 2022. [DOI: 10.1111/oik.09472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rudolf P. Rohr
- 1Dept of Biology – Ecology and Evolution, Univ. of Fribourg Chemin du Musée 15 Fribourg Switzerland
| | - Nicolas Loeuille
- Sorbonne Univ., UPEC, CNRS, IRD, INRA, Inst. of Ecology and Environmental Sciences, IEES Paris France
| |
Collapse
|
2
|
Windsor FM, Armenteras D, Assis APA, Astegiano J, Santana PC, Cagnolo L, Carvalheiro LG, Emary C, Fort H, Gonzalez XI, Kitson JJ, Lacerda AC, Lois M, Márquez-Velásquez V, Miller KE, Monasterolo M, Omacini M, Maia KP, Palacios TP, Pocock MJ, Poggio SL, Varassin IG, Vázquez DP, Tavella J, Rother DC, Devoto M, Guimarães PR, Evans DM. Network science: Applications for sustainable agroecosystems and food security. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Fritsch C, Billiard S, Champagnat N. Identifying conversion efficiency as a key mechanism underlying food webs adaptive evolution: a step forward, or backward? OIKOS 2021. [DOI: 10.1111/oik.07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Neff F, Brändle M, Ambarlı D, Ammer C, Bauhus J, Boch S, Hölzel N, Klaus VH, Kleinebecker T, Prati D, Schall P, Schäfer D, Schulze ED, Seibold S, Simons NK, Weisser WW, Pellissier L, Gossner MM. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. SCIENCE ADVANCES 2021; 7:7/20/eabf3985. [PMID: 33990326 PMCID: PMC8121428 DOI: 10.1126/sciadv.abf3985] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/24/2021] [Indexed: 06/03/2023]
Abstract
Land-use intensification poses major threats to biodiversity, such as to insect herbivore communities. The stability of these communities depends on interactions linking herbivores and host plants. How interaction network structure begets robustness, and thus stability, in different ecosystems and how network structure and robustness are altered along land-use intensity gradients are unclear. We analyzed plant-herbivore networks based on literature-derived interactions and long-term sampling from 289 grasslands and forests in three regions of Germany. Network size and nestedness were the most important determinants of network robustness in both ecosystems. Along land-use intensity gradients, networks in moderately grazed grasslands were more robust than in those managed by frequent mowing or fertilization. In forests, changes of network robustness along land-use intensity gradients relied on changes in plant species richness. Our results expand our knowledge of the stability of plant-herbivore networks and indicate options for management aimed at stabilizing herbivore communities.
Collapse
Affiliation(s)
- Felix Neff
- Forest Entomology, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland.
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstr. 16, 8092 Zürich, Switzerland
| | - Martin Brändle
- Division of Animal Ecology, Department of Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Didem Ambarlı
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Department of Agricultural Biotechnology, Faculty of Agriculture, Düzce University, 81620 Düzce, Turkey
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Jürgen Bauhus
- Chair of Silviculture, Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg, Tennenbacherstr. 4, 79085 Freiburg, Germany
| | - Steffen Boch
- Ecosystem Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research, Institute of Landscape Ecology, University Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Valentin H Klaus
- Institute of Agricultural Sciences, ETH Zürich, Universitätstr. 2, 8092 Zürich, Switzerland
| | - Till Kleinebecker
- Biodiversity and Ecosystem Research, Institute of Landscape Ecology, University Münster, Heisenbergstr. 2, 48149 Münster, Germany
- Landscape Ecology and Landscape Planning, Institute of Landscape Ecology and Resource Management, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Daniel Prati
- Plant Ecology, Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany
| | - Deborah Schäfer
- Botanical Garden of the University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Ernst-Detlef Schulze
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany
| | - Sebastian Seibold
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Ecosystem Dynamics and Forest Management in Mountain Landscapes, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Nadja K Simons
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 3, 64287 Darmstadt, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Loïc Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstr. 16, 8092 Zürich, Switzerland
- Landscape Ecology, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
- Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Universitätstr. 16, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Cantarel AAM, Allard V, Andrieu B, Barot S, Enjalbert J, Gervaix J, Goldringer I, Pommier T, Saint-Jean S, Le Roux X. Plant functional trait variability and trait syndromes among wheat varieties: the footprint of artificial selection. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1166-1180. [PMID: 33080022 DOI: 10.1093/jxb/eraa491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Although widely used in ecology, trait-based approaches are seldom used to study agroecosystems. In particular, there is a need to evaluate how functional trait variability among varieties of a crop species compares to the variability among wild plant species and how variety selection can modify trait syndromes. Here, we quantified 18 above- and below-ground functional traits for 57 varieties of common wheat representative of different modern selection histories. We compared trait variability among varieties and among Pooideae species, and analyzed the effect of selection histories on trait values and trait syndromes. For traits under strong selection, trait variability among varieties was less than 10% of the variability observed among Pooideae species. However, for traits not directly selected, such as root N uptake capacity, the variability was up to 75% of the variability among Pooideae species. Ammonium absorption capacity by roots was counter-selected for conventional varieties compared with organic varieties and landraces. Artificial selection also altered some trait syndromes classically reported for Pooideae. Identifying traits that have high or low variability among varieties and characterizing the hidden effects of selection on trait values and syndromes will benefit the selection of varieties to be used especially for lower N input agroecosystems.
Collapse
Affiliation(s)
- Amélie A M Cantarel
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Vincent Allard
- UMR Génétique, Diversité et Ecophysiologie des Céréales, INRAE, Clermont-Ferrand, France
| | - Bruno Andrieu
- UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, Thieverval-Grignon, France
| | - Sébastien Barot
- IEES-Paris (CNRS, IRD, UPMC, INRA, UPEC, UP7), UPMC, 4 place Jussieu, cedex 05 Paris, France
| | - Jérôme Enjalbert
- UMR Génétique Quantitative et Evolution Le Moulon INRAE, CNRS, UPS, Gif-sur-Yvette, France
| | - Jonathan Gervaix
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Isabelle Goldringer
- UMR Génétique Quantitative et Evolution Le Moulon INRAE, CNRS, UPS, Gif-sur-Yvette, France
| | - Thomas Pommier
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Sébastien Saint-Jean
- UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, Thieverval-Grignon, France
| | - Xavier Le Roux
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
6
|
Loeuille N. Eco-evolutionary dynamics in a disturbed world: implications for the maintenance of ecological networks. F1000Res 2019; 8:F1000 Faculty Rev-97. [PMID: 30728953 PMCID: PMC6347037 DOI: 10.12688/f1000research.15629.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 11/20/2022] Open
Abstract
Past management of exploited species and of conservation issues has often ignored the evolutionary dynamics of species. During the 70s and 80s, evolution was mostly considered a slow process that may be safely ignored for most management issues. However, in recent years, examples of fast evolution have accumulated, suggesting that time scales of evolutionary dynamics (variations in genotype frequencies) and of ecological dynamics (variations in species densities) are often largely comparable, so that complex feedbacks commonly exist between the ecological and the evolutionary context ("eco-evolutionary dynamics"). While a first approach is of course to consider the evolution of a given species, in ecological communities, species are interlinked by interaction networks. In the present article, I discuss how species (co)evolution in such a network context may alter our understanding and predictions for species coexistence, given the disturbed world we live in. I review some concepts and examples suggesting that evolution may enhance the robustness of ecological networks and then show that, in many situations, the reverse may also happen, as evolutionary dynamics can harm diversity maintenance in various ways. I particularly focus on how evolution modifies indirect effects in ecological networks, then move to coevolution and discuss how the outcome of coevolution for species coexistence depends on the type of interaction (mutualistic or antagonistic) that is considered. I also review examples of phenotypes that are known to be important for ecological networks and shown to vary rapidly given global changes. Given all these components, evolution produces indirect eco-evolutionary effects within networks that will ultimately influence the optimal management of the current biodiversity crisis.
Collapse
Affiliation(s)
- Nicolas Loeuille
- iEES Paris (UMR7618), Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
De Meester L, Brans KI, Govaert L, Souffreau C, Mukherjee S, Vanvelk H, Korzeniowski K, Kilsdonk L, Decaestecker E, Stoks R, Urban MC. Analysing eco‐evolutionary dynamics—The challenging complexity of the real world. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13261] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Konrad Korzeniowski
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Laurens Kilsdonk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, IRF Life Sciences, KULAK KU Leuven Kortrijk Belgium
| | - Robby Stoks
- Laboratory or Evolutionary Stress Ecology and Ecotoxicology KU Leuven Leuven Belgium
| | - Mark C. Urban
- Department of Ecology and Evolutionary Biology, Center for Biodiversity and Ecological Risk University of Connecticut Storrs Connecticut
| |
Collapse
|
8
|
de Andreazzi CS, Guimarães PR, Melián CJ. Eco-evolutionary feedbacks promote fluctuating selection and long-term stability of antagonistic networks. Proc Biol Sci 2019. [PMID: 29540515 DOI: 10.1098/rspb.2017.2596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies have shown the potential for rapid adaptation in coevolving populations and that the structure of species interaction networks can modulate the vulnerability of ecological systems to perturbations. Although the feedback loop between population dynamics and coevolution of traits is crucial for understanding long-term stability in ecological assemblages, modelling eco-evolutionary dynamics in species-rich assemblages is still a challenge. We explore how eco-evolutionary feedbacks influence trait evolution and species abundances in 23 empirical antagonistic networks. We show that, if selection due to antagonistic interactions is stronger than other selective pressures, eco-evolutionary feedbacks lead to higher mean species abundances and lower temporal variation in abundances. By contrast, strong selection of antagonistic interactions leads to higher temporal variation of traits and on interaction strengths. Our results present a theoretical link between the study of the species persistence and coevolution in networks of interacting species, pointing out the ways by which coevolution may decrease the vulnerability of species within antagonistic networks to demographic fluctuation.
Collapse
Affiliation(s)
- Cecilia Siliansky de Andreazzi
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 05508-090 São Paulo, SP, Brazil .,Fiocruz Mata Atlântica, Fundação Oswaldo Cruz, Estrada Rodrigues Caldas 3400, 22713-375 Rio de Janeiro, RJ, Brazil
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, 05508-090 São Paulo, SP, Brazil
| | - Carlos J Melián
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Dübendorf, Switzerland
| |
Collapse
|
9
|
Dubs F, Vergnes A, Mirlicourtois E, Le Viol I, Kerbiriou C, Goulnik J, Belghali S, Bentze L, Barot S, Porcher E. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Loeuille N, Hauzy C. Multidimensionality of plant defenses and herbivore niches: Implications for eco-evolutionary dynamics. J Theor Biol 2018; 445:110-119. [DOI: 10.1016/j.jtbi.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 11/30/2022]
|
11
|
Understand ecosystem regime shifts by modelling ecosystem development using Boolean networks. ECOLOGICAL COMPLEXITY 2017. [DOI: 10.1016/j.ecocom.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
|
13
|
The Eco-Evolutionary Imperative: Revisiting Weed Management in the Midst of an Herbicide Resistance Crisis. SUSTAINABILITY 2016. [DOI: 10.3390/su8121297] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Loeuille N, Le Mao T, Barot S. Effects of plant evolution on nutrient cycling couple aboveground and belowground processes. THEOR ECOL-NETH 2016. [DOI: 10.1007/s12080-016-0315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Govaert L, Pantel JH, De Meester L. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol Lett 2016; 19:839-53. [DOI: 10.1111/ele.12632] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/28/2016] [Accepted: 05/15/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Jelena H. Pantel
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
- Centre d'Ecologie fonctionelle et Evolutive; UMR 5175 CNRS Université de Montpellier EPHE; Campus CNRS; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| |
Collapse
|
16
|
Tittonell P, Klerkx L, Baudron F, Félix GF, Ruggia A, van Apeldoorn D, Dogliotti S, Mapfumo P, Rossing WAH. Ecological Intensification: Local Innovation to Address Global Challenges. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-26777-7_1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Robinson KM, Hauzy C, Loeuille N, Albrectsen BR. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecol Evol 2015; 5:2898-915. [PMID: 26306175 PMCID: PMC4541994 DOI: 10.1002/ece3.1559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 11/21/2022] Open
Abstract
Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint.
Collapse
Affiliation(s)
- Kathryn M Robinson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences 901 83, Umeå, Sweden ; Department of Plant Physiology, Umeå Plant Science Centre, Umeå University 901 87, Umeå, Sweden
| | - Céline Hauzy
- Institute of Ecology and Environmental Sciences of Paris, UMR7618, UPMC-CNRS 7 quai St Bernard, 75005, Paris, France
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences of Paris, UMR7618, UPMC-CNRS 7 quai St Bernard, 75005, Paris, France
| | - Benedicte R Albrectsen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University 901 87, Umeå, Sweden ; Department of Plant and Environmental Sciences, University of Copenhagen Thorvaldsensvej 40, DK 1871, Frederiksberg C, Denmark
| |
Collapse
|
18
|
Costa M, Hauzy C, Loeuille N, Méléard S. Stochastic eco-evolutionary model of a prey-predator community. J Math Biol 2015; 72:573-622. [PMID: 26001744 DOI: 10.1007/s00285-015-0895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/05/2015] [Indexed: 11/26/2022]
Abstract
We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.
Collapse
Affiliation(s)
- Manon Costa
- CMAP, École Polytechnique, CNRS UMR 7641, Route de Saclay, 91128, Palaiseau Cedex, France.
| | - Céline Hauzy
- Institute of Ecology and Environmental Sciences-Paris (UPMC-CNRS-IRD-INRA-UPEC-Paris Diderot), Université Pierre et Marie Curie, UMR 7618, Paris, France
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences-Paris (UPMC-CNRS-IRD-INRA-UPEC-Paris Diderot), Université Pierre et Marie Curie, UMR 7618, Paris, France
| | - Sylvie Méléard
- CMAP, École Polytechnique, CNRS UMR 7641, Route de Saclay, 91128, Palaiseau Cedex, France
| |
Collapse
|
19
|
Dubois L, Mathieu J, Loeuille N. The manager dilemma: Optimal management of an ecosystem service in heterogeneous exploited landscapes. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
|
21
|
Khudr MS, Potter T, Rowntree J, Preziosi RF. Community Genetic and Competition Effects in a Model Pea Aphid System. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Moya-Laraño J, Bilbao-Castro JR, Barrionuevo G, Ruiz-Lupión D, Casado LG, Montserrat M, Melián CJ, Magalhães S. Eco-Evolutionary Spatial Dynamics. ADV ECOL RES 2014. [DOI: 10.1016/b978-0-12-801374-8.00003-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Bohan DA, Raybould A, Mulder C, Woodward G, Tamaddoni-Nezhad A, Bluthgen N, Pocock MJ, Muggleton S, Evans DM, Astegiano J, Massol F, Loeuille N, Petit S, Macfadyen S. Networking Agroecology. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
|
25
|
|
26
|
Mulder C, Ahrestani FS, Bahn M, Bohan DA, Bonkowski M, Griffiths BS, Guicharnaud RA, Kattge J, Krogh PH, Lavorel S, Lewis OT, Mancinelli G, Naeem S, Peñuelas J, Poorter H, Reich PB, Rossi L, Rusch GM, Sardans J, Wright IJ. Connecting the Green and Brown Worlds. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00002-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
|
28
|
Tamaddoni-Nezhad A, Milani GA, Raybould A, Muggleton S, Bohan DA. Construction and Validation of Food Webs Using Logic-Based Machine Learning and Text Mining. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00004-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Traugott M, Kamenova S, Ruess L, Seeber J, Plantegenest M. Empirically Characterising Trophic Networks. ADV ECOL RES 2013. [DOI: 10.1016/b978-0-12-420002-9.00003-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|