1
|
Choi YY, Lee KS, Park SG, Kim YS, Lee J, Sung HK, Kim MH. COVID-19 and Neurodevelopmental Delays in Early Childhood: A Longitudinal Analysis of Developmental Outcomes in Korean Children. J Korean Med Sci 2024; 39:e243. [PMID: 39137812 PMCID: PMC11319104 DOI: 10.3346/jkms.2024.39.e243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
This study employed a longitudinal analysis to evaluate the association between the coronavirus disease 2019 pandemic and neurodevelopment by analyzing over 1.8 million children from the Korean Developmental Screening Test for Infants and Children included in South Korea's National Health Screening Program. We compared the developmental outcomes in five age groups-9-17 months, 18-29 months, 30-41 months, 42-53 months, and 54-65 months-between the pre-pandemic (2018-2019) and pandemic (2020-2021) periods. Significant increases in potential developmental delays were observed during the pandemic in communication, cognitive, social interaction, self-care, and fine motor skills across most age groups. All five age groups experienced notable disruptions in communication and fine motor skills. Children from socioeconomically disadvantaged backgrounds faced higher risks across all domains. These findings highlight the need for targeted interventions and continuous monitoring to support the developmental needs of children affected by pandemic-related disruptions.
Collapse
Affiliation(s)
- Youn Young Choi
- Public Health Research Institute, National Medical Center, Seoul, Korea
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - Kyung-Shin Lee
- Public Health Research Institute, National Medical Center, Seoul, Korea.
| | - Seul Gi Park
- Department of Pediatrics, National Medical Center, Seoul, Korea
| | - You Sun Kim
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Jeehye Lee
- Department of Preventive Medicine, Konkuk University College of Medicine, Chungju, Korea
| | - Ho Kyung Sung
- National Emergency Medical Center, National Medical Center, Seoul, Korea
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Myoung-Hee Kim
- Center for Public Health Data Analytics, National Medical Center, Seoul, Korea
| |
Collapse
|
2
|
Zaidel DW, Fabri M. Editorial: The legacy of Dr. Roger W. Sperry: current advances in brain lateralization and interhemispheric transfer. Front Hum Neurosci 2024; 18:1433410. [PMID: 38868543 PMCID: PMC11167068 DOI: 10.3389/fnhum.2024.1433410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Dahlia W. Zaidel
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mara Fabri
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
3
|
Heimgärtner M, Gschaidmeier A, Schnaufer L, Staudt M, Wilke M, Lidzba K. The long-term negative impact of childhood stroke on language. Front Pediatr 2024; 12:1338855. [PMID: 38774297 PMCID: PMC11106365 DOI: 10.3389/fped.2024.1338855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives This study aims to investigate the long-term language outcome in children with unilateral childhood stroke in comparison to those with perinatal strokes and typically developing individuals and to explore the impact of lesion-specific modifiers. Methods We examined nine patients with childhood stroke, acquired between 0;2 and 16;1 years (CHILD; 3 female, median = 13.5 years, 6 left-sided), 23 patients with perinatal strokes (PERI; 11 female, median = 12.5 years, 16 left-sided), and 33 age-matched typically developing individuals (CONTROL; 15 female, median = 12.33 years). The language outcome was assessed using age-appropriate tasks of the Potsdam Illinois Test of Psycholinguistic Abilities (P-ITPA) or the Peabody Picture Vocabulary Test (PPVT). For group comparisons, study-specific language z-scores were calculated. Non-verbal intelligence was assessed using the Test of Non-verbal Intelligence (TONI-4), language lateralization with functional MRI, and lesion size with MRI-based volumetry. Results All four patients with childhood stroke who initially presented with aphasic symptoms recovered from aphasia. Patients with childhood stroke showed significantly lower language scores than those in the control group, but their scores were similar to those of the patients with perinatal stroke, after adjusting for general intelligence (ANCOVA, language z-score CHILD = -0.30, PERI = -0.38, CONTROL = 0.42). Among the patients with childhood stroke, none of the possible modifying factors, including lesion side, correlated significantly with the language outcome. Conclusion Childhood stroke, regardless of the affected hemisphere, can lead to chronic language deficits, even though affected children show a "full recovery." The rehabilitation of children and adolescents with childhood stroke should address language abilities, even after the usually quick resolution of clear aphasic symptoms.
Collapse
Affiliation(s)
- Magdalena Heimgärtner
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
| | - Alisa Gschaidmeier
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Schnaufer
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Children’s Hospital and Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Staudt
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Center for Pediatric Palliative Care, Dr von Hauner Children’s Hospital, University of Munich, Munich, Germany
| | - Marko Wilke
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Children’s Hospital and Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Karen Lidzba
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Inguscio BMS, Cartocci G, Sciaraffa N, Nicastri M, Giallini I, Aricò P, Greco A, Babiloni F, Mancini P. Two are better than one: Differences in cortical EEG patterns during auditory and visual verbal working memory processing between Unilateral and Bilateral Cochlear Implanted children. Hear Res 2024; 446:109007. [PMID: 38608331 DOI: 10.1016/j.heares.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Despite the proven effectiveness of cochlear implant (CI) in the hearing restoration of deaf or hard-of-hearing (DHH) children, to date, extreme variability in verbal working memory (VWM) abilities is observed in both unilateral and bilateral CI user children (CIs). Although clinical experience has long observed deficits in this fundamental executive function in CIs, the cause to date is still unknown. Here, we have set out to investigate differences in brain functioning regarding the impact of monaural and binaural listening in CIs compared with normal hearing (NH) peers during a three-level difficulty n-back task undertaken in two sensory modalities (auditory and visual). The objective of this pioneering study was to identify electroencephalographic (EEG) marker pattern differences in visual and auditory VWM performances in CIs compared to NH peers and possible differences between unilateral cochlear implant (UCI) and bilateral cochlear implant (BCI) users. The main results revealed differences in theta and gamma EEG bands. Compared with hearing controls and BCIs, UCIs showed hypoactivation of theta in the frontal area during the most complex condition of the auditory task and a correlation of the same activation with VWM performance. Hypoactivation in theta was also observed, again for UCIs, in the left hemisphere when compared to BCIs and in the gamma band in UCIs compared to both BCIs and NHs. For the latter two, a correlation was found between left hemispheric gamma oscillation and performance in the audio task. These findings, discussed in the light of recent research, suggest that unilateral CI is deficient in supporting auditory VWM in DHH. At the same time, bilateral CI would allow the DHH child to approach the VWM benchmark for NH children. The present study suggests the possible effectiveness of EEG in supporting, through a targeted approach, the diagnosis and rehabilitation of VWM in DHH children.
Collapse
Affiliation(s)
- Bianca Maria Serena Inguscio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy.
| | - Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy
| | | | - Maria Nicastri
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Ilaria Giallini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 125, Rome 00185, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy; BrainSigns Srl, Via Tirso, 14, Rome 00198, Italy; Department of Computer Science, Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, Viale dell'Università 31, Rome 00161, Italy
| |
Collapse
|
5
|
Nakase T, Thyreau B, Tatewaki Y, Tomita N, Takano Y, Muranaka M, Taki Y. Association between Gray and White Matter Lesions and Its Involvement in Clinical Symptoms of Alzheimer's-Type Dementia. J Clin Med 2023; 12:7642. [PMID: 38137710 PMCID: PMC10744158 DOI: 10.3390/jcm12247642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Not only gray matter lesions (GMLs) but also white matter lesions (WMLs) can play important roles in the pathology of Alzheimer's disease (AD). The progression of cognitive impairment (CI) and behavioral and psychological symptoms of dementia (BPSD) might be caused by a concerted effect of both GML and WML. OBJECTIVE This study aimed to investigate the association between GML and WML and how they are involved in the symptoms of CI and BPSD in dementia patients by means of imaging technology. METHODS Patients in our memory clinic, who were diagnosed with AD-type dementia or amnestic mild cognitive impairment (aMCI) and had undergone both single-photon emission computed tomography (SPECT) and brain MRI, were consecutively enrolled (n = 156; 61 males and 95 females; 79.8 ± 7.4 years old). Symptoms of CI and BPSD were obtained from patients' medical records. For the analysis of GMLs and WMLs, SPECT data and MRI T1-weighted images were used, respectively. This study followed the Declaration of Helsinki, and all procedures were approved by the institutional ethics committee. RESULTS According to a multivariate analysis, disorientation and disturbed attention demonstrated a relationship between the precuneus and WMLs in both hemispheres. Hyperactivity in BPSD showed multiple correlations between GMLs on both sides of the frontal cortex and WMLs. Patients with aMCI presented more multiple correlations between GMLs and WMLs compared with those with AD-type dementia regarding dementia symptoms including BPSD. CONCLUSION The interaction between GMLs and WMLs may vary depending on the symptoms of CI and BPSD. Hyperactivity in BPSD may be affected by the functional relationship between GMLs and WMLs in the left and right hemispheres. The correlation between GMLs and WMLs may be changing in AD-type dementia and aMCI.
Collapse
Affiliation(s)
- Taizen Nakase
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
| | - Benjamin Thyreau
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan;
| | - Yasuko Tatewaki
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
| | - Naoki Tomita
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
| | - Yumi Takano
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
| | - Michiho Muranaka
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
| | - Yasuyuki Taki
- Department of Aging Research & Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; (Y.T.); (N.T.); (Y.T.)
- Smart Aging Research Center, Tohoku University, Sendai 980-8575, Japan;
| |
Collapse
|
6
|
Martin KC, Seydell-Greenwald A, Turkeltaub PE, Chambers CE, Giannetti M, Dromerick AW, Carpenter JL, Berl MM, Gaillard WD, Newport EL. One right can make a left: sentence processing in the right hemisphere after perinatal stroke. Cereb Cortex 2023; 33:11257-11268. [PMID: 37859521 PMCID: PMC10690853 DOI: 10.1093/cercor/bhad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
When brain regions that are critical for a cognitive function in adulthood are irreversibly damaged at birth, what patterns of plasticity support the successful development of that function in an alternative location? Here we investigate the consistency of language organization in the right hemisphere (RH) after a left hemisphere (LH) perinatal stroke. We analyzed fMRI data collected during an auditory sentence comprehension task on 14 people with large cortical LH perinatal arterial ischemic strokes (left hemisphere perinatal stroke (LHPS) participants) and 11 healthy sibling controls using a "top voxel" approach that allowed us to compare the same number of active voxels across each participant and in each hemisphere for controls. We found (1) LHPS participants consistently recruited the same RH areas that were a mirror-image of typical LH areas, and (2) the RH areas recruited in LHPS participants aligned better with the strongly activated LH areas of the typically developed brains of control participants (when flipped images were compared) than the weakly activated RH areas. Our findings suggest that the successful development of language processing in the RH after a LH perinatal stroke may in part depend on recruiting an arrangement of frontotemporal areas reflective of the typical dominant LH.
Collapse
Affiliation(s)
- Kelly C Martin
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Margot Giannetti
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| | - Jessica L Carpenter
- Division of Pediatric Neurology, Departments of Pediatrics and Neurology, University of Maryland School of Medicine, Baltimore MD 21201, United States
| | - Madison M Berl
- Children’s National Hospital and Center for Neuroscience, Washington, DC 20010, United States
| | - William D Gaillard
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- Children’s National Hospital and Center for Neuroscience, Washington, DC 20010, United States
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
- MedStar National Rehabilitation Hospital, Washington, DC 20010, United States
| |
Collapse
|
7
|
Zong F, You Z, Zhou L, Deng X. Language function of the superior longitudinal fasciculus in patients with arteriovenous malformation as evidenced by automatic fiber quantification. FRONTIERS IN RADIOLOGY 2023; 3:1121879. [PMID: 37492384 PMCID: PMC10365120 DOI: 10.3389/fradi.2023.1121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/03/2023] [Indexed: 07/27/2023]
Abstract
The superior longitudinal fasciculus (SLF) is a major fiber tract involved in language processing and has been used to investigate language impairments and plasticity in many neurological diseases. The SLF is divided into four main branches that connect with different cortex regions, with two branches (SLF II, SLF III) being directly related to language. However, most white matter analyses consider the SLF as a single bundle, which may underestimate the relationship between these fiber bundles and language function. In this study, we investigated the differences between branches of the SLF in patients with arteriovenous malformation (AVM), which is a unique model to investigate language reorganization. We analyzed diffusion tensor imaging data of AVM patients and healthy controls to generate whole-brain fiber tractography, and then segmented the SLF into SLF II and III based on their distinctive waypoint regions. The SLF, SLF II, and III were further quantified, and four diffusion parameters of three branches were compared between the AVMs and controls. No significant diffusivity differences of the whole SLF were observed between two groups, however, the right SLF II and III in AVMs showed significant reorganization or impairment patterns as compared to the controls. Results demonstrating the need to subtracting SLF branches when studying structure-function relationship in neurological diseases that have SLF damage.
Collapse
Affiliation(s)
- Fangrong Zong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Zhaoyi You
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Leqing Zhou
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
8
|
Martin KC, Seydell-Greenwald A, Berl MM, Gaillard WD, Turkeltaub PE, Newport EL. A Weak Shadow of Early Life Language Processing Persists in the Right Hemisphere of the Mature Brain. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:364-385. [PMID: 35686116 PMCID: PMC9169899 DOI: 10.1162/nol_a_00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Studies of language organization show a striking change in cerebral dominance for language over development: We begin life with a left hemisphere (LH) bias for language processing, which is weaker than that in adults and which can be overcome if there is a LH injury. Over development this LH bias becomes stronger and can no longer be reversed. Prior work has shown that this change results from a significant reduction in the magnitude of language activation in right hemisphere (RH) regions in adults compared to children. Here we investigate whether the spatial distribution of language activation, albeit weaker in magnitude, still persists in homotopic RH regions of the mature brain. Children aged 4-13 (n = 39) and young adults (n = 14) completed an auditory sentence comprehension fMRI (functional magnetic resonance imaging) task. To equate neural activity across the hemispheres, we applied fixed cutoffs for the number of active voxels that would be included in each hemisphere for each participant. To evaluate homotopicity, we generated left-right flipped versions of each activation map, calculated spatial overlap between the LH and RH activity in frontal and temporal regions, and tested for mean differences in the spatial overlap values between the age groups. We found that, in children as well as in adults, there was indeed a spatially intact shadow of language activity in the right frontal and temporal regions homotopic to the LH language regions. After a LH stroke in adulthood, recovering early-life activation in these regions might assist in enhancing recovery of language abilities.
Collapse
Affiliation(s)
- Kelly C. Martin
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Madison M. Berl
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - William D. Gaillard
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Children’s National Hospital, Washington, DC
| | - Peter E. Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| | - Elissa L. Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|