1
|
Ouagueni A, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Mar Drugs 2024; 22:207. [PMID: 38786598 PMCID: PMC11123418 DOI: 10.3390/md22050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.
Collapse
Affiliation(s)
- Asma Ouagueni
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Ahmad Zarour
- Acute Care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar;
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha 576214, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
2
|
Papa S, Pizzetti F, Perale G, Veglianese P, Rossi F. Regenerative medicine for spinal cord injury: focus on stem cells and biomaterials. Expert Opin Biol Ther 2020; 20:1203-1213. [PMID: 32421405 DOI: 10.1080/14712598.2020.1770725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a dramatic medical pathology consequence of a trauma (primary injury). However, most of the post-traumatic degeneration of the tissue is caused by the so-called secondary injury, which is known to be a multifactorial process. This, indeed, includes a wide spectrum of events: blood-brain barrier dysfunction, local inflammation, neuronal death, demyelination and disconnection of nerve pathways. AREAS COVERED Cell therapy represents a promising cure to target diseases and disorders at the cellular level, by restoring cell population or using cells as carriers of therapeutic cargo. In particular, regenerative medicine with stem cells represents the most appealing category to be used, thanks to their peculiar features. EXPERT OPINION Many preclinical research studies demonstrated that cell treatment can improve animal sensory/motor functions and so demonstrated to be very promising for clinical trials. In particular, recent advances have led to the development of biomaterials aiming to promote in situ cell delivery. This review digs into this topic discussing the possibility of cell treatment to improve medical chances in SCI repair.
Collapse
Affiliation(s)
- Simonetta Papa
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Fabio Pizzetti
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI) , Lugano, Switzerland.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| |
Collapse
|
3
|
Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines. J Orthop Translat 2020; 26:74-83. [PMID: 33437626 PMCID: PMC7773959 DOI: 10.1016/j.jot.2020.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background/objective Spinal cord injury (SCI) severely and irreversibly damages the central nervous system. Neurotropin (NTP), a nonprotein extract obtained from inflamed rabbit skin inoculated with vaccinia virus, is a drug that has been used for more than sixty years to alleviate neuropathic pain. It also reportedly exerts a neuroprotective role in peripheral nerves and in response to various central nervous system diseases, such as brain injury and Alzheimer disease. However, whether NTP promotes SCI recovery remains unknown. This study evaluated NTP's effects after SCI and explored its underlying mechanisms in a rat contusion model of SCI. Method NTP was intraperitoneally administered to adult female Wistar rats subjected to contusion-induced SCI. Functional recovery was evaluated with behavioural scores and electrophysiological examinations. Tissue recovery was assessed with magnetic resonance imaging as well as histological staining with haematoxylin and eosin and Luxol Fast Blue. Neuronal survival and gliosis were observed after NeuN and glial fibrillary acidic protein immunofluorescence. Levels of apoptosis were demonstrated with TdT-mediated dUTP nick-end labeling (TUNEL) staining, Caspase-3 and B-cell lymphoma-2 (Bcl-2) Western blot, and Annexin V/propidium iodide flow cytometry. A protein antibody chip analysis was performed to evaluate the expression levels of 67 rat cytokines. Results NTP treatment improved the hindlimb locomotor recovery of the injured animals as well as their electrophysiological outcomes after SCI. A dosage of 50 NTP units/kg was found to optimize the efficacy of NTP. Magnetic resonance imaging revealed that lesion sizes decreased after NTP treatment. The haematoxylin and eosin and Luxol Fast Blue staining showed significant increases in the amount of spared tissue. The NeuN and glial fibrillary acidic protein immunofluorescence revealed that NTP treatment increased neuronal survival and reduced gliosis in tissue samples obtained from the lesion's epicentre. That NTP inhibited apoptosis was confirmed by the decreased number of TUNEL-positive cells, level of Caspase-3 expression, and number of Annexin V/propidium iodide–positive cells, as well as the increased level of Bcl-2 expression. The protein array analysis identified 28 differentially expressed proteins in the NTP group, and the gene ontology (GO) analysis showed that the enriched differentially expressed proteins implicate janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathways. The expression levels of proinflammatory cytokines such as interleukin 6, thymus chemokine-1(TCK-1), and lipopolysaccharide-induced CXC chemokine (LIX) decreased after NTP treatment, whereas the levels of prorepair cytokine hepatocyte growth factor and adiponectin increased. Conclusion Our research provides evidence that NTP can improve functional outcomes and alleviate secondary injury after SCI by inhibiting apoptosis and modulating cytokines. The translational potential of this article The multicomponent NTP might have broad target spectra in SCI pathophysiology and halt the secondary injury cascade. As a safe drug that features sixty years of clinical use as an analgesic, translating this demonstrated efficacy of NTP to addressing SCI in human patients may potentially be accelerated.
Collapse
|
4
|
Wu B, Liang J. Pectolinarigenin promotes functional recovery and inhibits apoptosis in rats following spinal cord injuries. Exp Ther Med 2019; 17:3877-3882. [PMID: 31007732 PMCID: PMC6468328 DOI: 10.3892/etm.2019.7456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological injury that frequently leads to neurological defects and disabilities. The only effective pharmacotherapy currently available is methylprednisolone (MP), which is controversial due to its high incidence of complications, adverse events and ultimately limited efficacy in SCI. Therefore, the development of alternative therapeutic agents for the treatment of SCI is of great clinical significance. In the present study, an acute SCI rat model was induced and, following a modified Allen method, the function of pectolinarigenin (PG) in SCI was investigated. A total of 36 rats were randomly divided into 6 groups (n=6 in each group); a sham surgery group and an SCI + saline group were used as negative controls and an SCI + MP (30 mg/kg) group was used as a positive control. The remaining animals were subdivided into three groups: SCI + PG (10 mg/kg); SCI + PG (30 mg/kg); and SCI + PG (50 mg/kg). Basso-Beattie-Bresnahan locomotor rating scoring was performed to assess functional recovery. Nissl staining and TUNEL staining were used to evaluated neuronal lesion volume and apoptosis, respectively. The results demonstrated that PG significantly improved functional recovery and reduced tissue loss, and neuronal apoptosis. Furthermore, a western blotting assay was conducted to measure the expression of genes associated with apoptosis. The data suggested that PG downregulated the activated caspase-3, caspase-9 and poly-ADP-ribose polymerase expression and reduced the Bax: Bcl2 ratio. The findings of the present study suggested that PG may exert a protective effect against SCI in rats, potentially by inhibiting neuronal apoptosis and PG may therefore serve as a novel therapeutic agent against SCI.
Collapse
Affiliation(s)
- Bin Wu
- Department of Orthopedic Surgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jie Liang
- Department of Orthopedic Surgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
5
|
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14:227-237. [PMID: 30531002 PMCID: PMC6301181 DOI: 10.4103/1673-5374.244778] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-based technologies are used as a therapeutic strategy in spinal cord injury (SCI). Mesenchymal stem cells (MSCs), which secrete various neurotrophic factors and cytokines, have immunomodulatory, anti-apoptotic and anti-inflammatory effects, modulate reactivity/phenotype of astrocytes and the microglia, thereby promoting neuroregeneration seem to be the most promising. The therapeutic effect of MSCs is due to a paracrine mechanism of their action, therefore the survival of MSCs and their secretory phenotype is of particular importance. Nevertheless, these data are not always reported in efficacy studies of MSC therapy in SCI. Here, we provide a review with summaries of preclinical trials data evaluating the efficacy of MSCs in animal models of SCI. Based on the data collected, we have tried (1) to establish the behavior of MSCs after transplantation in SCI with an evaluation of cell survival, migration potential, distribution in the area of injured and intact tissue and possible differentiation; (2) to determine the effects MSCs on neuronal microenvironment and correlate them with the efficacy of functional recovery in SCI; (3) to ascertain the conditions under which MSCs demonstrate their best survival and greatest efficacy.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University; Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Olga A Gracheva
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Dina M Mukhutdinova
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
6
|
Oliveira KM, Binda NS, Lavor MSL, Silva CMO, Rosado IR, Gabellini ELA, Da Silva JF, Oliveira CM, Melo MM, Gomez MV, Melo EG. Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats. PLoS One 2018; 13:e0204948. [PMID: 30286181 PMCID: PMC6171875 DOI: 10.1371/journal.pone.0204948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022] Open
Abstract
This study evaluates whether intrathecal MVIIA injection after spinal cord injury (SCI) elicits neuroprotective effects. The test rats were randomly distributed into six groups— sham, placebo, MVIIA 2.5 μM, MVIIA 5 μM, MVIIA 10 μM, and MVIIA 20 μM—and were administered the treatment four hours after SCI. After the optimal MVIIA dose (MVIIA 10 μM) was defined, the best time for application, one or four hours, was analyzed. Locomotor hind limb function and side effects were assessed. Forty-eight hours after the injury and immediately after euthanasia, spinal cord segments were removed from the test rats. Cell viability, reactive oxygen species, lipid peroxidation, and glutamate release were investigated. To examine the MVIIA mechanism of action, the gene expressions of pro-apoptotic (Bax, nNOS, and caspase-3, -8, -9, -12) and anti-apoptotic (Bcl-xl) factors in the spinal cord tissue samples were determined by real-time PCR, and the activities of antioxidant enzymes were also investigated. Application of intrathecal MVIIA 10 μM four hours after SCI prompted a neuroprotective effect: neuronal death decreased (22.46%), oxidative stress diminished, pro-apoptotic factors (Bax, nNOS, and caspase-3, -8) were expressed to a lesser extent, and mitochondrial viability as well as anti-apoptotic factor (Bcl-xl) expression increased. These results suggested that MVIIA provided neuroprotection through antioxidant effects. Indeed, superoxide dismutase (188.41%), and glutathione peroxidase (199.96%), reductase (193.86%), and transferase (175.93%) expressions increased. Therefore, intrathecal MVIIA (MVIIA 10 μM, 4 h) application has neuroprotective potential, and the possible mechanisms are related to antioxidant agent modulation and to intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Karen M. Oliveira
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nancy S. Binda
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Mário Sérgio L. Lavor
- Department of Agrarian and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
| | - Carla M. O. Silva
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Isabel R. Rosado
- Veterinary Medicine Department, Uberaba University, Uberada, Minas Gerais, Brazil
| | | | - Juliana F. Da Silva
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marília M. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Gomez
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane G. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Shimizu EN, Seifert JL, Johnson KJ, Romero-Ortega MI. Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction. J Neurotrauma 2018; 35:1319-1328. [PMID: 29295647 DOI: 10.1089/neu.2017.5494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) without radiographical abnormalities (SCIWORA) presents a significant challenge because of the loss of function despite an apparent normal anatomy. The cause of dysfunction is not understood, and specific treatment options are lacking. Some scoliosis corrective surgeries result in SCIWORA, where stretching of the spinal cord can lead to vascular compromise and hypoxia. The iatrogenic nature of this injury allows for the implantation of neuroprotective strategies that are designed to prevent damage. We utilized a model of atraumatic SCI to evaluate the efficacy of the sodium-channel blocker, riluzole, as a prophylactic neuroprotectant. As expected, the stretch injury caused a significant reduction in intraparenchymal oxygen in distraction (-53.09 ± 22.23%) and riluzole pre-treated distraction animals (-43.04 ± 22.86%). However, in contrast to the oxidative stress and metabolic impairments observed in vehicle-treated distraction animals, in which protein carbonylation increased significantly (5.88 ± 1.3 nmol/mL), riluzole kept these levels within the normal range (1.8 ± 1.0 nmol/mL). This neurprotection also prevented ventral motor neuron hypoplasia and pyknosis, characteristic features of this atraumatic SCI model, and maintained normal gait function (e.g., stride length and stance time). This study provides evidence for the use of prophylactic neuroprotective strategies in which thoracic or spine surgeries present the risk of causing atraumatic SCI.
Collapse
Affiliation(s)
- Eileen N Shimizu
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Jennifer L Seifert
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Kevin J Johnson
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas
| | - Mario I Romero-Ortega
- 1 Bioengineering Department, University of Texas at Dallas , Richardson, Texas.,2 Surgery Department, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
8
|
Calder PC, Adolph M, Deutz NE, Grau T, Innes JK, Klek S, Lev S, Mayer K, Michael-Titus AT, Pradelli L, Puder M, Vlaardingerbroek H, Singer P. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin Nutr 2017; 37:1-18. [PMID: 28935438 DOI: 10.1016/j.clnu.2017.08.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
Abstract
This article summarizes the presentations given at an ESPEN Workshop on "Lipids in the ICU" held in Tel Aviv, Israel in November 2014 and subsequent discussions and updates. Lipids are an important component of enteral and parenteral nutrition support and provide essential fatty acids, a concentrated source of calories and building blocks for cell membranes. Whilst linoleic acid-rich vegetable oil-based enteral and parenteral nutrition is still widely used, newer lipid components such as medium-chain triglycerides and olive oil are safe and well tolerated. Fish oil (FO)-enriched enteral and parenteral nutrition appears to be well tolerated and confers additional clinical benefits, particularly in surgical patients, due to its anti-inflammatory and immune-modulating effects. Whilst the evidence base is not conclusive, there appears to be a potential for FO-enriched nutrition, particularly administered peri-operatively, to reduce the rate of complications and intensive care unit (ICU) and hospital stay in surgical ICU patients. The evidence for FO-enriched nutrition in non-surgical ICU patients is less clear regarding its clinical benefits and additional, well-designed large-scale clinical trials need to be conducted in this area. The ESPEN Expert Group supports the use of olive oil and FO in nutrition support in surgical and non-surgical ICU patients but considers that further research is required to provide a more robust evidence base.
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, United Kingdom.
| | - Michael Adolph
- Department of Anesthesiology and Intensive Care Medicine, Nutrition Support Team, University Clinic Tübingen, 72074 Tübingen, Germany
| | - Nicolaas E Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Teodoro Grau
- Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Jacqueline K Innes
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Stanislaw Klek
- General and Oncology Surgery Unit, Intestinal Failure Center, Stanley Dudrick's Memorial Hospital, Skawina, Poland
| | - Shaul Lev
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Hasharon Hospital and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Konstantin Mayer
- Department of Internal Medicine, Med. Clinik II, University Hospital Giessen and Marburg, 35392 Giessen, Germany
| | - Adina T Michael-Titus
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Lorenzo Pradelli
- AdRes Health Economics and Outcomes Research, 10121 Turin, Italy
| | - Mark Puder
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hester Vlaardingerbroek
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Hasharon Hospital and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Yang L, Yan X, Xu Z, Tan W, Chen Z, Wu B. Delayed administration of recombinant human erythropoietin reduces apoptosis and inflammation and promotes myelin repair and functional recovery following spinal cord compressive injury in rats. Restor Neurol Neurosci 2016; 34:647-63. [PMID: 26444376 DOI: 10.3233/rnn-150498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liuzhu Yang
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
- Department of Orthopedics, Hezhou city pepole’s hospital, Hezhou, Guangxi, China
| | - Xinping Yan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zunying Xu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Wei Tan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zhong Chen
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Bo Wu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Cong L, Chen W. Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats. Basic Clin Pharmacol Toxicol 2016; 119:193-201. [PMID: 26833867 DOI: 10.1111/bcpt.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
In this study, the neuroprotective effects of ginsenoside Rd (GS Rd) were evaluated in a rat model of spinal cord injury (SCI). Rats in SCI groups received a T8 laminectomy and a spinal contusion injury. GS Rd 12.5, 25 and 50 mg/kg were administered intraperitoneally 1 hr before the surgery and once daily for 14 days. Dexamethasone 1 mg/kg was administered as a positive control. Locomotor function was evaluated using the BBB score system. H&E staining and Nissl staining were performed to observe the histological changes in the spinal cord. The levels of MDA and GSH and the activity of SOD were assessed to reflect the oxidative stress state. The production of TNF-α, IL-1β and IL-1 was assessed using ELISA kits to examine the inflammatory responses in the spinal cord. TUNEL staining was used to detect the cell apoptosis in the spinal cord. Western blot analysis was used to examine the expression of apoptosis-associated proteins and MAPK proteins. The results demonstrated that GS Rd 25 and 50 mg/kg significantly improved the locomotor function of rats after SCI, reduced tissue injury and increased neuron survival in the spinal cord. Mechanically, GS Rd decreased MDA level, increased GSH level and SOD activity, reduced the production of pro-inflammatory cytokines and prevented cell apoptosis. The effects were equivalent to those of dexamethasone. In addition, GS Rd effectively inhibited the activation of MAPK signalling pathway induced by SCI, which might be involved in the protective effects of GS Rd against SCI. In conclusion, GS Rd attenuates SCI-induced secondary injury through reversing the redox-state imbalance, inhibiting the inflammatory response and apoptosis in the spinal cord tissue.
Collapse
Affiliation(s)
- Lin Cong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenting Chen
- Disease Control and Prevention Center of Shenyang Railway Bureau, Shenyang, China
| |
Collapse
|
11
|
Pallier PN, Poddighe L, Zbarsky V, Kostusiak M, Choudhury R, Hart T, Burguillos MA, Musbahi O, Groenendijk M, Sijben JW, deWilde MC, Quartu M, Priestley JV, Michael-Titus AT. A nutrient combination designed to enhance synapse formation and function improves outcome in experimental spinal cord injury. Neurobiol Dis 2015; 82:504-515. [PMID: 26388399 DOI: 10.1016/j.nbd.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury leads to major neurological impairment for which there is currently no effective treatment. Recent clinical trials have demonstrated the efficacy of Fortasyn® Connect in Alzheimer's disease. Fortasyn® Connect is a specific multi-nutrient combination containing DHA, EPA, choline, uridine monophosphate, phospholipids, and various vitamins. We examined the effect of Fortasyn® Connect in a rat compression model of spinal cord injury. For 4 or 9 weeks following the injury, rats were fed either a control diet or a diet enriched with low, medium, or high doses of Fortasyn® Connect. The medium-dose Fortasyn® Connect-enriched diet showed significant efficacy in locomotor recovery after 9 weeks of supplementation, along with protection of spinal cord tissue (increased neuronal and oligodendrocyte survival, decreased microglial activation, and preserved axonal integrity). Rats fed the high-dose Fortasyn® Connect-enriched diet for 4 weeks showed a much greater enhancement of locomotor recovery, with a faster onset, than rats fed the medium dose. Bladder function recovered quicker in these rats than in rats fed the control diet. Their spinal cord tissues showed a smaller lesion, reduced neuronal and oligodendrocyte loss, decreased neuroinflammatory response, reduced astrocytosis and levels of inhibitory chondroitin sulphate proteoglycans, and better preservation of serotonergic axons than those of rats fed the control diet. These results suggest that this multi-nutrient preparation has a marked therapeutic potential in spinal cord injury, and raise the possibility that this original approach could be used to support spinal cord injured patients.
Collapse
Affiliation(s)
- Patrick N Pallier
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | | | - Virginia Zbarsky
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Milosz Kostusiak
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Rasall Choudhury
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Thomas Hart
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Miguel A Burguillos
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Omar Musbahi
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Martine Groenendijk
- Nutricia Research - Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - John W Sijben
- Nutricia Research - Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C deWilde
- Nutricia Research - Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | | | - John V Priestley
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| |
Collapse
|
12
|
Kim MS, Lee HB. Perspectives on tissue-engineered nerve regeneration for the treatment of spinal cord injury. Tissue Eng Part A 2014; 20:1781-3. [PMID: 24568624 PMCID: PMC4085818 DOI: 10.1089/ten.tea.2014.0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, substantial progress has been made to safely improve nerve function in spinal cord injury (SCI) patients through the regeneration of injured nerve tissue. This perspective focuses on an extensive overview of SCI research as well as tissue-engineered nerve regeneration for the treatment of SCI.
Collapse
Affiliation(s)
- Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University , Suwon, Korea
| | | |
Collapse
|
13
|
Karalija A, Novikova LN, Kingham PJ, Wiberg M, Novikov LN. The effects of N-acetyl-cysteine and acetyl-L-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury. Neuroscience 2014; 269:143-51. [PMID: 24680856 DOI: 10.1016/j.neuroscience.2014.03.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022]
Abstract
Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. It also examines the short- and long-term effects of treatment on apoptosis, inflammation, and regeneration in the spinal cord trauma zone. Spinal cord hemisection performed at the level C3 induced a significant loss of rubrospinal neurons 8 weeks after injury. At 2 weeks, an increase in the expression of the apoptosis-associated markers BCL-2-associated X protein (BAX) and caspase 3, as well as the microglial cell markers OX42 and ectodermal dysplasia 1 (ED1), was seen in the trauma zone. After 8 weeks, an increase in immunostaining for OX42 and the serotonin marker 5HT was detected in the same area. Antioxidant therapy reduced the loss of rubrospinal neurons by approximately 50%. Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2 weeks. After 8 weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.
Collapse
Affiliation(s)
- A Karalija
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, SE-901 87 Umeå, Sweden.
| | - L N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - P J Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - M Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, SE-901 87 Umeå, Sweden
| | - L N Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
14
|
Omega-3 fatty acids and traumatic neurological injury: from neuroprotection to neuroplasticity? Trends Neurosci 2014; 37:30-8. [DOI: 10.1016/j.tins.2013.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 01/21/2023]
|
15
|
Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley JV. A characterization of white matter pathology following spinal cord compression injury in the rat. Neuroscience 2013; 260:227-39. [PMID: 24361176 DOI: 10.1016/j.neuroscience.2013.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022]
Abstract
Our laboratory has previously described the characteristics of neuronal injury in a rat compression model of spinal cord injury (SCI), focussing on the impact of this injury on the gray matter. However, white matter damage is known to play a critical role in functional outcome following injury. Therefore, in the present study, we used immunohistochemistry and electron microscopy to examine the alterations to the white matter that are initiated by compression SCI applied at T12 vertebral level. A significant loss of axonal and dendritic cytoskeletal proteins was observed at the injury epicenter within 1day of injury. This was accompanied by axonal dysfunction, as demonstrated by the accumulation of β-amyloid precursor protein (β-APP), with a peak at 3days post-SCI. A similar, acute loss of cytoskeletal proteins was observed up to 5mm away from the injury epicenter and was particularly evident rostral to the lesion site, whereas β-APP accumulation was prominent in tracts proximal to the injury. Early myelin loss was confirmed by myelin basic protein (MBP) immunostaining and by electron microscopy, which also highlighted the infiltration of inflammatory and red blood cells. However, 6weeks after injury, areas of new Schwann cell and oligodendrocyte myelination were observed. This study demonstrates that substantial white matter damage occurs following compression SCI in the rat. Moreover, the loss of cytoskeletal proteins and accumulation of β-APP up to 5mm away from the lesion site within 1day of injury indicates the rapid manner in which the axonal damage extends in the rostro-caudal axis. This is likely due to both Wallerian degeneration and spread of secondary cell death, with the latter affecting axons both proximal and distal to the injury.
Collapse
Affiliation(s)
- R E Ward
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - W Huang
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; The Institute of Medical Sciences, School of Medical Science, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - M Kostusiak
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - P N Pallier
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - A T Michael-Titus
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - J V Priestley
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
16
|
Song Y, Liu J, Zhang F, Zhang J, Shi T, Zeng Z. Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway. Life Sci 2013; 92:1215-21. [DOI: 10.1016/j.lfs.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/27/2013] [Accepted: 05/11/2013] [Indexed: 01/12/2023]
|
17
|
PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson's disease. J Mol Neurosci 2013; 50:600-7. [PMID: 23625270 DOI: 10.1007/s12031-013-0015-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/15/2013] [Indexed: 01/14/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide with various cytoprotective functions including neuroprotection. Administration of PACAP has been shown to reduce damage induced by ischemia, trauma, or exogenous toxic substances. Moreover, mice deficient in PACAP are more vulnerable to damaging insults. In this study, we sought to determine whether PACAP may also be protective against salsolinol-induced toxicity in SH-SY5Y cells and, if so, elucidate its mechanism(s) of action. Salsolinol (SALS) is an endogenous dopamine metabolite with selective toxicity to nigral dopaminergic neurons, which are directly implicated in Parkinson's disease (PD). SH-SY5Y cells, derived from human neuroblastoma cells, express high levels of dopaminergic activity and are used extensively as a model to study these neurons. Exposure of SH-SY5Y cells to 400 μM SALS for 24 h resulted in approximately 50 % cell death that was mediated by apoptosis as determined by cell flow cytometry and increases in caspase-3 levels. Cellular toxicity was also associated with reductions in brain-derived neurotrophic factor and phosphorylated cyclic AMP response element-binding protein. Pretreatment with PACAP dose-dependently attenuated SALS-induced toxicity and the associated apoptosis and the chemical changes. PACAP receptor antagonist PACAP6-38, in turn, dose-dependently blocked the effects of PACAP. Neither PACAP nor PACAP antagonist had any effect of its own on cellular viability. These results suggest the protective effects of PACAP in a cellular model of PD. Hence, PACAP or its agonists could be of therapeutic benefit in PD.
Collapse
|