1
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Abstract
Autism is often considered to reflect categorically 'different brains'. Neuropsychological research on autism spectrum disorder (ASD) however, has struggled to define this difference, or derive clear-cut boundaries between autism and non-autism. Consequently, restructuring or disbanding the ASD diagnosis is becoming increasingly advocated within research. Nonetheless, autism now exists as a salient social construction, of which 'difference' is a key facet. Clinical and educational professionals must influence this cautiously, as changes to autism's social construction may counterproductively affect the quality of life of autistic people. This paper therefore reviews ASD's value as both neuropsychological and social constructs. Although lacking neuropsychological validity, the autism label may be beneficial for autistic self-identity, reduction of stigma, and administering support. Whilst a shift away from case-control ASD research is warranted, lay notions of 'different brains' may be preserved.
Collapse
Affiliation(s)
- Daniel Crawshaw
- School of Psychology, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
3
|
Lou J, Sun Y, Cui Z, Gong L. Structural brain alterations in young adult males with narcissistic personality disorder: a diffusion tensor imaging study. Int J Neurosci 2023; 133:133-140. [PMID: 33635732 DOI: 10.1080/00207454.2021.1896504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSES 1. To find a difference in white matter (WM) between young adult males with narcissistic personality disorder (NPD) and healthy controls (HCs). 2. To find some correlations between white matter in the abnormal regions of NPD group and the pathological narcissism inventory (PNI). MATERIALS AND METHODS Eighteen male participants with NPD (age M = 18.39, SD = 0.164; education M = 12.33, SD = 0.14) were included in our experiment. NPD participants met the DSM-IV criteria for NPD and without other personality disorders evaluated by trained clinical psychiatrists using the Structured Clinical Interview of DSM-IV for Personality Disorders (SCID-II). Moreover, healthy controls were also confirmed to be free of any axis I or II disorders and matched with education level, age and handedness (age M = 18.83 years, SD = 0.246; education M = 12.56, SD = 0.202; all participants were right handed). Those who have had major life events in the last six months, mental and physical illnesses, claustrophobia and oral implants have been excluded. We used tract-based spatial statistics (TBSS) on diffusion tensor images (DTI) and analysis of Pearson correlation between abnormal brain regions of white matter fibers and the pathological narcissism inventory. RESULTS There was no significant difference in age and education level between NPD and HCs (p > 0.05). There were significant differences in PNI score and its subscales between NPD group and HCs (p < 0.01). Fractional anisotropy (FA) values were found decreased mainly in the right superior longitudinal fasciculus and the bilateral posterior thalamic radiation (include optic radiation). Lower axial diffusivity (AD) values were identified mostly in the left retrolenticular part of internal capsule and the left posterior thalamic radiation (include optic radiation). There existed a significant correlation between DTI data and pathological narcissism inventory. CONCLUSIONS The decreased brain white matter microstructures among three clusters were found in the association, projection/thalamic and connection pathways of white matter in young adult males with NPD. The abnormal white matter brain regions may be one of the neuropathological basis of the pathogenesis of young males with NPD, and it may be related to white matter development in early adulthood.
Collapse
Affiliation(s)
- Jing Lou
- Neuropsychological Department, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yueji Sun
- Neuropsychological Department, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhixia Cui
- Neuropsychological Department, Dalian Medical University, Dalian, Liaoning Province, China
| | - Lei Gong
- Neuropsychological Department, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
4
|
Melogno S, Pinto MA, Scalisi TG, Badolato F, Parisi P. Case Report: Theory of Mind and Figurative Language in a Child With Agenesis of the Corpus Callosum. Front Psychol 2021; 11:596804. [PMID: 33633625 PMCID: PMC7900504 DOI: 10.3389/fpsyg.2020.596804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
In this case report, we studied Theory of Mind (ToM) and figurative language comprehension in a 7.2-year-old child, conventionally named RJ, with isolated and complete agenesis of the corpus callosum (ACC), a rare malformation due to the absence of the corpus callosum, the major tract connecting the two brain hemispheres. To study ToM, which is the capability to infer the other’s mental states, we used the classical false belief tasks, and to study figurative language, i.e., those linguistic usages involving non-literal meanings, we used tasks assessing metaphor and idiom comprehension. RJ’s intellectual level and his phonological, lexical, and grammatical abilities were all adequate. In both the ToM false belief tasks and novel sensory metaphor comprehension, RJ showed a delay of 3 years and a significant gap compared to a typically developing control group, while in idioms, his performance was at the border of average. These outcomes suggest that RJ has a specific pragmatic difficulty in all tasks where he must interpret the other’s communicative intention, as in ToM tasks and novel sensory metaphor comprehension. The outcomes also open up interesting insights into the relationships between ToM and figurative language in children with isolated and complete ACC.
Collapse
Affiliation(s)
- Sergio Melogno
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy.,Faculty of Psychology, University Niccolò Cusano, Rome, Italy
| | - Maria Antonietta Pinto
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Teresa Gloria Scalisi
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Fausto Badolato
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Pasquale Parisi
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.,Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Individual differences in social desirability are associated with white-matter microstructure of the external capsule. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:1255-1264. [PMID: 29110184 DOI: 10.3758/s13415-017-0548-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humans tend to present themselves in a positive light to gain social approval. This behavioral trait, termed social desirability, is important for various types of social success. Surprisingly, investigation into the neural underpinnings of social desirability has been limited and focused only on interindividual differences in dopamine receptor binding. These studies revealed reduced dopamine receptor binding in the striatum of individuals who are high in trait social desirability. Interestingly, high dopamine signaling has been associated with low white-matter integrity, irrespective of social desirability. Based on these findings, we hypothesized that a positive association exists between trait social desirability and the white-matter microstructure of the external capsule, which carries fibers to the striatum from the prefrontal cortex. To test this hypothesis, we collected diffusion tensor imaging data and examined the relationship between fractional anisotropy of the external capsule and participants' social desirability-our analysis revealed a positive association. As a second exploratory step, we examined the association between social desirability and white-matter microstructure throughout the whole brain. Our whole-brain analysis revealed associations within multiple major white-matter tracts, demonstrating that socially desirable behavior relies on connectivity between distributed brain regions.
Collapse
|
6
|
A Neuropsychological Profile for Agenesis of the Corpus Callosum? Cognitive, Academic, Executive, Social, and Behavioral Functioning in School-Age Children. J Int Neuropsychol Soc 2018; 24:445-455. [PMID: 29510770 DOI: 10.1017/s1355617717001357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Agenesis of the corpus callosum (AgCC), characterized by developmental absence of the corpus callosum, is one of the most common congenital brain malformations. To date, there are limited data on the neuropsychological consequences of AgCC and factors that modulate different outcomes, especially in children. This study aimed to describe general intellectual, academic, executive, social and behavioral functioning in a cohort of school-aged children presenting for clinical services to a hospital and diagnosed with AgCC. The influences of age, social risk and neurological factors were examined. METHODS Twenty-eight school-aged children (8 to 17 years) diagnosed with AgCC completed tests of general intelligence (IQ) and academic functioning. Executive, social and behavioral functioning in daily life, and social risk, were estimated from parent and teacher rated questionnaires. MRI findings reviewed by a pediatric neurologist confirmed diagnosis and identified brain characteristics. Clinical details including the presence of epilepsy and diagnosed genetic condition were obtained from medical records. RESULTS In our cohort, ~50% of children experienced general intellectual, academic, executive, social and/or behavioral difficulties and ~20% were functioning at a level comparable to typically developing children. Social risk was important for understanding variability in neuropsychological outcomes. Brain anomalies and complete AgCC were associated with lower mathematics performance and poorer executive functioning. CONCLUSIONS This is the first comprehensive report of general intellectual, academic, executive social and behavioral consequences of AgCC in school-aged children. The findings have important clinical implications, suggesting that support to families and targeted intervention could promote positive neuropsychological functioning in children with AgCC who come to clinical attention. (JINS, 2018, 24, 445-455).
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The overlap of neuropsychiatric illness and developmental disability continues to be prominently recognized in clinical practice and in the academic literature. Theoretical and practical considerations may represent a frontier for understanding brain and behavior relationships. The purpose of this review is to explore this common relationship and report on recent literature that helps advance the larger fields of psychiatry and neurology. RECENT FINDINGS Overlap between developmental disability, epilepsy, and neuropsychiatric illness may be more common than originally thought. Excessive excitatory neurotransmitter activity may be present in epilepsy and in autism spectrum disorder. Specific seizure types may be associated with features of developmental disabilities and neuropsychiatric conditions. SUMMARY Neuropsychiatric illness is common in epilepsy and more frequent in developmental disabilities than generally recognized. Seizure foci in the temporal lobe may play a significant role. Brain connectivity and specific neurotransmitter systems are active areas of investigation. Antiepileptic drugs may improve neuropsychiatric symptoms in persons with developmental disability and epilepsy.
Collapse
|
8
|
Son AI, Fu X, Suto F, Liu JS, Hashimoto-Torii K, Torii M. Proteome dynamics during postnatal mouse corpus callosum development. Sci Rep 2017; 7:45359. [PMID: 28349996 PMCID: PMC5368975 DOI: 10.1038/srep45359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Schupper A, Konen O, Halevy A, Cohen R, Aharoni S, Shuper A. Thick Corpus Callosum in Children. J Clin Neurol 2017; 13:170-174. [PMID: 28406584 PMCID: PMC5392459 DOI: 10.3988/jcn.2017.13.2.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE A thick corpus callosum (TCC) can be associated with a very grave outcome in fetuses, but its clinical presentation in older children seems to be markedly different. METHODS The corpus callosum (CC) was defined as thick based on observations and impressions. We reviewed cases of children who were diagnosed as TCC based on brain magnetic resonance imaging (MRI) studies. The pertinent clinical data of these children were collected, and their CCs were measured. RESULTS Out of 2,552 brain MRI images, those of 37 children were initially considered as showing a TCC. Those initial imaging were reviewed by an experienced neuroradiologist, who confirmed the diagnosis in 34 children (1.3%): 13 had neurofibromatosis-1 (NF-1), 9 had epilepsy, 3 had macrocephaly capillary malformation (MCM) syndrome, 3 had autistic spectrum disorder, 1 had a Chiari-1 malformation, and 1 had increased head circumference. No specific neurologic disorder could be defined in seven children. The measured thickness of the CC in these children was comparable to those published in the literature for adults. CONCLUSIONS A TCC is a rare brain malformation that can be found in neuropathologies with apparently diverse pathognomonic mechanisms, such as NF-1 and MCM. It is not necessarily associated with life-threatening conditions, instead being a relatively benign finding, different in nature from that reported in fetuses.
Collapse
Affiliation(s)
- Aviv Schupper
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Radiology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ayelet Halevy
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rony Cohen
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Aharoni
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avinoam Shuper
- Department of Pediatric Neurology and Epilepsy Center, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Moseley RL, Correia MM, Baron-Cohen S, Shtyrov Y, Pulvermüller F, Mohr B. Reduced Volume of the Arcuate Fasciculus in Adults with High-Functioning Autism Spectrum Conditions. Front Hum Neurosci 2016; 10:214. [PMID: 27242478 PMCID: PMC4867673 DOI: 10.3389/fnhum.2016.00214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed.
Collapse
Affiliation(s)
- Rachel L Moseley
- Department of Psychology, Bournemouth UniversityDorset, UK; Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridge, UK; Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK
| | - Marta M Correia
- Medical Research Council Cognition and Brain Sciences Unit Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridge, UK; Cambridge Lifespan Asperger Syndrome Service Clinic, Cambridgeshire and Peterborough National Health Service Foundation TrustCambridge, UK
| | - Yury Shtyrov
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus UniversityAarhus, Denmark; Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia
| | - Friedemann Pulvermüller
- Medical Research Council Cognition and Brain Sciences UnitCambridge, UK; Brain Language Laboratory, Freie Universität BerlinBerlin, Germany
| | - Bettina Mohr
- Department of Psychiatry, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
11
|
Lefebvre A, Beggiato A, Bourgeron T, Toro R. Neuroanatomical Diversity of Corpus Callosum and Brain Volume in Autism: Meta-analysis, Analysis of the Autism Brain Imaging Data Exchange Project, and Simulation. Biol Psychiatry 2015; 78:126-34. [PMID: 25850620 DOI: 10.1016/j.biopsych.2015.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/31/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Patients with autism have been often reported to have a smaller corpus callosum (CC) than control subjects. METHODS We conducted a meta-analysis of the literature, analyzed the CC in 694 subjects of the Autism Brain Imaging Data Exchange project, and performed computer simulations to study the effect of different analysis strategies. RESULTS Our meta-analysis suggested a group difference in CC size; however, the studies were heavily underpowered (20% power to detect Cohen's d = .3). In contrast, we did not observe significant differences in the Autism Brain Imaging Data Exchange cohort, despite having achieved 99% power. However, we observed that CC scaled nonlinearly with brain volume (BV): large brains had a proportionally smaller CC. Our simulations showed that because of this nonlinearity, CC normalization could not control for eventual BV differences, but using BV as a covariate in a linear model would. We also observed a weaker correlation of IQ and BV in cases compared with control subjects. Our simulations showed that matching populations by IQ could then induce artifactual BV differences. CONCLUSIONS The lack of statistical power in the previous literature prevents us from establishing the reality of the claims of a smaller CC in autism, and our own analyses did not find any. However, the nonlinear relationship between CC and BV and the different correlation between BV and IQ in cases and control subjects may induce artifactual differences. Overall, our results highlight the necessity for open data sharing to provide a more solid ground for the discovery of neuroimaging biomarkers within the context of the wide human neuroanatomical diversity.
Collapse
Affiliation(s)
- Aline Lefebvre
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris; Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital
| | - Anita Beggiato
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris; Department of Child and Adolescent Psychiatry, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris; Unité Mixte de Recherche 3571, Genes, Synapses and Cognition, Centre National de la Recherche Scientifique, Institut Pasteur, Paris; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, , Paris; Foundation Fondamentale, Créteil, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris; Unité Mixte de Recherche 3571, Genes, Synapses and Cognition, Centre National de la Recherche Scientifique, Institut Pasteur, Paris; Human Genetics and Cognitive Functions, University Paris Diderot, Sorbonne Paris Cité, , Paris.
| |
Collapse
|
12
|
Unwin LM, Maybery MT, Murphy A, Lilje W, Bellesini M, Hunt AM, Granich J, Jacoby P, Dissanayake C, Pennell CE, Hickey M, Whitehouse AJ. A Prospective Ultrasound Study of Prenatal Growth in Infant Siblings of Children With Autism. Autism Res 2015; 9:210-6. [PMID: 26148908 DOI: 10.1002/aur.1518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/17/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lisa M. Unwin
- Telethon Kids Institute, University of Western Australia; PO Box 855, West Perth Western Australia 6872 Australia
- School of Psychology; University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| | - Murray T. Maybery
- School of Psychology; University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| | - Anthony Murphy
- Western Ultrasound for Women, West Leederville; Western Australia 6007 Australia
| | - Wendy Lilje
- Western Ultrasound for Women, West Leederville; Western Australia 6007 Australia
| | - Michelle Bellesini
- Western Ultrasound for Women, West Leederville; Western Australia 6007 Australia
| | - Anna M. Hunt
- Telethon Kids Institute, University of Western Australia; PO Box 855, West Perth Western Australia 6872 Australia
| | - Joanna Granich
- Telethon Kids Institute, University of Western Australia; PO Box 855, West Perth Western Australia 6872 Australia
| | - Peter Jacoby
- Telethon Kids Institute, University of Western Australia; PO Box 855, West Perth Western Australia 6872 Australia
| | - Cheryl Dissanayake
- Olga Tennison Autism Research Centre, La Trobe University; Melbourne Victoria 3086 Australia
| | - Craig E. Pennell
- School of Women's and Infants’ Health; University of Western Australia; 35 Stirling Hwy Crawley Western Australia 6009 Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology; University of Melbourne; Royal Women's Hospital, Cnr of Flemington Road and Grattan Street Parkville Victoria 3052 Australia
| | - Andrew J.O. Whitehouse
- Telethon Kids Institute, University of Western Australia; PO Box 855, West Perth Western Australia 6872 Australia
| |
Collapse
|
13
|
Drakesmith M, Caeyenberghs K, Dutt A, Lewis G, David AS, Jones DK. Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data. Neuroimage 2015; 118:313-33. [PMID: 25982515 PMCID: PMC4558463 DOI: 10.1016/j.neuroimage.2015.05.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 03/12/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred network topologies. Four common network metrics (global efficiency, mean clustering coefficient, mean betweenness and smallworldness) were tested using a model tractography dataset. It was found that all four network metrics were significantly affected even by just one FP. Results also show that thresholding effectively dampens the impact of FPs, but at the expense of adding significant bias to network metrics. In a larger number (n=248) of tractography datasets, statistics were computed across random group permutations for a range of thresholds, revealing that statistics for network metrics varied significantly more than for non-network metrics (i.e., number of streamlines and number of edges). Varying degrees of network atrophy were introduced artificially to half the datasets, to test sensitivity to genuine group differences. For some network metrics, this atrophy was detected as significant (p<0.05, determined using permutation testing) only across a limited range of thresholds. We propose a multi-threshold permutation correction (MTPC) method, based on the cluster-enhanced permutation correction approach, to identify sustained significant effects across clusters of thresholds. This approach minimises requirements to determine a single threshold a priori. We demonstrate improved sensitivity of MTPC-corrected metrics to genuine group effects compared to an existing approach and demonstrate the use of MTPC on a previously published network analysis of tractography data derived from a clinical population. In conclusion, we show that there are large biases and instability induced by thresholding, making statistical comparisons of network metrics difficult. However, by testing for effects across multiple thresholds using MTPC, true group differences can be robustly identified.
Collapse
Affiliation(s)
- M Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK; Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - K Caeyenberghs
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, 115 Victoria Parade, Melbourne, VIC 3065, Australia
| | - A Dutt
- Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - G Lewis
- Division of Psychiatry, Faculty of Brain Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK
| | - A S David
- Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Park Place, Cardiff CF10 3AT, UK; Neuroscience and Mental Health Research Institute (NMHRI), School of Medicine, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
14
|
Travers BG, Tromp DPM, Adluru N, Lange N, Destiche D, Ennis C, Nielsen JA, Froehlich AL, Prigge MBD, Fletcher PT, Anderson JS, Zielinski BA, Bigler ED, Lainhart JE, Alexander AL. Atypical development of white matter microstructure of the corpus callosum in males with autism: a longitudinal investigation. Mol Autism 2015; 6:15. [PMID: 25774283 PMCID: PMC4359536 DOI: 10.1186/s13229-015-0001-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/26/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The corpus callosum is the largest white matter structure in the brain, and it is the most consistently reported to be atypical in diffusion tensor imaging studies of autism spectrum disorder. In individuals with typical development, the corpus callosum is known to undergo a protracted development from childhood through young adulthood. However, no study has longitudinally examined the developmental trajectory of corpus callosum in autism past early childhood. METHODS The present study used a cohort sequential design over 9 years to examine age-related changes of the corpus callosum in 100 males with autism and 56 age-matched males with typical development from early childhood (when autism can first be reliably diagnosed) to mid-adulthood (after development of the corpus callosum has been completed) (3 to 41 years of age). RESULTS The group with autism demonstrated a different developmental trajectory of white matter microstructure in the anterior corpus callosum's (genu and body) fractional anisotropy, which suggests atypical brain maturation in these regions in autism. When analyses were broken down by age group, atypical developmental trajectories were present only in the youngest participants (10 years of age and younger). Significant main effects for group were found in terms of decreased fractional anisotropy across all three subregions of the corpus callosum (genu, body, and splenium) and increased mean diffusivity, radial diffusivity, and axial diffusivity in the posterior corpus callosum. CONCLUSIONS These longitudinal results suggest atypical early childhood development of the corpus callosum microstructure in autism that transitions into sustained group differences in adolescence and adulthood. This pattern of results provides longitudinal evidence consistent with a growing number of published studies and hypotheses regarding abnormal brain connectivity across the life span in autism.
Collapse
Affiliation(s)
- Brittany G Travers
- />Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Do P M Tromp
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- />Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Nagesh Adluru
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Nicholas Lange
- />Department of Psychiatry, Harvard School of Medicine, Boston, MA USA
- />Neurostatistics Laboratory, McLean Hospital, Belmont, MA USA
| | - Dan Destiche
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Chad Ennis
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Jared A Nielsen
- />Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA
| | - Alyson L Froehlich
- />Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
| | - Molly B D Prigge
- />Department of Radiology, University of Utah, Salt Lake City, UT USA
- />Department of Pediatrics, University of Utah and Primary Children’s Medical Center, Salt Lake City, UT USA
| | - P Thomas Fletcher
- />Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT USA
- />School of Computing, University of Utah, Salt Lake City, UT USA
| | - Jeffrey S Anderson
- />Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA
- />Department of Radiology, University of Utah, Salt Lake City, UT USA
| | - Brandon A Zielinski
- />Department of Pediatrics, University of Utah and Primary Children’s Medical Center, Salt Lake City, UT USA
- />Department of Neurology, University of Utah, Salt Lake City, UT USA
| | - Erin D Bigler
- />Department of Psychology, Brigham Young University, Provo, UT USA
- />Neuroscience Center, Brigham Young University, Provo, UT 84602 USA
| | - Janet E Lainhart
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- />Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Andrew L Alexander
- />Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- />Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
15
|
Bridgman MW, Brown WS, Spezio ML, Leonard MK, Adolphs R, Paul LK. Facial emotion recognition in agenesis of the corpus callosum. J Neurodev Disord 2014; 6:32. [PMID: 25705318 PMCID: PMC4335392 DOI: 10.1186/1866-1955-6-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Impaired social functioning is a common symptom of individuals with developmental disruptions in callosal connectivity. Among these developmental conditions, agenesis of the corpus callosum provides the most extreme and clearly identifiable example of callosal disconnection. To date, deficits in nonliteral language comprehension, humor, theory of mind, and social reasoning have been documented in agenesis of the corpus callosum. Here, we examined a basic social ability as yet not investigated in this population: recognition of facial emotion and its association with social gaze. METHODS Nine individuals with callosal agenesis and nine matched controls completed four tasks involving emotional faces: emotion recognition from upright and inverted faces, gender recognition, and passive viewing. Eye-tracking data were collected concurrently on all four tasks and analyzed according to designated facial regions of interest. RESULTS Individuals with callosal agenesis exhibited impairments in recognizing emotions from upright faces, in particular lower accuracy for fear and anger, and these impairments were directly associated with diminished attention to the eye region. The callosal agenesis group exhibited greater consistency in emotion recognition across conditions (upright vs. inverted), with poorest performance for fear identification in both conditions. The callosal agenesis group also had atypical facial scanning (lower fractional dwell time in the eye region) during gender naming and passive viewing of faces, but they did not differ from controls on gender naming performance. The pattern of results did not differ when taking into account full-scale intelligence quotient or presence of autism spectrum symptoms. CONCLUSIONS Agenesis of the corpus callosum results in a pattern of atypical facial scanning characterized by diminished attention to the eyes. This pattern suggests that reduced callosal connectivity may contribute to the development and maintenance of emotion processing deficits involving reduced attention to others' eyes.
Collapse
Affiliation(s)
| | - Warren S Brown
- Travis Research Institute, Fuller Theological Seminary, 91101 Pasadena, CA, USA
| | - Michael L Spezio
- Division of Humanities and Social Sciences, Caltech, 91125 Pasadena, CA, USA ; Scripps College, 91711 Pomona, CA, USA
| | - Matthew K Leonard
- Neurological Surgery, University of California, 94117-1080 San Francisco, CA, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, Caltech, 91125 Pasadena, CA, USA ; Division of Biology, Caltech, 91125 Pasadena, CA, USA
| | - Lynn K Paul
- Division of Humanities and Social Sciences, Caltech, 91125 Pasadena, CA, USA
| |
Collapse
|
16
|
Happé F, Frith U. Annual research review: Towards a developmental neuroscience of atypical social cognition. J Child Psychol Psychiatry 2014; 55:553-7. [PMID: 24963529 DOI: 10.1111/jcpp.12162] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a starting point for our review we use a developmental timeline, starting from birth and divided into major developmental epochs defined by key milestones of social cognition in typical development. For each epoch, we highlight those developmental disorders that diverge from the normal developmental pattern, what is known about these key milestones in the major disorders affecting social cognition, and any available research on the neural basis of these differences. We relate behavioural observations to four major networks of the social brain, that is, Amygdala, Mentalizing, Emotion and Mirror networks. We focus on those developmental disorders that are characterized primarily by social atypicality, such as autism spectrum disorder, social anxiety and a variety of genetically defined syndromes. The processes and aspects of social cognition we highlight are sketched in a putative network diagram, and include: agent identification, emotion processing and empathy, mental state attribution, self-processing and social hierarchy mapping involving social ‘policing’ and in-group/out-group categorization. Developmental disorders reveal some dissociable deficits in different components of this map of social cognition. This broad review across disorders, ages and aspects of social cognition leads us to some key questions: How can we best distinguish primary from secondary social disorders? Is social cognition especially vulnerable to developmental disorder, or surprisingly robust? Are cascading notions of social development, in which early functions are essential stepping stones or building bricks for later abilities, necessarily correct?
Collapse
Affiliation(s)
- Francesca Happé
- MRC Social, Genetic and Developmental Psychiatry Centre Institute of Psychiatry King's College London London UK
| | - Uta Frith
- Institute of Cognitive Neuroscience University College London London UK
- Interacting Minds Centre Aarhus University Århus C Denmark
| |
Collapse
|
17
|
Paul LK, Corsello C, Kennedy DP, Adolphs R. Agenesis of the corpus callosum and autism: a comprehensive comparison. ACTA ACUST UNITED AC 2014; 137:1813-29. [PMID: 24771497 DOI: 10.1093/brain/awu070] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current behaviours. The findings suggest two broad conclusions. First, they support the hypothesis that congenital disruption of the corpus callosum constitutes a major risk factor for developing autism. Second, they quantify specific features that distinguish autistic behaviour associated with callosal agenesis from autism more generally. Taken together, these two findings also leverage specific questions for future investigation: what are the distal causes (genetic and environmental) determining both callosal agenesis and its autistic features, and what are the proximal mechanisms by which absence of the callosum might generate autistic symptomatology?
Collapse
Affiliation(s)
- Lynn K Paul
- 1 California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, CA, USA
| | | | - Daniel P Kennedy
- 1 California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, CA, USA3 Indiana University, Department of Psychological and Brain Sciences, Bloomington, IN, USA
| | - Ralph Adolphs
- 1 California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, CA, USA4 California Institute of Technology, Division of Biology, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Han JC, Thurm A, Golden Williams C, Joseph LA, Zein WM, Brooks BP, Butman JA, Brady SM, Fuhr SR, Hicks MD, Huey AE, Hanish AE, Danley KM, Raygada MJ, Rennert OM, Martinowich K, Sharp SJ, Tsao JW, Swedo SE. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome. Cortex 2013; 49:2700-10. [PMID: 23517654 PMCID: PMC3762943 DOI: 10.1016/j.cortex.2013.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/23/2022]
Abstract
In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development.
Collapse
Affiliation(s)
- Joan C Han
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA; Section on Growth and Obesity, Program in Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kenworthy L, Wallace GL, Birn R, Milleville SC, Case LK, Bandettini PA, Martin A. Aberrant neural mediation of verbal fluency in autism spectrum disorders. Brain Cogn 2013; 83:218-26. [PMID: 24056237 DOI: 10.1016/j.bandc.2013.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/09/2013] [Accepted: 08/24/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Contrasts of verbal fluency and automatic speech provide an opportunity to evaluate the neural underpinnings of generativity and flexibility in autism spectrum disorders (ASD). METHOD We used functional magnetic resonance imaging (fMRI) to contrast brain activity in high functioning ASD (n=17, mean verbal IQ=117) and neurotypical (NT; n=20, mean verbal IQ=112) adolescent and young adult males (12-23years). Participants responded to three word generation conditions: automatic speech (reciting months), category fluency, and letter fluency. RESULTS Our paradigm closely mirrored behavioral fluency tasks by requiring overt, free recall word generation while controlling for differences in verbal output between the groups and systematically increasing the task demand. The ASD group showed reduced neural response compared to the NT participants during fluency tasks in multiple regions of left anterior and posterior cortices, and sub-cortical structures. Six of these regions fell in cortico-striatal circuits previously linked to repetitive behaviors (Langen, Durston, Kas, van Engeland, & Staal, 2011), and activity in two of them (putamen and thalamus) was negatively correlated with autism repetitive behavior symptoms in the ASD group. In addition, response in left inferior frontal gyrus was differentially modulated in the ASD, relative to the NT, group as a function of task demand. CONCLUSIONS These data indicate a specific, atypical brain response in ASD to demanding generativity tasks that may have relevance to repetitive behavior symptoms in ASD as well as to difficulties generating original verbal responses.
Collapse
Affiliation(s)
- Lauren Kenworthy
- Laboratory of Brain and Cognition, National Institute of Mental Health, 10 Center Drive, Room 4C104, MSC 1366, Bethesda, MD 20892-1366, USA; Center for Autism Spectrum Disorders, Children's National Medical Center, 15245 Shady Grove Road, Suite 350, Rockville, MD 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol 2013; 74:11-9. [PMID: 23907982 DOI: 10.1002/ana.23898] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/02/2013] [Accepted: 03/15/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Maternal immune activation (MIA) triggered by infections has been identified as a cause of autism in offspring. Considering the involvement of perturbations in innate immunity in epilepsy, we examined whether MIA represents a risk factor for epilepsy as well. The role of specific MIA components interleukin (IL)-6 and IL-1β was also addressed. METHODS MIA was induced in C57BL/6 mice by polyinosinic-polycytidylic acid (PIC) injected during embryonic days 12 to 16. Beginning from postnatal day 40, the propensity of the offspring to epilepsy was examined using hippocampal kindling; autismlike behavior was studied using the sociability test. The involvement of IL-6 and IL-1β in PIC-induced effects was studied by the coadministration of the cytokine antibodies with PIC, and by delivering recombinant cytokines in lieu of PIC. RESULTS The offspring of PIC-exposed mice exhibited increased hippocampal excitability, accelerated kindling rate, prolonged increase of seizure susceptibility after kindling, and diminished sociability. Epileptic impairments were abolished by antibodies to IL-6 or IL-1β. Neither of the recombinant cytokines alone increased the propensity to seizures; however, when combined, they produced effects similar to those induced by PIC. PIC-induced behavioral deficits were abolished by IL-6 antibodies and were mimicked by recombinant IL-6; IL-1β was not involved. INTERPRETATION In addition to confirming the previously established critical role of IL-6 in the development of autismlike behavior following MIA, the present study shows that concurrent involvement of IL-6 and IL-1β is required for priming the offspring for epilepsy. These data shed light on mechanisms of comorbidity between autism and epilepsy.
Collapse
Affiliation(s)
- Eduardo Pineda
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
21
|
Cauda F, Costa T, Palermo S, D'Agata F, Diano M, Bianco F, Duca S, Keller R. Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum Brain Mapp 2013; 35:2073-98. [PMID: 23894001 DOI: 10.1002/hbm.22313] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022] Open
Abstract
There are at least two fundamental unanswered questions in the literature on autism spectrum disorders (ASD): Are abnormalities in white (WM) and gray matter (GM) consistent with one another? Are WM morphometric alterations consistent with alterations in the GM of regions connected by these abnormal WM bundles and vice versa? The aim of this work is to bridge this gap. After selecting voxel-based morphometry and diffusion tensor imaging studies comparing autistic and normally developing groups of subjects, we conducted an activation likelihood estimation (ALE) meta-analysis to estimate consistent brain alterations in ASD. Multidimensional scaling was used to test the similarity of the results. The ALE results were then analyzed to identify the regions of concordance between GM and WM areas. We found statistically significant topological relationships between GM and WM abnormalities in ASD. The most numerous were negative concordances, found bilaterally but with a higher prevalence in the right hemisphere. Positive concordances were found in the left hemisphere. Discordances reflected the spatial distribution of negative concordances. Thus, a different hemispheric contribution emerged, possibly related to pathogenetic factors affecting the right hemisphere during early developmental stages. Besides, WM fiber tracts linking the brain structures involved in social cognition showed abnormalities, and most of them had a negative concordance with the connected GM regions. We interpreted the results in terms of altered brain networks and their role in the pervasive symptoms dramatically impairing communication and social skills in ASD patients.
Collapse
Affiliation(s)
- Franco Cauda
- CCS fMRI, Koelliker Hospital, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wallace GL, Robustelli B, Dankner N, Kenworthy L, Giedd JN, Martin A. Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. ACTA ACUST UNITED AC 2013; 136:1956-67. [PMID: 23715094 DOI: 10.1093/brain/awt106] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autism spectrum disorders are associated with atypically excessive early brain growth. Recent studies suggest that later cortical development, specifically cortical thickness, during adolescence and young adulthood is also aberrant. Nevertheless, previous studies of other surface-based metrics (e.g. surface area and gyrification) at high-resolution in autism spectrum disorders are limited. Forty-one males with autism spectrum disorders and 39 typically developing males matched on age (mean ≈ 17; range = 12-24 years) and IQ (mean ≈ 113; range = 85-143) provided high-resolution 3 T anatomical magnetic resonance imaging scans. The FreeSurfer image analysis suite quantified vertex-level surface area and gyrification. There were gyrification increases in the autism spectrum disorders group (relative to typically developing subjects) localized to bilateral posterior cortices (cluster corrected P < 0.01). Furthermore, the association between vocabulary knowledge and gyrification in left inferior parietal cortex (typically developing group: positive correlation; autism spectrum disorders group: no association) differed between groups. Finally, there were no group differences in surface area, and there was no interaction between age and group for either surface area or gyrification (both groups showed decreasing gyrification with increasing age). The present study complements and extends previous work by providing the first evidence of increased gyrification (though no differences in surface area) at high resolution among adolescents and young adults with autism spectrum disorders and by showing a dissociation in the relationship between vocabulary and gyrification in autism spectrum disorders versus typically developing subjects. In contrast with previous findings of age-related cortical thinning in this same autism spectrum disorders sample, here we find that increases in gyrification are maintained across adolescence and young adulthood, implicating developmentally dissociable cortical atypicalities in autism spectrum disorders.
Collapse
Affiliation(s)
- Gregory L Wallace
- Laboratory of Brain and Cognition National Institute of Mental Health, National Institute of Mental Health, Bethesda, MD 20892-1367, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Lombardo MV, Chakrabarti B, Lai MC. Self-referential and social cognition in a case of autism and agenesis of the corpus callosum. Mol Autism 2012; 3:14. [PMID: 23171505 PMCID: PMC3522057 DOI: 10.1186/2040-2392-3-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED BACKGROUND While models of autism spectrum conditions (ASC) are emerging at the genetic level of analysis, clear models at higher levels of analysis, such as neuroanatomy, are lacking. Here we examine agenesis of the corpus callosum (AgCC) as a model at the level of neuroanatomy that may be relevant for understanding self-referential and social-cognitive difficulties in ASC. METHODS We examined performance on a wide array of tests in self-referential and social-cognitive domains in a patient with both AgCC and a diagnosis of ASC. Tests included a depth-of-processing memory paradigm with self-referential and social-cognitive manipulations, self-report measures of self-consciousness, alexithymia, and empathy, as well as performance measures of first-person pronoun usage and mentalizing ability. The performance of the AgCC patient was compared to a group of individuals with ASC but without AgCC and with neurotypical controls. These comparison groups come from a prior study where group differences were apparent across many measures. We used bootstrapping to assess whether the AgCC patient exhibited scores that were within or outside the 95% bias-corrected and accelerated bootstrap confidence intervals observed in both comparison groups. RESULTS Within the depth-of-processing memory paradigm, the AgCC patient showed decreased memory sensitivity that was more extreme than both comparison groups across all conditions. The patient's most pronounced difficulty on this task emerged in the social-cognitive domain related to information-processing about other people. The patient was similar to the ASC group in benefiting less from self-referential processing compared to the control group. Across a variety of other self-referential (i.e. alexithymia, private self-consciousness) and social-cognitive measures (i.e. self-reported imaginative and perspective-taking subscales of empathy, mentalizing), the AgCC patient also showed more extreme scores than those observed for both of the comparison groups. However, the AgCC patient scored within the range observed in the comparison groups on measures of first-person pronoun usage and self-reported affective empathy subscales. CONCLUSIONS We conclude that AgCC co-occurring with a diagnosis of ASC may be a relevant model at the level of neuroanatomy for understanding mechanisms involved in self-referential and high-level social-cognitive difficulties in ASC.
Collapse
Affiliation(s)
- Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights RG6 6AL, UK
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
| |
Collapse
|
24
|
Kennedy DP, Adolphs R. The social brain in psychiatric and neurological disorders. Trends Cogn Sci 2012; 16:559-72. [PMID: 23047070 PMCID: PMC3606817 DOI: 10.1016/j.tics.2012.09.006] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 12/19/2022]
Abstract
Psychiatric and neurological disorders have historically provided key insights into the structure-function relationships that subserve human social cognition and behavior, informing the concept of the 'social brain'. In this review, we take stock of the current status of this concept, retaining a focus on disorders that impact social behavior. We discuss how the social brain, social cognition, and social behavior are interdependent, and emphasize the important role of development and compensation. We suggest that the social brain, and its dysfunction and recovery, must be understood not in terms of specific structures, but rather in terms of their interaction in large-scale networks.
Collapse
Affiliation(s)
- Daniel P Kennedy
- California Institute of Technology, 1200 E. California Blvd, HSS 228-77, Caltech, Pasadena, CA 91125, USA.
| | | |
Collapse
|
25
|
Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. Fractionation of social brain circuits in autism spectrum disorders. ACTA ACUST UNITED AC 2012; 135:2711-25. [PMID: 22791801 DOI: 10.1093/brain/aws160] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits.
Collapse
Affiliation(s)
- Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Brown WS, Anderson LB, Symington MF, Paul LK. Decision-Making in Individuals with Agenesis of the Corpus Callosum: Expectancy-Valence in the Iowa Gambling Task. Arch Clin Neuropsychol 2012; 27:532-44. [DOI: 10.1093/arclin/acs052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Silverman JL, Smith DG, Sukoff Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley JN. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 2012; 4:131ra51. [PMID: 22539775 PMCID: PMC4904784 DOI: 10.1126/scitranslmed.3003501] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders such as autism and fragile X syndrome were long thought to be medically untreatable, on the assumption that brain dysfunctions were immutably hardwired before diagnosis. Recent revelations that many cases of autism are caused by mutations in genes that control the ongoing formation and maturation of synapses have challenged this dogma. Antagonists of metabotropic glutamate receptor subtype 5 (mGluR5), which modulate excitatory neurotransmission, are in clinical trials for fragile X syndrome, a major genetic cause of intellectual disabilities. About 30% of patients with fragile X syndrome meet the diagnostic criteria for autism. Reasoning by analogy, we considered the mGluR5 receptor as a potential target for intervention in autism. We used BTBR T+tf/J (BTBR) mice, an established model with robust behavioral phenotypes relevant to the three diagnostic behavioral symptoms of autism--unusual social interactions, impaired communication, and repetitive behaviors--to probe the efficacy of a selective negative allosteric modulator of the mGluR5 receptor, GRN-529. GRN-529 reduced repetitive behaviors in three cohorts of BTBR mice at doses that did not induce sedation in control assays of open field locomotion. In addition, the same nonsedating doses reduced the spontaneous stereotyped jumping that characterizes a second inbred strain of mice, C58/J. Further, GRN-529 partially reversed the striking lack of sociability in BTBR mice on some parameters of social approach and reciprocal social interactions. These findings raise the possibility that a single targeted pharmacological intervention may alleviate multiple diagnostic behavioral symptoms of autism.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Blood-Brain Barrier/metabolism
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Capillary Permeability
- Child Development Disorders, Pervasive/drug therapy
- Child Development Disorders, Pervasive/metabolism
- Child Development Disorders, Pervasive/physiopathology
- Child Development Disorders, Pervasive/psychology
- Child, Preschool
- Disease Models, Animal
- Excitatory Amino Acid Antagonists/blood
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Sleep/drug effects
- Social Behavior
- Stereotyped Behavior
- Time Factors
- Video Recording
Collapse
Affiliation(s)
- Jill L. Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Daniel G. Smith
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Michael N. Karras
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Sarah M. Turner
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Seda S. Tolu
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Dianne K. Bryce
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Deborah L. Smith
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Kari Fonseca
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Robert H. Ring
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| |
Collapse
|
28
|
Sania S, Jaffee SR, Bowes L, Ouellet-Morin I, Andreou P, Happé F, Moffitt TE, Arseneault L. A prospective longitudinal study of children's theory of mind and adolescent involvement in bullying. J Child Psychol Psychiatry 2012; 53:254-61. [PMID: 22081896 PMCID: PMC3272094 DOI: 10.1111/j.1469-7610.2011.02488.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Theory of mind (ToM) allows the understanding and prediction of other people's behaviours based on their mental states (e.g. beliefs). It is important for healthy social relationships and thus may contribute towards children's involvement in bullying. The present study investigated whether children involved in bullying during early adolescence had poor ToM in childhood. METHOD Participants were members of the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally representative sample of 2,232 children and their families. We visited families when children were 5, 7, 10 and 12 years. ToM was assessed when the children were 5 years using eight standardized tasks. Identification of those children who were involved in bullying as victims, bullies and bully-victims using mothers', teachers' and children's reports was carried out when they were 12 years' old. RESULTS Poor ToM predicted becoming a victim (effect size, d = 0.26), bully (d = 0.25) or bully-victim (d = 0.44) in early adolescence. These associations remained for victims and bully-victims when child-specific (e.g. IQ) and family factors (e.g. child maltreatment) were controlled for. Emotional and behavioural problems during middle childhood did not modify the association between poor ToM and adolescent bullying experiences. CONCLUSION Identifying and supporting children with poor ToM early in life could help reduce their vulnerability for involvement in bullying and thus limit its adverse effects on mental health.
Collapse
Affiliation(s)
- Shakoor Sania
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Sara R Jaffee
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Lucy Bowes
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Isabelle Ouellet-Morin
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Penelope Andreou
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Francesca Happé
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
| | - Terrie E. Moffitt
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK,Departments of Psychology and Neuroscience, Psychiatry and Behavioural Sciences, and Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| | - Louise Arseneault
- Correspondence: Louise Arseneault, Institute of Psychiatry, SGDP Centre, Box Number p080, London, SE5 8AF, UK.
| |
Collapse
|
29
|
Lungu O, Stip E. Agenesis of corpus callosum and emotional information processing in schizophrenia. Front Psychiatry 2012; 3:1. [PMID: 22347194 PMCID: PMC3271702 DOI: 10.3389/fpsyt.2012.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023] Open
Abstract
Corpus callosum (CC) is essential in providing the integration of information related to perception and action within a subcortico-cortical network, thus supporting the generation of a unified experience about and reaction to changes in the environment. Its role in schizophrenia is yet to be fully elucidated, but there is accumulating evidence that there could be differences between patients and healthy controls regarding the morphology and function of CC, especially when individuals face emotionally laden information. Here, we report a case study of a patient with partial agenesis of corpus callosum (agCC patient with agenesis of the anterior aspect, above the genu) and we provide a direct comparison with a group of patients with no apparent callosal damage (CC group) regarding the brain activity during the processing of emotionally laden information. We found that although the visual cortex activation in response to visual stimuli regardless of their emotional content was comparable in agCC patient and CC group both in terms of localization and intensity of activation, we observed a very large, non-specific and non-lateralized cerebral activation in the agCC patient, in contrast with the CC group, which showed a more lateralized and spatially localized activation, when the emotional content of the stimuli was considered. Further analysis of brain activity in the regions obtained in the CC group revealed that the agCC patient actually had an opposite activation pattern relative to most participants with no CC agenesis, indicating a dysfunctional response to these kind of stimuli, consistent with the clinical presentation of this particular patient. Our results seem to give support to the disconnection hypothesis which posits that the core symptoms of schizophrenia are related to aberrant connectivity between distinct brain areas, especially when faced with emotional stimuli, a fact consistent with the clinical tableau of this particular patient.
Collapse
Affiliation(s)
- Ovidiu Lungu
- Departement de Psychiatrie, Université de Montréal Montréal, QC, Canada
| | | |
Collapse
|
30
|
Abstract
Temporal correlations between different brain regions in the resting-state BOLD signal are thought to reflect intrinsic functional brain connectivity (Biswal et al., 1995; Greicius et al., 2003; Fox et al., 2007). The functional networks identified are typically bilaterally distributed across the cerebral hemispheres, show similarity to known white matter connections (Greicius et al., 2009), and are seen even in anesthetized monkeys (Vincent et al., 2007). Yet it remains unclear how they arise. Here we tested two distinct possibilities: (1) functional networks arise largely from structural connectivity constraints, and generally require direct interactions between functionally coupled regions mediated by white-matter tracts; and (2) functional networks emerge flexibly with the development of normal cognition and behavior and can be realized in multiple structural architectures. We conducted resting-state fMRI in eight adult humans with complete agenesis of the corpus callosum (AgCC) and normal intelligence, and compared their data to those from eight healthy matched controls. We performed three main analyses: anatomical region-of-interest-based correlations to test homotopic functional connectivity, independent component analysis (ICA) to reveal functional networks with a data-driven approach, and ICA-based interhemispheric correlation analysis. Both groups showed equivalently strong homotopic BOLD correlation. Surprisingly, almost all of the group-level independent components identified in controls were observed in AgCC and were predominantly bilaterally symmetric. The results argue that a normal complement of resting-state networks and intact functional coupling between the hemispheres can emerge in the absence of the corpus callosum, favoring the second over the first possibility listed above.
Collapse
|
31
|
Shakoor S, Jaffee SR, Bowes L, Ouellet-Morin I, Andreou P, Happé F, Moffitt TE, Arseneault L. A prospective longitudinal study of children's theory of mind and adolescent involvement in bullying. JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY, AND ALLIED DISCIPLINES 2011. [PMID: 22081896 DOI: 10.1111/j.1469‐7610.2011.02488.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Theory of mind (ToM) allows the understanding and prediction of other people's behaviours based on their mental states (e.g. beliefs). It is important for healthy social relationships and thus may contribute towards children's involvement in bullying. The present study investigated whether children involved in bullying during early adolescence had poor ToM in childhood. METHOD Participants were members of the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally representative sample of 2,232 children and their families. We visited families when children were 5, 7, 10 and 12 years. ToM was assessed when the children were 5 years using eight standardized tasks. Identification of those children who were involved in bullying as victims, bullies and bully-victims using mothers', teachers' and children's reports was carried out when they were 12 years' old. RESULTS Poor ToM predicted becoming a victim (effect size, d = 0.26), bully (d = 0.25) or bully-victim (d = 0.44) in early adolescence. These associations remained for victims and bully-victims when child-specific (e.g. IQ) and family factors (e.g. child maltreatment) were controlled for. Emotional and behavioural problems during middle childhood did not modify the association between poor ToM and adolescent bullying experiences. CONCLUSION Identifying and supporting children with poor ToM early in life could help reduce their vulnerability for involvement in bullying and thus limit its adverse effects on mental health.
Collapse
Affiliation(s)
- Sania Shakoor
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Blanchard DC, Defensor EB, Meyza KZ, Pobbe RLH, Pearson BL, Bolivar VJ, Blanchard RJ. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev 2011; 36:285-96. [PMID: 21741402 DOI: 10.1016/j.neubiorev.2011.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
BTBR T+tf/J (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors, showing deficiencies in social behaviors; reduced or unusual ultrasonic vocalizations in conspecific situations; and enhanced, repetitive self-grooming. Recent studies have described their behaviors in a seminatural visible burrow system (VBS); a Social Proximity Test in which avoidance of a conspecific is impossible; and in an object approach and investigation test evaluating attention to specific objects and potential stereotypies in the order of approaching/investigating objects. VBS results confirmed strong BTBR avoidance of conspecifics and in the Social Proximity Test, BTBR showed dramatic differences in several close-in behaviors, including specific avoidance of a nose-to-nose contact that may potentially be related to gaze-avoidance. Diazepam normalized social avoidance by BTBRs in a Three-Chamber Test, and some additional behaviors - but not nose to nose avoidance - in the Social Proximity Test. BTBR also showed higher levels of preference for particular objects, and higher levels of sequences investigating 3- or 4-objects in the same order. Heparan sulfate (HS) associated with fractal structures in the subventricular zone of the lateral ventricles was severely reduced in BTBR. HS may modulate the functions of a range of growth and guidance factors during development, and HS abnormalities are associated with relevant brain (callosal agenesis) and behavioral (reductions in sociality) changes; suggesting the value of examination of the dynamics of the HS system in the context of autism.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | |
Collapse
|