1
|
McCaughey-Chapman A, Burgers AL, Combrinck C, Marriott L, Gordon D, Connor B. Reprogrammed human lateral ganglionic eminence precursors generate striatal neurons and restore motor function in a rat model of Huntington's disease. Stem Cell Res Ther 2024; 15:448. [PMID: 39578834 PMCID: PMC11583420 DOI: 10.1186/s13287-024-04057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurological disorder predominantly characterised by the progressive loss of GABAergic medium spiny neurons in the striatum resulting in motor dysfunction. One potential strategy for the treatment of HD is the development of cell replacement therapies to restore neuronal circuitry and function by the replacement of lost neurons. We propose the generation of lineage-specific human lateral ganglionic eminence precursors (hiLGEP) using direct reprogramming technology provides a novel and clinically viable cell source for cell replacement therapy for HD. METHODS hiLGEPs were derived by direct reprogramming of adult human dermal fibroblasts (aHDFs) using chemically modified mRNA (cmRNA) and a defined reprogramming medium. hiLGEPs were differentiated in vitro using an optimised striatal differentiation medium. Acquisition of a striatal precursor and neural cell fate was assessed through gene expression and immunocytochemical analysis of key markers. hiLGEP-derived striatal neuron functionality in vitro was demonstrated by calcium imaging using Cal-520. To investigate the ability for hiLGEP to survive, differentiate and functionally integrate in vivo, we transplanted hiLGEPs into the striatum of quinolinic acid (QA)-lesioned rats and performed behavioural assessment using the cylinder test over the course of 14 weeks. Survival and differentiation of hiLGEPs was assessed at 8 and 14-weeks post-transplant by immunohistochemical analysis. RESULTS We demonstrate the capability to generate hiLGEPs from aHDFs using cmRNA encoding the pro-neural genes SOX2 and PAX6, combined with a reprogramming medium containing Gö6983, Y-27,632, N-2 and Activin A. hiLGEPs generated functional DARPP32 + neurons following 14 days of culture in BrainPhys™ media supplemented with dorsomorphin and Activin A. We investigated the ability for hiLGEPs to survive transplantation, differentiate to medium spiny-like striatal neurons and improve motor function in the QA lesion rat model of HD. Fourteen weeks after transplantation, we observed STEM121 + neurons co-expressing MAP2, DARPP32, GAD65/67, or GABA. Rats transplanted with hiLGEPs also demonstrated reduction in motor function impairment as determined by spontaneous exploratory forelimb use when compared to saline transplanted animals. CONCLUSION This study provides proof-of-concept and demonstrates for the first time that aHDFs can be directly reprogrammed to hiLGEPs which survive transplantation, undergo neuronal differentiation to generate medium spiny-like striatal neurons, and reduce functional impairment in the QA lesion rat model of HD.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Anne Lieke Burgers
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Catharina Combrinck
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Laura Marriott
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - David Gordon
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
2
|
Esmaeili A, Eteghadi A, Landi FS, Yavari SF, Taghipour N. Recent approaches in regenerative medicine in the fight against neurodegenerative disease. Brain Res 2024; 1825:148688. [PMID: 38042394 DOI: 10.1016/j.brainres.2023.148688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Neurodegenerative diseases arise due to slow and gradual loss of structure and/or function of neurons and glial cells and cause different degrees of loss of cognition abilities and sensation. The little success in developing effective treatments imposes a high and regressive economic impact on society, patients and their families. In recent years, regenerative medicine has provided a great opportunity to research new innovative strategies with strong potential to treatleva these diseases. These effects are due to the ability of suitable cells and biomaterials to regenerate damaged nerves with differentiated cells, creating an appropriate environment for recovering or preserving existing healthy neurons and glial cells from destruction and damage. Ultimately, a better understanding and thus a further investigation of stem cell technology, tissue engineering, gene therapy, and exosomes allows progress towards practical and effective treatments for neurodegenerative diseases. Therefore, in this review, advances currently being developed in regenerative medicine using animal models and human clinical trials in neurological disorders are summarized.
Collapse
Affiliation(s)
- Ali Esmaeili
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Eteghadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Saeedi Landi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadnaz Fakhteh Yavari
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Garcia Jareño P, Bartley OJM, Precious SV, Rosser AE, Lelos MJ. Challenges in progressing cell therapies to the clinic for Huntington's disease: A review of the progress made with pluripotent stem cell derived medium spiny neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:1-48. [PMID: 36424090 DOI: 10.1016/bs.irn.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Huntington's disease (HD) is a hereditary, neurodegenerative disorder characterized by a triad of symptoms: motor, cognitive and psychiatric. HD is caused by a genetic mutation, expansion of the CAG repeat in the huntingtin gene, which results in loss of medium spiny neurons (MSNs) of the striatum. Cell replacement therapy (CRT) has emerged as a possible therapy for HD, aiming to replace those cells lost to the disease process and alleviate its symptoms. Initial pre-clinical studies used primary fetal striatal cells to provide proof-of-principal that CRT can bring about functional recovery on some behavioral tasks following transplantation into HD models. Alternative donor cell sources are required if CRT is to become a viable therapeutic option and human pluripotent stem cell (hPSC) sources, which have undergone differentiation toward the MSNs lost to the disease process, have proved to be strong candidates. The focus of this chapter is to review work conducted on the functional assessment of animals following transplantation of hPSC-derived MSNs. We discuss different ways that graft function has been assessed, and the results that have been achieved to date. In addition, this chapter presents and discusses challenges that remain in this field.
Collapse
Affiliation(s)
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Cardiff University Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Rosser AE, Busse ME, Gray WP, Badin RA, Perrier AL, Wheelock V, Cozzi E, Martin UP, Salado-Manzano C, Mills LJ, Drew C, Goldman SA, Canals JM, Thompson LM. Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain 2022; 145:1584-1597. [PMID: 35262656 PMCID: PMC9166564 DOI: 10.1093/brain/awac086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.
Collapse
Affiliation(s)
- Anne E. Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Cardiff University Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff CF10 3AX, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
| | - Monica E. Busse
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - William P. Gray
- Cardiff University Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4EP, UK
- University Hospital of Wales Healthcare NHS Trust, Department of Neurosurgery, Cardiff CF14 4XW, UK
| | - Romina Aron Badin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Anselme L. Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Vicki Wheelock
- University of California Davis, Department of Neurology, 95817 Sacramento, CA, USA
| | - Emanuele Cozzi
- Transplant Immunology Unit, Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital—Ospedale Giustinianeo, Padova, Italy
| | - Unai Perpiña Martin
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Laura J. Mills
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Cheney Drew
- Cardiff University Centre for Trials Research, College of Biomedical and Life Sciences Cardiff University, 4th Floor Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS, UK
| | - Steven A. Goldman
- Centre for Translational Neuromedicine, University of Rochester, 14642 Rochester, NY, USA
- University of Copenhagen Faculty of Health and Medical Sciences, DK-2200 Kobenhavn, Denmark
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, and Creatio-Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
| | - Leslie M. Thompson
- University of California Irvine, Department of Psychiatry and Human Behaviour, Department of Neurobiology and Behavior and the Sue and Bill Gross Stem Cell Center, 92697 Irvine, CA, USA
| |
Collapse
|
6
|
Eleftheriadou D, Evans RE, Atkinson E, Abdalla A, Gavins FKH, Boyd AS, Williams GR, Knowles JC, Roberton VH, Phillips JB. An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv 2022; 12:4005-4015. [PMID: 35425456 PMCID: PMC8981497 DOI: 10.1039/d1ra08563h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core–shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules. Novel composite cell encapsulation system: dual-layer, micro-scale beads maintain cell survival while releasing immunomodulatory FK506 in a sustained manner. This biotechnology platform could be applicable for treatment of CNS and other disorders.![]()
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Rachael E Evans
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Emily Atkinson
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ahmed Abdalla
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Francesca K H Gavins
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ashleigh S Boyd
- UCL Institute of Immunity and Transplantation, Royal Free Hospital London UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Jonathan C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute London UK
| | - Victoria H Roberton
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
7
|
Drew CJG, Busse M. Considerations for clinical trial design and conduct in the evaluation of novel advanced therapeutics in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:235-279. [PMID: 36424094 DOI: 10.1016/bs.irn.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent advances in the development of potentially disease modifying cell and gene therapies for neurodegenerative disease has resulted in the production of a number of promising novel therapies which are now moving forward to clinical evaluation. The robust evaluation of these therapies pose a significant number of challenges when compared to more traditional evaluations of pharmacotherapy, which is the current mainstay of neurodegenerative disease symptom management. Indeed, there is an inherent complexity in the design and conduct of these trials at multiple levels. Here we discuss specific aspects requiring consideration in the context of investigating novel cell and gene therapies for neurodegenerative disease. This extends to overarching trial designs that could be employed and the factors that underpin design choices such outcome assessments, participant selection and methods for delivery of cell and gene therapies. We explore methods of data collection that may improve efficiency in trials of cell and gene therapy to maximize data sharing and collaboration. Lastly, we explore some of the additional context beyond efficacy evaluations that should be considered to ensure implementation across relevant healthcare settings.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| | - Monica Busse
- Centre For Trials Research, Cardiff University, Cardiff, United Kingdom; Brain Repair and Intracranial Neurotherapeutics Unit (BRAIN), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
8
|
Do foetal transplant studies continue to be justified in Huntington's disease? Neuronal Signal 2021; 5:NS20210019. [PMID: 34956650 PMCID: PMC8674623 DOI: 10.1042/ns20210019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Early CNS transplantation studies used foetal derived cell products to provide a foundation of evidence for functional recovery in preclinical studies and early clinical trials. However, it was soon recognised that the practical limitations of foetal tissue make it unsuitable for widespread clinical use. Considerable effort has since been directed towards producing target cell phenotypes from pluripotent stem cells (PSCs) instead, and there now exist several publications detailing the differentiation and characterisation of PSC-derived products relevant for transplantation in Huntington's disease (HD). In light of this progress, we ask if foetal tissue transplantation continues to be justified in HD research. We argue that (i) the extent to which accurately differentiated target cells can presently be produced from PSCs is still unclear, currently making them undesirable for studying wider CNS transplantation issues; (ii) foetal derived cells remain a valuable tool in preclinical research for advancing our understanding of which products produce functional striatal grafts and as a reference to further improve PSC-derived products; and (iii) until PSC-derived products are ready for human trials, it is important to continue using foetal cells to gather clinical evidence that transplantation is a viable option in HD and to use this opportunity to optimise practical parameters (such as trial design, clinical practices, and delivery strategies) to pave the way for future PSC-derived products.
Collapse
|
9
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Drew CJG, Sharouf F, Randell E, Brookes-Howell L, Smallman K, Sewell B, Burrell A, Kirby N, Mills L, Precious S, Pallmann P, Gillespie D, Hood K, Busse M, Gray WP, Rosser A. Protocol for an open label: phase I trial within a cohort of foetal cell transplants in people with Huntington's disease. Brain Commun 2021; 3:fcaa230. [PMID: 33543141 PMCID: PMC7850012 DOI: 10.1093/braincomms/fcaa230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Currently, no disease-modifying therapies are available to slow or halt disease progression. Huntington's disease is characterized by relatively focal and specific loss of striatal medium spiny neurons, which makes it suitable for cell-replacement therapy, a process involving the transplantation of donor cells to replace those lost due to disease. TRIal DEsigns for delivery of Novel Therapies in neurodegeneration is a phase I Trial Within a Cohort designed to assess safety and feasibility of transplanting human foetal striatal cells into the striatum of people with Huntington's disease. A minimum of 18 participants will be enrolled in the study cohort, and up to five eligible participants will be randomly selected to undergo transplantation of 12-22 million foetal cells in a dose escalation paradigm. Independent reviewers will assess safety outcomes (lack of significant infection, bleeding or new neurological deficit) 4 weeks after surgery, and ongoing safety will be established before conducting each subsequent surgery. All participants will undergo detailed clinical and functional assessment at baseline (6 and 12 months). Surgery will be performed 1 month after baseline, and transplant participants will undergo regular clinical follow-up for at least 12 months. Evaluation of trial processes will also be undertaken. Transplant participants and their carers will be interviewed ∼1 month before and after surgery. Interviews will also be conducted with non-transplanted participants and healthcare staff delivering the intervention and involved in the clinical care of participants. Evaluation of clinical and functional efficacy outcomes and intervention costs will be carried out to explore plausible trial designs for subsequent randomized controlled trials aimed at evaluating efficacy and cost-effectiveness of cell-replacement therapy. TRIal DEsigns for delivery of Novel Therapies in neurodegeneration will enable the assessment of the safety, feasibility, acceptability and cost of foetal cell transplants in people with Huntington's disease. The data collected will inform trial designs for complex intra-cranial interventions in a range of neurodegenerative conditions and facilitate the development of stable surgical pipelines for delivery of future stem cell trials. Trial Registration: ISRCTN52651778.
Collapse
Affiliation(s)
- Cheney J G Drew
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Feras Sharouf
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Department of Neurosurgery, University Hospital Wales, Cardiff, CF14 4XW, UK
| | - Elizabeth Randell
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | | | - Kim Smallman
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Bernadette Sewell
- Swansea Centre for Health Economics, Swansea University, Swansea, SA2 8PP, UK
| | - Astrid Burrell
- Public and Patient Representative, BRAIN Involve, Cardiff University, Cardiff, UK
| | - Nigel Kirby
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Laura Mills
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Sophie Precious
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Ave, Cardiff, CF10 3AX, UK
| | - Philip Pallmann
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Kerry Hood
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, CF14 4YS, UK
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
| | - William P Gray
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Department of Neurosurgery, University Hospital Wales, Cardiff, CF14 4XW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Anne Rosser
- Brain Repair and Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Cardiff, CF24 4HQ, UK
- Brain Repair Group, School of Biosciences, Cardiff University, Museum Ave, Cardiff, CF10 3AX, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
11
|
Bachoud-Lévi AC. Human Fetal Cell Therapy in Huntington's Disease: A Randomized, Multicenter, Phase II Trial. Mov Disord 2020; 35:1323-1335. [PMID: 32666599 DOI: 10.1002/mds.28201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Huntington's disease is a rare, severe, inherited neurodegenerative disease in which we assessed the safety and efficacy of grafting human fetal ganglionic eminence intrastriatally. METHODS Patients at the early stage of the disease were enrolled in the Multicentric Intracerebral Grafting in Huntington's Disease trial, a delayed-start phase II randomized study. After a run-in period of 12 months, patients were randomized at month 12 to either the treatment group (transplanted at month 13-month 14) or the control group and secondarily treated 20 months later (month 33-month 34). The primary outcome was total motor score compared between both groups 20 months postrandomization (month 32). Secondary outcomes included clinical, imaging, and electrophysiological findings and a comparison of pregraft and postgraft total motor score slopes during the entire study period (month 0-month 52) regardless of the time of transplant. RESULTS Of 54 randomized patients, 45 were transplanted; 26 immediately (treatment) and 19 delayed (control). Mean total motor score at month 32 did not differ between groups (treated controls difference in means adjusted for M12: +2.9 [95% confidence interval, -2.8 to 8.6]; P = 0.31). Its rate of decline after transplantation was similar to that before transplantation. A total of 27 severe adverse events were recorded in the randomized patients, 10 of which were related to the transplant procedure. Improvement of procedures during the trial significantly decreased the frequency of surgical events.We found antihuman leucocytes antigen antibodies in 40% of the patients. CONCLUSION No clinical benefit was found in this trial. This may have been related to graft rejection. Ectopia and high track number negatively influence the graft outcome. Procedural adjustments substantially improved surgical safety. (ClinicalTrials.gov NCT00190450.) © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne-Catherine Bachoud-Lévi
- Assistance Publique-Hôpitaux de Paris, National Reference Center for Huntington's Disease, Neurology Department, Henri Mondor-Albert Chenevier Hospital, Créteil, France.,Equipe neuropsychologie interventionnelle, Département d'études cognitives, École normale supérieure, PSL, Research University, Institut Mondor de Recherche biomédicale, Université Paris-Est, INSERM, Paris, and Créteil, France.,Faculté de Santé, Université Paris Est, Créteil, France
| | | |
Collapse
|
12
|
Wu M, Zhang D, Bi C, Mi T, Zhu W, Xia L, Teng Z, Hu B, Wu Y. A Chemical Recipe for Generation of Clinical-Grade Striatal Neurons from hESCs. Stem Cell Reports 2018; 11:635-650. [PMID: 30174316 PMCID: PMC6135866 DOI: 10.1016/j.stemcr.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Differentiation of human pluripotent stem cells (hPSCs) into striatal medium spiny neurons (MSNs) promises a cell-based therapy for Huntington's disease. However, clinical-grade MSNs remain unavailable. Here, we developed a chemical recipe named XLSBA to generate clinical-grade MSNs from embryonic stem cells (ESCs). We introduced the γ-secretase inhibitor DAPT into the recipe to accelerate neural differentiation, and replaced protein components with small molecules. Using this optimized protocol we could efficiently direct regular human ESCs (hESCs) as well as clinical-grade hESCs to lateral ganglionic eminence (LGE)-like progenitors and striatal MSNs within less than half of the time than previous protocols (within 14 days and 21 days, respectively). These striatal cells expressed appropriate MSN markers and electrophysiologically acted like authentic MSNs. Upon transplantation into brains of neonatal mice or mouse model of Huntington's disease, they exhibited sufficient safety and reasonable efficacy. Therefore, this quick and highly efficient derivation of MSNs offers unprecedented access to clinical application.
Collapse
Affiliation(s)
- Menghua Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunying Bi
- College of Life Science, QUFU Normal University, Qufu, Shandong 273165, China
| | - Tingwei Mi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkuo Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yihui Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
13
|
hPSC-Derived Striatal Cells Generated Using a Scalable 3D Hydrogel Promote Recovery in a Huntington Disease Mouse Model. Stem Cell Reports 2018; 10:1481-1491. [PMID: 29628395 PMCID: PMC5995679 DOI: 10.1016/j.stemcr.2018.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results. To facilitate clinical translation, here, we generated striatal progenitors from hPSCs within a fully defined and scalable PNIPAAm-PEG three-dimensional (3D) hydrogel. Transplantation of 3D-derived striatal progenitors into a transgenic mouse model of HD slowed disease progression, improved motor coordination, and increased survival. In addition, the transplanted cells developed an MSN-like phenotype and formed synaptic connections with host cells. Our results illustrate the potential of scalable 3D biomaterials for generating striatal progenitors for HD cell therapy. 3D-generated striatal cells rapidly achieve functional maturity Transplanted cells delayed disease onset and alleviated symptoms in HD mice Transplanted striatal cells increased lifespan in HD mice HTT aggregates were observed in striatal cells transplanted into HD mice
Collapse
|
14
|
Dissection and Preparation of Human Primary Fetal Ganglionic Eminence Tissue for Research and Clinical Applications. Methods Mol Biol 2018; 1780:573-583. [PMID: 29856036 DOI: 10.1007/978-1-4939-7825-0_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here, we describe detailed dissection and enzymatic dissociation protocols for the ganglionic eminences from the developing human brain to generate viable quasi-single cell suspensions for subsequent use in transplantation or cell culture. These reliable and reproducible protocols can provide tissue for use in the study of the developing human brain, as well as for the preparation of donor cells for transplantation in Huntington's disease (HD). For use in the clinic as a therapy for HD, the translation of these protocols from the research laboratory to the GMP suite is described, including modification to reagents used and appropriate monitoring and tissue release criteria.
Collapse
|
15
|
Reidling JC, Relaño-Ginés A, Holley SM, Ochaba J, Moore C, Fury B, Lau A, Tran AH, Yeung S, Salamati D, Zhu C, Hatami A, Cepeda C, Barry JA, Kamdjou T, King A, Coleal-Bergum D, Franich NR, LaFerla FM, Steffan JS, Blurton-Jones M, Meshul CK, Bauer G, Levine MS, Chesselet MF, Thompson LM. Human Neural Stem Cell Transplantation Rescues Functional Deficits in R6/2 and Q140 Huntington's Disease Mice. Stem Cell Reports 2017; 10:58-72. [PMID: 29233555 PMCID: PMC5768890 DOI: 10.1016/j.stemcr.2017.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with no disease-modifying treatment. Expansion of the glutamine-encoding repeat in the Huntingtin (HTT) gene causes broad effects that are a challenge for single treatment strategies. Strategies based on human stem cells offer a promising option. We evaluated efficacy of transplanting a good manufacturing practice (GMP)-grade human embryonic stem cell-derived neural stem cell (hNSC) line into striatum of HD modeled mice. In HD fragment model R6/2 mice, transplants improve motor deficits, rescue synaptic alterations, and are contacted by nerve terminals from mouse cells. Furthermore, implanted hNSCs are electrophysiologically active. hNSCs also improved motor and late-stage cognitive impairment in a second HD model, Q140 knockin mice. Disease-modifying activity is suggested by the reduction of aberrant accumulation of mutant HTT protein and expression of brain-derived neurotrophic factor (BDNF) in both models. These findings hold promise for future development of stem cell-based therapies.
Collapse
Affiliation(s)
- Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Aroa Relaño-Ginés
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joseph Ochaba
- Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Cindy Moore
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Andrew H Tran
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Sylvia Yeung
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Delaram Salamati
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Chunni Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Asa Hatami
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joshua A Barry
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alvin King
- Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Nicholas R Franich
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Frank M LaFerla
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Joan S Steffan
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USA
| | - Charles K Meshul
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road, L470, Portland, OR 97239, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, 2921 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Marie-Francoise Chesselet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Neurobiology & Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, 3400 Biological Sciences III, Irvine, CA 92697-4545, USA; Sue and Bill Gross Stem Cell Center, University of California, Irvine, Gross Hall, Room 3219, 845 Health Sciences Road, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Grade S, Götz M. Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2017; 2:29. [PMID: 29302363 PMCID: PMC5677983 DOI: 10.1038/s41536-017-0033-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.
Collapse
Affiliation(s)
- Sofia Grade
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Grealish S, Parmar M. Plug and Play Brain: Understanding Integration of Transplanted Neurons for Brain Repair. Cell Stem Cell 2017; 19:679-680. [PMID: 27912087 DOI: 10.1016/j.stem.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In a recent issue of Nature,Falkner et al. (2016) use chronic two-photon imaging, virus-based transsynaptic tracing, and dynamic calcium indicators to elegantly demonstrate extensive in vivo functional maturation and target-specific functional integration of transplanted embryonic mouse cortical progenitors into adult lesioned visual cortical circuits.
Collapse
Affiliation(s)
- Shane Grealish
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
18
|
Precious SV, Zietlow R, Dunnett SB, Kelly CM, Rosser AE. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease? Neurochem Int 2017; 106:114-121. [PMID: 28137534 PMCID: PMC5582194 DOI: 10.1016/j.neuint.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications.
Collapse
Affiliation(s)
- Sophie V Precious
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rike Zietlow
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Stephen B Dunnett
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claire M Kelly
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, UK
| | - Anne E Rosser
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
19
|
Abstract
Over the last decade, neural transplantation has emerged as one of the more promising, albeit highly experimental, potential therapeutics in neurodegenerative disease. Preclinical studies in rat lesion models of Huntington's disease (HD) and Parkinson's disease (PD) have shown that transplanted precursor neuronal tissue from a fetus into the lesioned striatum can survive, integrate, and reconnect circuitry. Importantly, specific training on behavioral tasks that target striatal function is required to encourage functional integration of the graft to the host tissue. Indeed, "learning to use the graft" is a concept recently adopted in preclinical studies to account for unpredicted profiles of recovery posttransplantation and is an emerging strategy for improving graft functionality. Clinical transplant studies in HD and PD have resulted in mixed outcomes. Small sample sizes and nonstandardized experimental procedures from trial to trial may explain some of this variability. However, it is becoming increasingly apparent that simply replacing the lost neurons may not be sufficient to ensure the optimal graft effects. The knowledge gained from preclinical grafting and training studies suggests that lifestyle factors, including physical activity and specific cognitive and/or motor training, may be required to drive the functional integration of grafted cells and to facilitate the development of compensatory neural networks. The clear implications of preclinical studies are that physical activity and cognitive training strategies are likely to be crucial components of clinical cell replacement therapies in the future. In this chapter, we evaluate the role of general activity in mediating the physical ability of cells to survive, sprout, and extend processes following transplantation in the adult mammalian brain, and we consider the impact of general and specific activity at the behavioral level on functional integration at the cellular and physiological level. We then highlight specific research questions related to timing, intensity, and specificity of training in preclinical models and synthesize the current state of knowledge in clinical populations to inform the development of a strategy for neural transplantation rehabilitation training.
Collapse
|
20
|
From open to large-scale randomized cell transplantation trials in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2017; 230:227-261. [DOI: 10.1016/bs.pbr.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Arber C, Precious SV, Cambray S, Risner-Janiczek JR, Kelly C, Noakes Z, Fjodorova M, Heuer A, Ungless MA, Rodríguez TA, Rosser AE, Dunnett SB, Li M. Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 2016; 142:1375-86. [PMID: 25804741 DOI: 10.1242/dev.117093] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The efficient generation of striatal neurons from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) is fundamental for realising their promise in disease modelling, pharmaceutical drug screening and cell therapy for Huntington's disease. GABAergic medium-sized spiny neurons (MSNs) are the principal projection neurons of the striatum and specifically degenerate in the early phase of Huntington's disease. Here we report that activin A induces lateral ganglionic eminence (LGE) characteristics in nascent neural progenitors derived from hESCs and hiPSCs in a sonic hedgehog-independent manner. Correct specification of striatal phenotype was further demonstrated by the induction of the striatal transcription factors CTIP2, GSX2 and FOXP2. Crucially, these human LGE progenitors readily differentiate into postmitotic neurons expressing the striatal projection neuron signature marker DARPP32, both in culture and following transplantation in the adult striatum in a rat model of Huntington's disease. Activin-induced neurons also exhibit appropriate striatal-like electrophysiology in vitro. Together, our findings demonstrate a novel route for efficient differentiation of GABAergic striatal MSNs from human pluripotent stem cells.
Collapse
Affiliation(s)
- Charles Arber
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Sophie V Precious
- Brain Repair Group, Neuroscience and Mental Health Research Institute, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Serafí Cambray
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Jessica R Risner-Janiczek
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Claire Kelly
- Brain Repair Group, Neuroscience and Mental Health Research Institute, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Zoe Noakes
- Stem Cell Neurogenesis Group, Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| | - Marija Fjodorova
- Stem Cell Neurogenesis Group, Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| | - Andreas Heuer
- Brain Repair Group, Neuroscience and Mental Health Research Institute, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Mark A Ungless
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | - Anne E Rosser
- Brain Repair Group, Neuroscience and Mental Health Research Institute, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Stephen B Dunnett
- Brain Repair Group, Neuroscience and Mental Health Research Institute, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Meng Li
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK Stem Cell Neurogenesis Group, Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
22
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
23
|
Rosser A, Svendsen CN. Stem cells for cell replacement therapy: a therapeutic strategy for HD? Mov Disord 2015; 29:1446-54. [PMID: 25216372 DOI: 10.1002/mds.26026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
Much interest has been expressed over the last couple of decades in the potential application of stem cells to medicine, both for research and diagnostic tools and as a source of donor cells for therapeutic purposes. Potential therapeutic applications include replacement of cells in many body organs where the capacity for intrinsic repair is limited, including the pancreas, heart, and brain. A key challenge is to generate the relevant donor cell types, and this is particularly challenging in the brain where the number of different neuronal subtypes is so great. Although dopamine neuron replacement in Parkinson's disease has been the focus of most clinical studies, great interest has been shown in this approach for other disorders, including Huntington's disease. Replacing complete neural circuits in the adult brain is clearly challenging, and there are many other complexities with regard to both donor cells and host. This article presents the pros and cons of taking a cell therapy approach in Huntington's disease. It considers the implantation both of cells that are already of the same neural subtype as those lost in the disease process (ie, primary fetal cells derived from the developing striatum) and those derived from stem cells, which require "directing" toward that phenotype.
Collapse
Affiliation(s)
- Anne Rosser
- Cardiff Brain Repair Group, Schools of Medicine and Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, United Kingdom
| | | |
Collapse
|
24
|
Roberton VH, Rosser AE, Kelly CM. Neonatal desensitization for the study of regenerative medicine. Regen Med 2015; 10:265-74. [DOI: 10.2217/rme.14.76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell replacement is a therapeutic option for numerous diseases of the CNS. Current research has identified a number of potential human donor cell types, for which preclinical testing through xenotransplantation in animal models is imperative. Immune modulation is necessary to promote donor cell survival for sufficient time to assess safety and efficacy. Neonatal desensitization can promote survival of human donor cells in adult rat hosts with little impact on the health of the host and for substantially longer than conventional methods, and has subsequently been applied in a range of studies with variable outcomes. Reviewing these findings may provide insight into the method and its potential for use in preclinical studies in regenerative medicine.
Collapse
Affiliation(s)
- Victoria H Roberton
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Anne E Rosser
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
- Department of Psychological Medicine & Neurology, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Claire M Kelly
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, UK
| |
Collapse
|
25
|
Bachoud-Lévi AC, Perrier A. Regenerative medicine in Huntington's disease: Current status on fetal grafts and prospects for the use of pluripotent stem cell. Rev Neurol (Paris) 2014; 170:749-62. [DOI: 10.1016/j.neurol.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022]
|
26
|
Pauly MC, Döbrössy MD, Nikkhah G, Winkler C, Piroth T. Organization of the human fetal subpallium. Front Neuroanat 2014; 7:54. [PMID: 24474906 PMCID: PMC3893616 DOI: 10.3389/fnana.2013.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/23/2013] [Indexed: 01/14/2023] Open
Abstract
The subpallium comprises large parts of the basal ganglia including striatum and globus pallidus. Genes and factors involved in the development of the subpallium have been extensively studied in most vertebrates, including amphibians, birds, and rodents. However, our knowledge on patterning of the human subpallium remains insufficient. Using double fluorescent immunohistochemistry, we investigated the protein distribution of transcription factors involved in patterning of the subventricular zone (SVZ) in the human forebrain at late embryonic development. Furthermore, we compared the development of cortical and striatal precursors between human fetal brain and E14 and E16 fetal rat brains. Our results reveal that DLX2 marks SVZ precursors in the entire subpallium. Individual subpallial subdomains can be identified based on co-expression of DLX2 with either PAX6 or NKX2-1. SVZ precursors in the dorsal LGE and preopto-hypothalamic boundary are characterized by DLX2/PAX6 co-expression, while precursors in the MGE and preoptic region co-express DLX2/NKX2-1. SVZ precursors in the ventral LGE are DLX2(+)/PAX6(-)/NKX2-1(-). In terms of staging comparisons, the development of the corpus striatum in the human fetal brain during late embryonic stages corresponds well with the development of the striatum observed in E14 fetal rat brains. Our study demonstrates that the pattern underlying the development of the subpallium is highly conserved between rodents and humans and suggests a similar function for these factors in human brain development. Moreover, our data directly influence the application of ganglionic eminence derived human tissue for cell therapeutic approaches in neurodegenerative disorders such as Huntington's disease.
Collapse
Affiliation(s)
- Marie-Christin Pauly
- Department of Neurology, University Freiburg - Medical Center Freiburg, Germany ; Department of Stereotactic and Functional Neurosurgery, University Freiburg - Medical Center Freiburg, Germany
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, University Freiburg - Medical Center Freiburg, Germany
| | - Guido Nikkhah
- Department of Neurosurgery, University Clinic Erlangen Erlangen, Germany
| | - Christian Winkler
- Department of Neurology, University Freiburg - Medical Center Freiburg, Germany ; Department of Neurology, Lindenbrunn Hospital Coppenbrügge, Germany
| | - Tobias Piroth
- Department of Neurology, University Freiburg - Medical Center Freiburg, Germany
| |
Collapse
|
27
|
Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis. Behav Brain Res 2013; 256:56-63. [PMID: 23916743 DOI: 10.1016/j.bbr.2013.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/25/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.
Collapse
|