1
|
Salau VF, Olofinsan KA, Mishra AP, Odewole OA, Ngnameko CR, Matsabisa MG. Croton gratissimus Burch Herbal Tea Exhibits Anti-Hyperglycemic and Anti-Lipidemic Properties via Inhibition of Glycation and Digestive Enzyme Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1952. [PMID: 39065479 PMCID: PMC11281065 DOI: 10.3390/plants13141952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Over the years, the world has continued to be plagued by type 2 diabetes (T2D). As a lifestyle disease, obese individuals are at higher risk of developing the disease. Medicinal plants have increasingly been utilized as remedial agents for managing metabolic syndrome. The aim of the present study was to investigate the in vitro anti-hyperglycemic and anti-lipidemic potential of Croton gratissimus herbal tea infusion. The inhibitory activities of C. gratissimus on carbohydrate (α-glucosidase and α-amylase) and lipid (pancreatic lipase) hydrolyzing enzymes were determined, and the mode of inhibition of the carbohydrate digestive enzymes was analyzed and calculated via Lineweaver-Burk plots and Michaelis Menten's equation. Its effect on Advanced Glycation End Product (AGE) formation, glucose adsorption, and yeast glucose utilization were also determined. High-performance liquid chromatography (HPLC) was used to quantify the possible phenolic compounds present in the herbal tea infusion, and the compounds were docked with the digestive enzymes. C. gratissimus significantly (p < 0.05) inhibited α-glucosidase (IC50 = 60.56 ± 2.78 μg/mL), α-amylase (IC50 = 35.67 ± 0.07 μg/mL), as well as pancreatic lipase (IC50 = 50.27 ± 1.51 μg/mL) in a dose-dependent (15-240 µg/mL) trend. The infusion also inhibited the non-enzymatic glycation process, adsorbed glucose effectively, and enhanced glucose uptake in yeast cell solutions at increasing concentrations. Molecular docking analysis showed strong binding affinity between HPLC-quantified compounds (quercetin, caffeic acid, gallic acid, and catechin) of C. gratissimus herbal tea and the studied digestive enzymes. Moreover, the herbal tea product did not present cytotoxicity on 3T3-L1 cell lines. Results from this study suggest that C. gratissimus herbal tea could improve glucose homeostasis and support its local usage as a potential anti-hyperglycemic and anti-obesogenic agent. Further in vivo and molecular studies are required to bolster the results from this study.
Collapse
Affiliation(s)
- Veronica F. Salau
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (V.F.S.); (K.A.O.); (A.P.M.); (C.R.N.)
| | - Kolawole A. Olofinsan
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (V.F.S.); (K.A.O.); (A.P.M.); (C.R.N.)
| | - Abhay P. Mishra
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (V.F.S.); (K.A.O.); (A.P.M.); (C.R.N.)
| | - Olufemi A. Odewole
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria;
| | - Corinne R. Ngnameko
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (V.F.S.); (K.A.O.); (A.P.M.); (C.R.N.)
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; (V.F.S.); (K.A.O.); (A.P.M.); (C.R.N.)
| |
Collapse
|
2
|
Salau VF, Erukainure OL, Aljoundi A, Akintemi EO, Elamin G, Odewole OA. Exploring the inhibitory action of betulinic acid on key digestive enzymes linked to diabetes via in vitro and computational models: approaches to anti-diabetic mechanisms. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:411-432. [PMID: 38764437 DOI: 10.1080/1062936x.2024.2352729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 μg/mL, 0.27 μg/mL, 1.70 μg/mL and 8.44 μg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.
Collapse
Affiliation(s)
- V F Salau
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - O L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - A Aljoundi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Attahadi, Tripoli, Libya
| | - E O Akintemi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - G Elamin
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - O A Odewole
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
3
|
Salau VF, Erukainure OL, Olofinsan KO, Msomi NZ, Ijomone OM, Islam MS. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose-streptozotocin induced diabetic rats. Arch Physiol Biochem 2024; 130:169-182. [PMID: 34752171 DOI: 10.1080/13813455.2021.1988981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study investigated the antidiabetic effect of vanillin using in vitro, in silico, and in vivo experimental models. METHODOLOGY Type 2 diabetes (T2D) was induced in male Sprague-Dawley (SD) rats using fructose-streptozotocin (STZ), then orally administered low (150 mg/kg bodyweight) or high (300 mg/kg bodyweight) dose of vanillin for 5 weeks intervention period. RESULTS Vanillin suppressed the levels of blood glucose, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, uric acid, when elevated serum insulin, HDL-cholesterol, and concomitantly improved pancreatic β-cell function, glucose tolerance, and pancreatic morphology. It also elevated both serum and pancreatic tissue GSH level, SOD and catalase activities, and hepatic glycogen level, while depleting malondialdehyde level, α-amylase, lipase, acetylcholinesterase, ATPase, ENTPDase and 5'-nucleotidase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glycogen phosphorylase activities. CONCLUSIONS The results indicate the potent antidiabetic effect of vanillin against T2D and its associated complications.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry, Veritas University, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Kolawole O Olofinsan
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nontokozo Z Msomi
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Abbasi-Parizad P, Scarafoni A, Pilu R, Scaglia B, De Nisi P, Adani F. The recovery from agro-industrial wastes provides different profiles of anti-inflammatory polyphenols for tailored applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.996562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Food and agro-industrial processing produce a great amount of side-stream and waste materials that are excellent sources of functional bioactive molecules such as phenolic compounds that recover them can be beneficial not only for food sustainability but also to human for many industrial applications such as flavor compounds and therapeutic applications such as antimicrobial and anti-inflammatory. The treatments and extraction techniques have major effects on the recovery of bioactive compounds. Along with the conventional extraction methods, numerous innovative techniques have been evolved and have been optimized to facilitate bioactive extraction more efficiently and sustainably. In this work, we have summarized the state-of-the-art technological approaches concerning novel extraction methods applied for five most produced crops in Italy; Grape Pomace (GP), Tomato Pomace (TP), Olive Pomace (OP), Citrus Pomace (CP), and Spent Coffee Grounds (SCG), presenting the extraction yield and the main class of phenolic classes, with the focus on their biological activity as an anti-inflammatory in vitro and in vivo studies via describing their molecular mechanism of action.
Collapse
|
5
|
Salau VF, Erukainure OL, Olofinsan KA, Ijomone OM, Msomi NZ, Islam MS. Vanillin modulates activities linked to dysmetabolism in psoas muscle of diabetic rats. Sci Rep 2021; 11:18724. [PMID: 34548565 PMCID: PMC8455626 DOI: 10.1038/s41598-021-98158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscles are important in glucose metabolism and are affected in type 2 diabetes (T2D) and its complications. This study investigated the effect of vanillin on redox imbalance, cholinergic and purinergic dysfunction, and glucose-lipid dysmetabolism in muscles of rats with T2D. Male albino rats (Sprague-Dawley strain) were fed 10% fructose ad libitum for 2 weeks before intraperitoneally injecting them with 40 mg/kg streptozotocin to induce T2D. Low (150 mg/kg bodyweight (BW)) and high (300 mg/kg BW) doses of vanillin were orally administered to diabetic rats. Untreated diabetic rats and normal rats made up the diabetic control (DC) and normal control (NC) groups, respectively. The standard antidiabetic drug was metformin. The rats were humanely put to sleep after 5 weeks of treatment and their psoas muscles were harvested. There was suppression in the levels of glutathione, activities of SOD, catalase, ENTPDase, 5'Nucleotidase and glycogen levels on T2D induction. This was accompanied by concomitantly elevated levels of malondialdehyde, serum creatine kinase-MB, nitric oxide, acetylcholinesterase, ATPase, amylase, lipase, glucose-6-phosphatase (G6Pase), fructose-1,6-biphophastase (FBPase) and glycogen phosphorylase activities. T2D induction further resulted in the inactivation of fatty acid biosynthesis, glycerolipid metabolism, fatty acid elongation in mitochondria and fatty acid metabolism pathways. There were close to normal and significant reversals in these activities and levels, with concomitant reactivation of the deactivated pathways following treatment with vanillin, which compared favorably with the standard drug (metformin). Vanillin also significantly increased muscle glucose uptake ex vivo. The results suggest the therapeutic effect of vanillin against muscle dysmetabolism in T2D as portrayed by its ability to mitigate redox imbalance, inflammation, cholinergic and purinergic dysfunctions, while modulating glucose-lipid metabolic switch and maintaining muscle histology.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
- Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Kolawole A Olofinsan
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Omamuyovwi M Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Erukainure OL, Salau VF, Oyenihi AB, Mshicileli N, Chukwuma CI, Islam MS. Strawberry fruit (Fragaria x ananassa Romina) juice attenuates oxidative imbalance with concomitant modulation of metabolic indices linked to male infertility in testicular oxidative injury. Andrologia 2021; 53:e14175. [PMID: 34255375 DOI: 10.1111/and.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigated the protective properties of strawberry fruit on testicular oxidative injury. Oxidative injury was induced in vitro in testicular tissue homogenates by incubation with ferrous sulphate (FeSO4 ) in the presence and absence of strawberry fruit extract (SFE) for 30 min at 37˚C, with gallic acid serving as the standard antioxidant drug. Induction of oxidative injury significantly reduced glutathione, cholesterol and triglyceride levels; and inhibited SOD, catalase and ENTPDase activities when compared to normal control. It also led to exacerbated nitric oxide, malondialdehyde, LDL-cholesterol levels, acetylcholinesterase, ATPase and lipase activities. These effects were, however, reversed following treatment with SFE when compared to the untreated control, except for cholesterol and triglyceride levels. Additionally, the induction of the oxidative injury led to alterations in testicular lipid metabolites that were accompanied by the activation of α-linolenic acid and linoleic acid metabolic pathways. While SFE treatment had no significant impact on the altered metabolites, it repressed pathways for mitochondrial beta-oxidation of long-chain saturated fatty acids and plasmalogen synthesis. High-performance liquid chromatography analysis of SFE revealed the presence of rutin, caffeic acid, p-coumarin and cinnamic acid. These data imply the protective potentials of strawberry fruits against testicular oxidative injury.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Veronica F Salau
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ndumiso Mshicileli
- AgriFood Technology Station, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, (Westville Campus), Durban, South Africa
| |
Collapse
|
7
|
Salau VF, Erukainure OL, Koorbanally NA, Islam MS. Ferulic acid promotes muscle glucose uptake and modulate dysregulated redox balance and metabolic pathways in ferric-induced pancreatic oxidative injury. J Food Biochem 2021; 46:e13641. [PMID: 33555086 DOI: 10.1111/jfbc.13641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
The antidiabetic properties of ferulic acid and its protective role against Fe2+ -induced oxidative pancreatic injury were investigated in this study using in vitro and ex vivo models. Induction of oxidative injury in the pancreas was achieved by incubating normal pancreatic tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of ferulic acid for 30 min at 37°C. Ferulic acid inhibited the activities of α-glucosidase, α-amylase, and pancreatic lipase significantly (p < .05) and promoted glucose uptake in isolated rat psoas muscles. Induction of oxidative pancreatic injury caused significant (p < .05) depletion of glutathione (GSH) level, superoxide dismutase (SOD), and catalase activities, as well as elevation of malondialdehyde (MDA) and nitric oxide (NO) levels, acetylcholinesterase and chymotrypsin activities. Treatment of tissues with ferulic acid significantly (p < .05) reversed these levels and activities. LC-MS analysis of the extracted metabolites revealed 25% depletion of the normal metabolites with concomitant generation of m-Chlorohippuric acid, triglyceride, fructose 1,6-bisphosphate, and ganglioside GM1 in oxidative-injured pancreatic tissues. Treatment with ferulic acid restored uridine diphosphate glucuronic acid and adenosine tetraphosphate and generated P1,P4-Bis(5'-uridyl) tetraphosphate and L-Homocysteic acid, while totally inactivating oxidative-generated metabolites. Ferulic acid also inactivated oxidative-activated pathways, with concomitant reactivation of nucleotide sugars metabolism, starch and sucrose metabolism, and rostenedione metabolism, estrone metabolism, androgen and estrogen metabolism, porphyrin metabolism, and purine metabolism pathways. Taken together, our results indicate the antidiabetic and protective potential of ferulic acid as depicted by its ability to facilitate muscle glucose uptake, inhibit carbohydrate and lipid hydrolyzing enzymes, and modulate oxidative-mediated dysregulated metabolisms. PRACTICAL APPLICATIONS: There have been increasing concerns on the side effects associated with the use of synthetic antidiabetic drug, coupled with their expenses particularly in developing countries. This has necessitated continuous search for alternative treatments especially from natural products having less or no side effects and are readily available. Ferulic acid is among the common phenolics commonly found in fruits and vegetables. In this present study, ferulic acid was able to attenuate oxidative stress, cholinergic dysfunction, and proteolysis in oxidative pancreatic injury, as well as inhibit carbohydrate digesting enzymes. Thus, indicating the ability of the phenolic to protect against complications linked to diabetes. Crops rich in ferulic acid maybe beneficial in managing this disease.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.,Department of Biochemistry, Veritas University, Bwari, Abuja, Nigeria
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
8
|
Sarkar D, Christopher A, Shetty K. Phenolic Bioactives From Plant-Based Foods for Glycemic Control. Front Endocrinol (Lausanne) 2021; 12:727503. [PMID: 35116002 PMCID: PMC8805174 DOI: 10.3389/fendo.2021.727503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Plant-based foods containing phenolic bioactives have human health protective functions relevant for combating diet and lifestyle-influenced chronic diseases, including type 2 diabetes (T2D). The molecular structural features of dietary phenolic bioactives allow antioxidant functions relevant for countering chronic oxidative stress-induced metabolic breakdown commonly associated with T2D. In addition to antioxidant properties, phenolic bioactives of diverse plant foods have therapeutic functional activities such as improving insulin sensitivity, reducing hepatic glucose output, inhibiting activity of key carbohydrate digestive enzymes, and modulating absorption of glucose in the bloodstream, thereby subsequently improving post-prandial glycemic control. These therapeutic functional properties have direct implications and benefits in the dietary management of T2D. Therefore, plant-based foods that are rich in phenolic bioactives are excellent dietary sources of therapeutic targets to improve overall glycemic control by managing chronic hyperglycemia and chronic oxidative stress, which are major contributing factors to T2D pathogenesis. However, in studies with diverse array of plant-based foods, concentration and composition of phenolic bioactives and their glycemic control relevant bioactivity can vary widely between different plant species, plant parts, and among different varieties/genotypes due to the different environmental and growing conditions, post-harvest storage, and food processing steps. This has allowed advances in innovative strategies to screen and optimize whole and processed plant derived foods and their ingredients based on their phenolic bioactive linked antioxidant and anti-hyperglycemic properties for their effective integration into T2D focused dietary solutions. In this review, different pre-harvest and post-harvest strategies and factors that influence phenolic bioactive-linked antioxidant and anti-hyperglycemic properties in diverse plant derived foods and derivation of extracts with therapeutic potential are highlighted and discussed. Additionally, novel bioprocessing strategies to enhance bioavailability and bioactivity of phenolics in plant-derived foods targeting optimum glycemic control and associated T2D therapeutic benefits are also advanced.
Collapse
|