1
|
Shirodkar K, Hussein M, Reddy PS, Shah AB, Raniga S, Pal D, Iyengar KP, Botchu R. Imaging of Peripheral Intraneural Tumors: A Comprehensive Review for Radiologists. Cancers (Basel) 2025; 17:246. [PMID: 39858028 PMCID: PMC11763772 DOI: 10.3390/cancers17020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Intraneural tumors (INTs) pose a diagnostic challenge, owing to their varied origins within nerve fascicles and their wide spectrum, which includes both benign and malignant forms. Accurate diagnosis and management of these tumors depends upon the skills of the radiologist in identifying key imaging features and correlating them with the patient's clinical symptoms and examination findings. METHODS This comprehensive review systematically analyzes the various imaging features in the diagnosis of intraneural tumors, ranging from basic MR to advanced MR imaging techniques such as MR neurography (MRN), diffusion tensor imaging (DTI), and dynamic contrast-enhanced (DCE) MRI. RESULTS The article emphasizes the differentiation of benign from malignant lesions using characteristic MRI features, such as the "target sign" and "split-fat sign" for tumor characterization. The role of advanced multiparametric MRI in improving biopsy planning, guiding surgical mapping, and enhancing post-treatment monitoring is also highlighted. The review also underlines the importance of common diagnostic pitfalls and highlights the need for a multi-disciplinary approach to achieve an accurate diagnosis, appropriate treatment strategy, and post-therapy surveillance planning. CONCLUSIONS In this review, we illustrate the main imaging findings of intraneural tumors, focusing on specific MR imaging features that are crucial for an accurate diagnosis and the differentiation between benign and malignant lesions.
Collapse
Affiliation(s)
| | | | | | | | - Sameer Raniga
- Sultan Qaboos University Hospital, Seeb H5QC+4HX, Oman
| | - Devpriyo Pal
- Stoke Mandeville Hospital, Aylesbury HP21 8AL, UK
| | | | | |
Collapse
|
2
|
Xirou S, Anagnostou E. Electrodiagnosis and Ultrasound Imaging for Ulnar Nerve Entrapment at the Elbow: A Review. Neurodiagn J 2024; 64:175-192. [PMID: 39110889 DOI: 10.1080/21646821.2024.2379081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 11/26/2024]
Abstract
Entrapment neuropathy of the ulnar nerve at the elbow, the so-called cubital tunnel syndrome, is the second most frequent focal mononeuropathy after carpal tunnel syndrome in adults. Currently, there is a pressing need to identify cost-effective biomarkers and procedures capable of accurately detecting alterations in ulnar nerve structural and functional integrity. Established electrophysiological techniques, such as motor and sensory nerve conduction studies, along with needle electromyography of specific muscles, represent the gold standard for ulnar nerve electrodiagnosis. Concurrently, the introduction of neuromuscular ultrasound and its integration into electromyographic laboratories has significantly impacted structural diagnosis and the precise localization of ulnar nerve pathology over the past two decades. In this review, our objective is to summarize the current knowledge on both classical and advanced diagnostic methods utilized in clinical neurophysiology laboratories. We aim to provide a synthesis of modern electrodiagnostic and neurosonographic techniques, with a particular emphasis on easily attainable, clinically relevant parameters.
Collapse
Affiliation(s)
- Sophia Xirou
- Department of NeurologyNational and Kapodistrian University of Athens Eginition Hospital Athens, Greece
| | - Evangelos Anagnostou
- Department of NeurologyNational and Kapodistrian University of Athens Eginition Hospital Athens, Greece
| |
Collapse
|
3
|
Chow CY, King GF. Shining a Light on Venom-Peptide Receptors: Venom Peptides as Targeted Agents for In Vivo Molecular Imaging. Toxins (Basel) 2024; 16:307. [PMID: 39057947 PMCID: PMC11281729 DOI: 10.3390/toxins16070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular imaging has revolutionised the field of biomedical research by providing a non-invasive means to visualise and understand biochemical processes within living organisms. Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling, and they are implicated in diverse pathological conditions, making them an attractive target in the field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards ion channels, rendering them ideal agents for molecular imaging applications. In this review, we illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development and clinical translation of venom peptides as nerve-targeted imaging agents.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Gluck MJ, Beck CM, Skodras A, Bernstein ZL, Rubin TA, Hausman MR, Cagle PJ. Second Harmonic Generation Microscopy as a Novel Intraoperative Assessment of Rat Median Nerve Injury. J Hand Surg Am 2023; 48:1170.e1-1170.e7. [PMID: 36357225 DOI: 10.1016/j.jhsa.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Nerves that are functionally injured but appear macroscopically intact pose the biggest clinical dilemma. Second Harmonic Generation (SHG) Microscopy may provide a real-time assessment of nerve damage, with the ultimate goal of allowing surgeons to accurately quantify the degree of nerve damage present. The aim of this study was to demonstrate the utility of SHG microscopy to detect nerve damage in vivo in an animal model. METHODS Ten Sprague-Dawley rats were anesthetized and prepared for surgery. After surgical exposure and using a custom-made stretch applicator, the right median nerves were stretched by 20%, corresponding to a high strain injury, and held for 5 minutes. The left median nerve served as a sham control (SC), only being placed in the applicator for 5 minutes with no stretch. A nerve stimulator was used to assess the amount of stimulation required to induce a flicker and contraction of the paw. Nerves were then imaged using a multiphoton laser scanning microscope. RESULTS Immediately after injury (day 0), SHG images of SC median nerves exhibited parallel collagen fibers with linear, organized alignment. In comparison with SC nerves, high strain nerves demonstrated artifacts indicative of nerve damage consisting of wavy, undulating fibers with crossing fibers and tears, as well as a decrease in the linear organization, which correlated with an increase in the mean stimulation required to induce a flicker and contraction of the paw. CONCLUSIONS Second Harmonic Generation microscopy may provide the ability to detect an acute neural stretch injury in the rat median nerve. Epineurial collagen disorganization correlated with the stimulation required for nerve function. CLINICAL RELEVANCE In the future, SHG may provide the ability to visualize nerve damage intraoperatively, allowing for better clinical decision-making. However, this is currently a research tool and requires further validation before translating to the clinical setting.
Collapse
Affiliation(s)
- Matthew J Gluck
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, NY; Icahn School of Medicine- Mount Sinai, New York, NY.
| | - Christina M Beck
- Division of Plastic Surgery, University of Washington, Seattle, WA
| | - Angelos Skodras
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine- Mount Sinai, New York, NY
| | | | - Todd A Rubin
- Hughston Clinic Orthopaedics at TriStar Centennial Medical Center, Nashville, TN
| | - Michael R Hausman
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, NY; Icahn School of Medicine- Mount Sinai, New York, NY
| | - Paul J Cagle
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, NY; Icahn School of Medicine- Mount Sinai, New York, NY
| |
Collapse
|
5
|
Mandeville R, Deshmukh S, Tan ET, Kumar V, Sanchez B, Dowlatshahi AS, Luk J, See RHB, Leochico CFD, Thum JA, Bazarek S, Johnston B, Brown J, Wu J, Sneag D, Rutkove S. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration and regeneration: part 2, non-invasive imaging. J Neural Eng 2023; 20:041002. [PMID: 37369193 DOI: 10.1088/1741-2552/ace217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Peripheral neuroregenerative research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, novel biomarkers can elucidate regenerative mechanisms and open new avenues for research. Without such measures, clinical decision-making is impaired, and research becomes more costly, time-consuming, and sometimes infeasible. Part 1 of this two-part scoping review focused on neurophysiology. In part 2, we identify and critically examine many current and emerging non-invasive imaging techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Swati Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Luk
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Darryl Sneag
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
6
|
Schönberg B, Pigorsch M, Huscher D, Baruchi S, Reinsch J, Zdunczyk A, Scholz C, Uerschels AK, Dengler NF. Diagnosis and treatment of meralgia paresthetica between 2005 and 2018: a national cohort study. Neurosurg Rev 2023; 46:54. [PMID: 36781569 PMCID: PMC9925535 DOI: 10.1007/s10143-023-01962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
The prevalence of meralgia paresthetica (MP), which is caused by compression of the lateral femoral cutaneous nerve (LFCN), has been increasing over recent decades. Since guidelines and large-scale studies are lacking, there are substantial regional differences in diagnostics and management in MP care. Our study aims to report on current diagnostic and therapeutic strategies as well as time trends in clinical MP management in Germany. Patients hospitalized in Germany between January 1, 2005, and December 31, 2018, with MP as their primary diagnosis were identified using the International Classification of Disease (ICD-10) code G57.1 and standardized operations and procedures codes (OPS). A total of 5828 patients with MP were included. The rate of imaging studies increased from 44% in 2005 to 79% in 2018 (p < 0.001) and that of non-imaging diagnostic studies from 70 to 93% (p < 0.001). Among non-imaging diagnostics, the rates of evoked potentials and neurography increased from 20%/16% in 2005 to 36%/23% in 2018 (p < 0.001, respectively). Rates of surgical procedures for MP decreased from 53 to 37% (p < 0.001), while rates of non-surgical procedures increased from 23 to 30% (p < 0.001). The most frequent surgical interventions were decompressive procedures at a mean annual rate of 29% (± 5) throughout the study period, compared to a mean annual rate of 5% (± 2) for nerve transection procedures. Between 2005 and 2018, in-hospital MP care in Germany underwent significant changes. The rates of imaging, evoked potentials, neurography, and non-surgical management increased. The decompression of the LFCN was substantially more frequent than that of the LFCN transection, yet both types of intervention showed a substantial decrease in in-hospital prevalence over time.
Collapse
Affiliation(s)
- Benn Schönberg
- Vertebral Spine Center Berlin, Breite Straße 46/47, 13187, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Mareen Pigorsch
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Doerte Huscher
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Shlomo Baruchi
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jennifer Reinsch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Christoph Scholz
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Ann-Kathrin Uerschels
- Department of Neurosurgery, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Nora F Dengler
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
7
|
Braga Silva J, Chammas M, Chammas PE, Andrade R, Hochhegger B, Leal BLM. Evaluation of peripheral nerve injury by magnetic resonance neurography: A systematic review. HAND SURGERY & REHABILITATION 2021; 41:7-13. [PMID: 34543765 DOI: 10.1016/j.hansur.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022]
Abstract
In view of the limitations of current methods for assessing peripheral nerve injury, there is a need for technical innovations to improve diagnosis, surgical approach and postoperative monitoring. The objective of this study was to conduct a systematic review to analyze the applicability of magnetic resonance neurography in peripheral nerve injuries. The present systematic review focused on the use of magnetic resonance neurography. The literature was searched in the PUBMED, Cochrane Library and Virtual Health Library databases using the PICO method. One hundred sixty-two articles were retrieved with the terms "magnetic resonance imaging" and "peripheral nerve injury", with a filter for the last 10 years (2010-2020). Nineteen were eligible for the review. Most were reviews, with few systematic reviews of randomized controlled trials. Although not included in the recommended protocol, MRI is increasingly used due to its numerous advantages: it is non-invasive, providing objective visualization of neural and perineural tissues, fascicular representation as a result of high resolution, and objective visualization of serial interval images of successful treatment. This is one of the first systematic reviews of the literature regarding the use of magnetic resonance imaging neurography to assess peripheral nerve injury, highlighting the need to implement new imaging techniques in this field of medical practice.
Collapse
Affiliation(s)
- Jefferson Braga Silva
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Av. Ipiranga 6681, Partenon, Porto Alegre RS, 90619-900, Brazil; Service of Hand Surgery and Reconstructive Microsurgery, São Lucas Hospital, Centro Clinico PUCRS, Av. Ipiranga 6690, Suite 216, Porto Alegre, RS, 90610-000, Brazil.
| | - Michel Chammas
- Service of hand surgery and peripheral nerve surgery, SOS Main, Hospital Lapeyronie, CHU Montpellier, 371 Avenue du Doyen Gaston Giraud, 34090, Montpellier, France
| | - Pierre-Emmanuel Chammas
- Service of hand surgery and peripheral nerve surgery, SOS Main, Hospital Lapeyronie, CHU Montpellier, 371 Avenue du Doyen Gaston Giraud, 34090, Montpellier, France
| | - Rubens Andrade
- Radiology Service, São Lucas Hospital, Brain Institute, São Lucas Hospital, Centro Clinico PUCRS, Av. Ipiranga 6690, Porto Alegre, RS, 90610-000, Brazil
| | - Bruno Hochhegger
- Radiology Service, São Lucas Hospital, Brain Institute, São Lucas Hospital, Centro Clinico PUCRS, Av. Ipiranga 6690, Porto Alegre, RS, 90610-000, Brazil
| | - Bruna Leiria Meréje Leal
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Av. Ipiranga 6681, Partenon, Porto Alegre RS, 90619-900, Brazil
| |
Collapse
|
8
|
Magnetization Transfer Ratio of Peripheral Nerve and Skeletal Muscle : Correlation with Demographic Variables in Healthy Volunteers. Clin Neuroradiol 2021; 32:557-564. [PMID: 34374786 PMCID: PMC9187530 DOI: 10.1007/s00062-021-01067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
Purpose To assess the correlation of peripheral nerve and skeletal muscle magnetization transfer ratio (MTR) with demographic variables. Methods In this study 59 healthy adults evenly distributed across 6 decades (mean age 50.5 years ±17.1, 29 women) underwent magnetization transfer imaging and high-resolution T2-weighted imaging of the sciatic nerve at 3 T. Mean sciatic nerve MTR as well as MTR of biceps femoris and vastus lateralis muscles were calculated based on manual segmentation on six representative slices. Correlations of MTR with age, body height, body weight, and body mass index (BMI) were expressed by Pearson coefficients. Best predictors for nerve and muscle MTR were determined using a multiple linear regression model with forward variable selection and fivefold cross-validation. Results Sciatic nerve MTR showed significant negative correlations with age (r = −0.47, p < 0.001), BMI (r = −0.44, p < 0.001), and body weight (r = −0.36, p = 0.006) but not with body height (p = 0.55). The multiple linear regression model determined age and BMI as best predictors for nerve MTR (R2 = 0.40). The MTR values were different between nerve and muscle tissue (p < 0.0001), but similar between muscles. Muscle MTR was associated with BMI (r = −0.46, p < 0.001 and r = −0.40, p = 0.002) and body weight (r = −0.36, p = 0.005 and r = −0.28, p = 0.035). The BMI was selected as best predictor for mean muscle MTR in the multiple linear regression model (R2 = 0.26). Conclusion Peripheral nerve MTR decreases with higher age and BMI. Studies that assess peripheral nerve MTR should consider age and BMI effects. Skeletal muscle MTR is primarily associated with BMI but overall less dependent on demographic variables. Supplementary Information The online version of this article (10.1007/s00062-021-01067-5) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Irimia A, Van Horn JD. Mapping the rest of the human connectome: Atlasing the spinal cord and peripheral nervous system. Neuroimage 2021; 225:117478. [PMID: 33160086 PMCID: PMC8485987 DOI: 10.1016/j.neuroimage.2020.117478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/15/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of diffusion, structural, and functional neuroimaging methods has enabled major multi-site efforts to map the human connectome, which has heretofore been defined as containing all neural connections in the central nervous system (CNS). However, these efforts are not structured to examine the richness and complexity of the peripheral nervous system (PNS), which arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically dissectible, scalable, population-based and deformable, little attention has thus far been devoted to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is essential for neurosurgical planning, neurological localization, and for mapping those components of the human connectome located outside of the CNS. Here we recommend a modification to the definition of the human connectome to include the SC and PNS, and argue for the creation of an inclusive atlas to complement current efforts to map the brain's human connectome, to enhance clinical education, and to assist progress in neuroscience research. In addition to providing a critical overview of existing neuroimaging techniques, image processing methodologies and algorithmic advances which can be combined for the creation of a full connectome atlas, we outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for filling a critical gap in our scientific knowledge of neural connectivity.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles CA 90089, United States; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States.
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 485 McCormick Road, Gilmer Hall, Room 102, Charlottesville, Virginia 22903, United States; School of Data Science, University of Virginia, Dell 1, Charlottesville, Virginia 22903, United States.
| |
Collapse
|
10
|
Advances in imaging technologies for the assessment of peripheral neuropathies in rheumatoid arthritis. Rheumatol Int 2021; 41:519-528. [PMID: 33427917 DOI: 10.1007/s00296-020-04780-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy in patients with rheumatoid arthritis is associated with a maladaptive autoimmune response that may cause chronic pain and disability. Nerve conduction studies are the routine method performed when rheumatologists presume its presence. However, this approach is invasive, may not reveal subtle malfunctions in the early stages of the disease, and does not expose abnormalities in structures surrounding the nerves and muscles, limiting the possibility of a timely diagnosis. This work aims to present a narrative review of new technologies for the clinical assessment of peripheral neuropathy in Rheumatoid Arthritis. Through a bibliographic search carried out in five repositories, from 1990 to 2020, we identified three technologies that could detect peripheral nerve lesions and perform quantitative evaluations: (1) magnetic resonance neurography, (2) functional magnetic resonance imaging, and (3) high-resolution ultrasonography of peripheral nerves. We found these tools can overcome the main constraints imposed by the previous electrophysiologic methods, enabling early diagnosis.
Collapse
|
11
|
Nguyen ML, Rosenthal J, Umpierrez M, Lourie GM, Singer AD. MRN findings of lateral antebrachial cutaneous nerve impingement in a collegiate athlete. Skeletal Radiol 2020; 49:809-814. [PMID: 31807874 DOI: 10.1007/s00256-019-03345-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 02/02/2023]
Abstract
Dynamic compression of the lateral antebrachial cutaneous nerve (LABCN) occurs with forearm pronation when the LABCN becomes compressed by the lateral margin of the biceps tendon. LABCN compression is a rare occurrence and is often overlooked as an etiology for forearm pain. While this entity has been described in several case reports in the orthopedic literature, it has not yet been described in radiology literature. We present a case of LABCN compression by the biceps tendon which was suggested by high-resolution magnetic resonance neurography in combination with the clinical findings and was subsequently confirmed and corrected surgically.
Collapse
Affiliation(s)
- My-Linh Nguyen
- Department of Radiology and Imaging Sciences Section of Musculoskeletal Imaging, Emory University Hospital, 59 Executive Park South, 4th Floor Suite 4009, Atlanta, GA, 30329, USA
| | - Jeffrey Rosenthal
- Department of Radiology and Imaging Sciences Section of Musculoskeletal Imaging, Emory University Hospital, 59 Executive Park South, 4th Floor Suite 4009, Atlanta, GA, 30329, USA
| | - Monica Umpierrez
- Department of Radiology and Imaging Sciences Section of Musculoskeletal Imaging, Emory University Hospital, 59 Executive Park South, 4th Floor Suite 4009, Atlanta, GA, 30329, USA
| | - Gary M Lourie
- Department of Orthopaedic Surgery, Emory University Hospital, Atlanta, GA, USA.,The Hand and Upper Extremity Center of Georgia, Atlanta, GA, USA
| | - Adam D Singer
- Department of Radiology and Imaging Sciences Section of Musculoskeletal Imaging, Emory University Hospital, 59 Executive Park South, 4th Floor Suite 4009, Atlanta, GA, 30329, USA.
| |
Collapse
|
12
|
Heinen C, Dömer P, Schmidt T, Kewitz B, Janssen-Bienhold U, Kretschmer T. Fascicular Ratio Pilot Study: High-Resolution Neurosonography-A Possible Tool for Quantitative Assessment of Traumatic Peripheral Nerve Lesions Before and After Nerve Surgery. Neurosurgery 2020; 85:415-422. [PMID: 30107513 DOI: 10.1093/neuros/nyy355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/11/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clinical and electrophysiological assessments prevail in evaluation of traumatic nerve lesions and their regeneration following nerve surgery in humans. Recently, high-resolution neurosonography (HRNS) and magnetic resonance neurography have gained significant importance in peripheral nerve imaging. The use of the grey-scale-based "fascicular ratio" (FR) was established using both modalities allowing for quantitative assessment. OBJECTIVE To find out whether FR using HRNS can assess nerve trauma and structural reorganization in correlation to postoperative clinical development. METHODS Retrospectively, 16 patients with operated traumatic peripheral nerve lesions were included. The control group consisted of 6 healthy volunteers. All imaging was performed with a 15 to 6 MHz ultrasound probe (SonoSite X-Porte; Fujifilm, Tokyo, Japan). FR was calculated using Fiji () on 8-bit-images ("MaxEntropy" using "Auto-Threshold" plug-in). RESULTS Thirteen of 16 patients required autologous nerve grafting and 3 of 16 extra-intraneural neurolysis. There was no statistical difference between the FR of nonaffected patients' nerve portion with 43.48% and controls with FR 48.12%. The neuromatous nerve portion in grafted patients differed significantly with 85.05%. Postoperatively, FR values returned to normal with a mean of 39.33%. In the neurolyzed patients, FR in the affected portion was 78.54%. After neurolysis, FR returned to healthy values (50.79%). Ten of 16 patients showed clinical reinnervation. CONCLUSION To our best knowledge, this is the first description of FR using HRNS for quantitative assessment of nerve damage and postoperative structural reorganization. Our results show a significant difference in healthy vs lesioned nerves and a change in recovering nerve portions towards a more "physiological" ratio. Further evaluation in larger patient groups is required.
Collapse
Affiliation(s)
- Christian Heinen
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Patrick Dömer
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Schmidt
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Kewitz
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Kretschmer
- Department of Neurosurgery, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| |
Collapse
|
13
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
14
|
Abstract
Neuromuscular ultrasound is a rapidly evolving technique for diagnosing, monitoring and facilitating treatment of patients with muscle and nerve disorders. It is a portable point-of-care technology that is non-invasive, painless and without ionizing radiation. Ultrasound can visualize muscle texture alterations indicating dystrophy or denervation, changes in size and anatomic continuity of nerve fascicles, and its dynamic imaging capabilities allow capturing of contractions and fasciculations. Ultrasound can also provide real-time guidance for needle placement, and can sometimes make a diagnosis when electromyography is not tolerated or not informative anymore. This review will focus on the technical and practical aspects of ultrasound as an imaging technique for muscles and nerves. It will discuss basic imaging principles, hardware and software setup, and provide examples of ultrasound use for visualizing muscle and nerve abnormalities with accuracy and confidence. The review is intended as a practical "how-to" guide to get started with neuromuscular ultrasound in daily practice.
Collapse
|
15
|
Abstract
Advances in high-resolution ultrasound have provided clinicians with unique opportunities to study diseases of the peripheral nervous system. Ultrasound complements the clinical and electrophysiology exam by showing the degree of abnormalities in myopathies, as well as spontaneous muscle activities in motor neuron diseases and other disorders. In experienced hands, ultrasound is more sensitive than MRI in detecting peripheral nerve pathologies. It can also guide needle placement for electromyography exam, therapeutic injections, and muscle biopsy. Ultrasound enhances the ability to detect carpal tunnel syndrome and other focal nerve entrapment, as well as pathological nerve enlargements in genetic and acquired neuropathies. Furthermore, ultrasound can potentially be used as a biomarker for muscular dystrophy and spinal muscular atrophy. The combination of electromyography and ultrasound can increase the diagnostic certainty of amyotrophic lateral sclerosis, aid in the localization of brachial plexus or peripheral nerve trauma and allow for surveillance of nerve tumor progression in neurofibromatosis. Potential limitations of ultrasound include an inability to image deeper structures, with lower sensitivities in detecting neuromuscular diseases in young children and those with mitochondrial myopathies, due to subtle changes or early phase of the disease. As well, its utility in detecting critical illness neuromyopathy remains unclear. This review will focus on the clinical applications of neuromuscular ultrasound. The diagnostic values of ultrasound for screening of myopathies, neuropathies, and motor neuron diseases will be presented.
Collapse
Affiliation(s)
- Jean K Mah
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nens van Alfen
- Department of Neurology and Clinical Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Zochodne DW. Local blood flow in peripheral nerves and their ganglia: Resurrecting key ideas around its measurement and significance. Muscle Nerve 2018; 57:884-895. [DOI: 10.1002/mus.26031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Douglas W. Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
17
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
18
|
Chen H, Yang S, Zhou T, Xu J, Hu J, Xing D. Synthesis and characterization of an HSP27-targeted nanoprobe for in vivo photoacoustic imaging of early nerve injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2016; 12:1453-62. [PMID: 27046663 DOI: 10.1016/j.nano.2016.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023]
Abstract
Imaging is routinely used for clinical and diagnostic purposes, but techniques capable of high specificity and resolution for the early detection of nerve injury are still limited. In this study, we found that heat shock protein 27 (HSP27) becomes highly upregulated within 3 to 7 days of nerve injury. Taking advantage of this expression pattern, we conjugated gold nanorods (GNRs) to HSP27-specific antibodies to generate a nanoprobe (GNR-HSP27Abs) that could be targeted to the site of nerve injury and detected by near-infrared photoacoustic imaging. Notably, photoacoustic images acquired 12hours after local administration of GNR-HSP27Abs demonstrated that the nanoprobe can distinguish between injured and uninjured nerves in rats. Taken together, these findings expand the application of nanoprobe-targeted photoacoustic imaging to the detection of injured nerves, and prompt further development of this novel imaging platform for clinical application.
Collapse
Affiliation(s)
- Hongjiang Chen
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Ting Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China
| | - Jiankun Xu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, People's Republic of China.
| |
Collapse
|
19
|
[Immune-mediated neuropathies]. DER NERVENARZT 2016; 87:887-98. [PMID: 27474733 DOI: 10.1007/s00115-016-0164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are the most common immune-mediated polyneuropathies, which can show variable clinical and electrophysiological manifestations. Rarer immune-mediated neuropathies encompass paraproteinemic neuropathies (PPN), multifocal motor neuropathy (MMN) and vasculitic neuropathies. The diagnosis usually relies on the history of symptom evolution, distribution of nerve dysfunction and particularly on characteristic features in nerve conduction studies, aided by cerebrospinal fluid (CSF) examination and nerve biopsy findings. The therapeutic toolbox encompasses corticosteroids, immunoglobulins and plasmapheresis often accompanied by long-term immunosuppression. It is important to note that immune-mediated neuropathies selectively respond to treatment and contraindications need to be considered. Despite treatment a considerable number of patients suffer from permanent neurological deficits.
Collapse
|
20
|
Robblee J, Katzberg H. Distinguishing Radiculopathies from Mononeuropathies. Front Neurol 2016; 7:111. [PMID: 27468275 PMCID: PMC4942461 DOI: 10.3389/fneur.2016.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Identifying “where is the lesion” is particularly important in the approach to the patient with focal dysfunction where a peripheral localization is suspected. This article outlines a methodical approach to the neuromuscular patient in distinguishing focal neuropathies versus radiculopathies, both of which are common presentations to the neurology clinic. This approach begins with evaluation of the sensory examination to determine whether there are irritative or negative sensory signs in a peripheral nerve or dermatomal distribution. This is followed by evaluation of deep tendon reflexes to evaluate if differential hyporeflexia can assist in the two localizations. Finally, identification of weak muscle groups unique to a nerve or myotomal pattern in the proximal and distal extremities can most reliably assist in a precise localization. The article concludes with an application of the described method to the common scenario of distinguishing radial neuropathy versus C7 radiculopathy in the setting of a wrist drop and provides additional examples for self-evaluation and reference.
Collapse
Affiliation(s)
- Jennifer Robblee
- Division of Neurology, University Health Network (UHN), University of Toronto , Toronto, ON , Canada
| | - Hans Katzberg
- Division of Neurology, University Health Network (UHN), University of Toronto , Toronto, ON , Canada
| |
Collapse
|
21
|
Samarawickrama D, Therimadasamy AK, Chan YC, Vijayan J, Wilder-Smith EP. Nerve ultrasound in electrophysiologically verified tarsal tunnel syndrome. Muscle Nerve 2016; 53:906-12. [PMID: 26562220 DOI: 10.1002/mus.24963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tarsal tunnel syndrome (TTS) arises from tibial nerve damage under the flexor retinaculum of the fibro-osseus tunnel at the medial malleolus. It is notoriously difficult to diagnose, as many other foot pathologies result in a similar clinical picture. We examined the additional value of nerve ultrasound in patients with tarsal tunnel syndrome confirmed by nerve conduction. METHODS We performed a retrospective analysis of nerve ultrasound changes in electrophysiologically confirmed TTS spanning our records from 2007 to 2015. RESULTS Nine feet with TTS were identified, all of which showed abnormal nerve ultrasound findings, which in 6 feet, led to identification of the underlying cause. CONCLUSIONS This study shows that nerve ultrasound is abnormal in all cases of electrophysiologically verified TTS. The pattern of nerve abnormality is varied. This, and the fact that in the majority of patients causation was identified, suggests nerve ultrasound should form part of standard work-up for TTS. Muscle Nerve 53: 906-912, 2016.
Collapse
Affiliation(s)
| | | | - Yee Cheun Chan
- Neurology, National University Health Systems, Singapore
| | - Joy Vijayan
- Neurology, National University Health Systems, Singapore
| | - Einar P Wilder-Smith
- Neurology, Yong Loo Lin School of Medicine, National University of Singapore, 1 Kent Ridge Crescent, 119228, Singapore
| |
Collapse
|
22
|
Merkies ISJ, Faber CG, Lauria G. Advances in diagnostics and outcome measures in peripheral neuropathies. Neurosci Lett 2015; 596:3-13. [PMID: 25703220 DOI: 10.1016/j.neulet.2015.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 12/13/2022]
Abstract
Peripheral neuropathies are a group of acquired and hereditary disorders presenting with different distribution and nerve fiber class involvement. The overall prevalence is 2.4%, increasing to 8% in the elderly population. However, the frequency may vary depending on the underlying pathogenesis and association with systemic diseases. Distal symmetric polyneuropathy is the most common form, though multiple mononeuropathies, non-length dependent neuropathy and small fiber neuropathy can occur and may require specific diagnostic tools. The use of uniform outcome measures in peripheral neuropathies is important to improve the quality of randomized controlled trials, enabling comparison between studies. Recent developments in defining the optimal set of outcome measures in inflammatory neuropathies may serve as an example for other conditions. Diagnostic and outcome measure advances in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Ingemar S J Merkies
- Department of Neurology, Spaarne Hospital, Hoofddorp, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- 3rd Neurology Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy.
| |
Collapse
|
23
|
Abstract
Whereas minor injuries to peripheral nerves merely lead to a circumscribed damage of the myelin sheath which is completely healed within 3 months, penetrating injuries lead to degeneration of the distal axonal fragment (Waller degeneration) and simultaneously to time-dependent alterations in the effector organs, in the perikarya in the medulla and spinal ganglia as well as in the brain. Animal experimental studies and also findings in humans confirm that the conditions for regeneration of nerve fibers are most favorable in the first days and weeks following injury. Therefore, for optimal therapy it should be clarified as early as possible whether there is a chance for reinnervation using exclusively conservative therapy or whether an operative reconstruction is necessary due to the severity of structural damage. Imaging investigation procedures, such as neurosonography and magnetic resonance (MR) neurography can provide decisive information on this aspect. As a rule, the decision on the indications for a nerve operation should be made within the first 3 months. Even with optimal therapy the healing process of severe neural injuries is often unsatisfactory. For some years novel procedures for improvement of nerve regeneration have been tested in animal experiments which involve totally different points in the healing process. It is hoped that with these approaches procedures for improvement in the treatment of nerve injuries in humans can be developed in the near future.
Collapse
|
24
|
Schreiber SJ, Sakas G, Kolev V, Beni SD. Fusion imaging in neurosonology: Clinician’s questions, technical potentials and applicability. Biomed Eng Lett 2015. [DOI: 10.1007/s13534-014-0163-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Kuntzer T. [2013: what's new in inflammatory neuropathies]. Rev Neurol (Paris) 2014; 170:850-3. [PMID: 25459118 DOI: 10.1016/j.neurol.2014.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/27/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022]
Abstract
Several high-quality publications were published in 2013 and some major trials studies were started. In Guillain-Barré syndrome, events included the launch of IGOS and a better understanding of diagnostic limits, the effect of influenza vaccination, and better care, but uncertainty remains about analgesics. A new mouse model was also described. In chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), diagnostic pitfalls can be recalled. Our knowledge of underlying pathophysiological processes has improved, and the value of monitoring with function and deficit scores has been demonstrated. IVIG can sometimes be effective longer than expected, but CIDP remains sensitive to corticosteroids, particularly with the long-term beneficial effects of megadose dexamethasone. The impact of fingolimod remains to be demonstrated in an ongoing trial. Advances concerning multifocal motor neuropathy, inflammatory plexopathy, and neuropathy with anti -MAG activity are discussed but treatments already recognized as effective should not be changed. Imaging of peripheral nerve progresses.
Collapse
Affiliation(s)
- T Kuntzer
- Département des neurosciences cliniques, université de Lausanne, CHU Vaudois (CHUV), BH07/413, rue du Bugnon 46, 1011 Lausanne, Suisse.
| |
Collapse
|
26
|
Zheng L, Li K, Han Y, Wei W, Zheng S, Zhang G. In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe. Med Hypotheses 2014; 83:588-92. [DOI: 10.1016/j.mehy.2014.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022]
|
27
|
Deroide N, Bousson V, Mambre L, Vicaut E, Laredo JD, Kubis N. Muscle MRI STIR signal intensity and atrophy are correlated to focal lower limb neuropathy severity. Eur Radiol 2014; 25:644-51. [DOI: 10.1007/s00330-014-3436-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
|
28
|
Nerve ultrasound in diabetic polyneuropathy: the new frontier? Clin Neurophysiol 2013; 125:657. [PMID: 24239453 DOI: 10.1016/j.clinph.2013.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/20/2022]
|