1
|
Zhao L, Witter MP, Palomero-Gallagher N. Cyto-, gene, and multireceptor architecture of the early postnatal mouse hippocampal complex. Prog Neurobiol 2024:102704. [PMID: 39709019 DOI: 10.1016/j.pneurobio.2024.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes. We provide a novel and comprehensive characterization of the cyto-, gene, and multireceptor architecture of the developing mouse hippocampal and subicular regions during the developmental period, which typically differs from that in the adult brain. High-density receptor expressions with distinct regional and laminar distributions were observed for AMPA, Kainate, mGluR2/3, GABAA, GABAA/BZ, α2, and A1 receptors during this specific period, whereas NMDA, GABAB, α1, M1, M2, M3, nicotinic α4β2, 5-HT1A, 5-HT2, D1 and D2/D3 receptors exhibited relatively low and homogeneous expressions. This specific balance of multiple receptors aligns with regional cytoarchitecture, neurotransmitter distributions, and gene expressions. Moreover, contrasting with previous findings, we detected a high α2 receptor density, with distinct regional and laminar distribution patterns. A non-covariation differentiation phenomenon between α2 receptor distributions and corresponding gene expressions is also demonstrated in this early developmental period. The multimodal data provides new insights into understanding the hippocampal development from the perspective of cell, gene, and multireceptor levels, and contributes important resources for further interdisciplinary analyses.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Psychology, School of Public Policy and Management, Nanchang University, 330000 Nanchang, China; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany
| |
Collapse
|
2
|
Hassani SA, Tiesinga P, Womelsdorf T. Noradrenergic alpha-2a receptor stimulation enhances prediction error signaling and updating of attention sets in anterior cingulate cortex and striatum. Nat Commun 2024; 15:9905. [PMID: 39548091 PMCID: PMC11568163 DOI: 10.1038/s41467-024-54395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The noradrenergic system is believed to support behavioral flexibility. A possible source mediating improved flexibility are α2A adrenoceptors (α2AR) in prefrontal cortex (PFC) or the anterior cingulate cortex (ACC). We tested this hypothesis by stimulating α2ARs using Guanfacine during attentional set shifting in male nonhuman primates. We found that α2AR stimulation improved learning from errors and updating attention sets. Neural recordings in the ACC, dorsolateral PFC, and the striatum showed that α2AR stimulation selectively enhanced neural signaling of prediction errors in neurons of the ACC and the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of attended target features and particularly apparent in putative fast-spiking interneurons, pointing to an interneuron mediated mechanism of α2AR action. These results reveal that α2A receptors are part of the causal chain of flexibly updating attention sets through an enhancement of outcomes and prediction error signaling in ACC and striatum.
Collapse
Affiliation(s)
- Seyed A Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
5
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife 2023; 12:e82850. [PMID: 37578332 PMCID: PMC10425179 DOI: 10.7554/elife.82850] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023] Open
Abstract
Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Meiqi Niu
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - Ling Zhao
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Thomas Funck
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
6
|
Froudist-Walsh S, Xu T, Niu M, Rapan L, Zhao L, Margulies DS, Zilles K, Wang XJ, Palomero-Gallagher N. Gradients of neurotransmitter receptor expression in the macaque cortex. Nat Neurosci 2023; 26:1281-1294. [PMID: 37336976 PMCID: PMC10322721 DOI: 10.1038/s41593-023-01351-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. We integrated the receptor data with anatomical, genetic and functional connectivity data into a common cortical space. We uncovered a principal gradient of receptor expression per neuron. This aligns with the cortical hierarchy from sensory cortex to higher cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, peaks in the anterior cingulate, default mode and salience networks. We found a similar pattern of 5-HT1A expression in the human brain. Thus, the macaque may be a promising translational model of serotonergic processing and disorders. The receptor gradients may enable rapid, reliable information processing in sensory cortical areas and slow, flexible integration in higher cognitive areas.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Rats
- Autoradiography
- Brain Mapping
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Cognition
- Dendritic Spines
- Gyrus Cinguli/cytology
- Gyrus Cinguli/metabolism
- Macaca fascicularis
- Rats, Inbred Lew
- Receptor, Serotonin, 5-HT1A/analysis
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Cholinergic/analysis
- Receptors, Cholinergic/metabolism
- Receptors, Dopamine/analysis
- Receptors, Dopamine/metabolism
- Receptors, Neurotransmitter/analysis
- Receptors, Neurotransmitter/metabolism
- Serotonin/metabolism
- Species Specificity
- Myelin Sheath/metabolism
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
- Center for Neural Science, New York University, New York, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, University of Paris Cité, Paris, France
| | | | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Zhao L, Mühleisen TW, Pelzer DI, Burger B, Beins EC, Forstner AJ, Herms S, Hoffmann P, Amunts K, Palomero-Gallagher N, Cichon S. Relationships between neurotransmitter receptor densities and expression levels of their corresponding genes in the human hippocampus. Neuroimage 2023; 273:120095. [PMID: 37030412 PMCID: PMC10167541 DOI: 10.1016/j.neuroimage.2023.120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Neurotransmitter receptors are key molecules in signal transmission, their alterations are associated with brain dysfunction. Relationships between receptors and their corresponding genes are poorly understood, especially in humans. We combined in vitro receptor autoradiography and RNA sequencing to quantify, in the same tissue samples (7 subjects), the densities of 14 receptors and expression levels of their corresponding 43 genes in the Cornu Ammonis (CA) and dentate gyrus (DG) of human hippocampus. Significant differences in receptor densities between both structures were found only for metabotropic receptors, whereas significant differences in RNA expression levels mostly pertained ionotropic receptors. Receptor fingerprints of CA and DG differ in shapes but have similar sizes; the opposite holds true for their "RNA fingerprints", which represent the expression levels of multiple genes in a single area. In addition, the correlation coefficients between receptor densities and corresponding gene expression levels vary widely and the mean correlation strength was weak-to-moderate. Our results suggest that receptor densities are not only controlled by corresponding RNA expression levels, but also by multiple regionally specific post-translational factors.
Collapse
|
9
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
10
|
Correspondence between gene expression and neurotransmitter receptor and transporter density in the human brain. Neuroimage 2022; 264:119671. [PMID: 36209794 DOI: 10.1016/j.neuroimage.2022.119671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Neurotransmitter receptors modulate signaling between neurons. Thus, neurotransmitter receptors and transporters play a key role in shaping brain function. Due to the lack of comprehensive neurotransmitter receptor/transporter density datasets, microarray gene expression measuring mRNA transcripts is often used as a proxy for receptor densities. In the present report, we comprehensively test the spatial correlation between gene expression and protein density for a total of 27 neurotransmitter receptors, receptor binding-sites, and transporters across 9 different neurotransmitter systems, using both PET and autoradiography radioligand-based imaging modalities. We find poor spatial correspondences between gene expression and density for all neurotransmitter receptors and transporters except four single-protein metabotropic receptors (5-HT1A, CB1, D2, and MOR). These expression-density associations are related to gene differential stability and can vary between cortical and subcortical structures. Altogether, we recommend using direct measures of receptor and transporter density when relating neurotransmitter systems to brain structure and function.
Collapse
|
11
|
John YJ, Zikopoulos B, García-Cabezas MÁ, Barbas H. The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging. Front Neuroanat 2022; 16:897237. [PMID: 36157324 PMCID: PMC9501703 DOI: 10.3389/fnana.2022.897237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
High-level characterizations of the primate cerebral cortex sit between two extremes: on one end the cortical mantle is seen as a mosaic of structurally and functionally unique areas, and on the other it is seen as a uniform six-layered structure in which functional differences are defined solely by extrinsic connections. Neither of these extremes captures the crucial neuroanatomical finding: that the cortex exhibits systematic gradations in architectonic structure. These gradations have been shown to predict cortico-cortical connectivity, which in turn suggests powerful ways to ground connectomics in anatomical structure, and by extension cortical function. A challenge to widespread use of this concept is the labor-intensive and invasive nature of histological staining, which is the primary means of recognizing anatomical gradations. Here we show that a novel computational analysis technique can provide a coarse-grained picture of cortical variation. For each of 78 cortical areas spanning the entire cortical mantle of the rhesus macaque, we created a high dimensional set of anatomical features derived from captured images of cortical tissue stained for myelin and SMI-32. The method involved semi-automated de-noising of images, and enabled comparison of brain areas without hand-labeling of features such as layer boundaries. We applied multidimensional scaling (MDS) to the dataset to visualize similarity among cortical areas. This analysis shows a systematic variation between weakly laminated (limbic) cortices and sharply laminated (eulaminate) cortices. We call this smooth continuum the “cortical spectrum”. We also show that this spectrum is visible within subsystems of the cortex: the occipital, parietal, temporal, motor, prefrontal, and insular cortices. We compared the MDS-derived spectrum with a spectrum produced using T1- and T2-weighted magnetic resonance imaging (MRI) data derived from macaque, and found close agreement of the two coarse-graining methods. This suggests that T1w/T2w data, routinely obtained in human MRI studies, can serve as an effective proxy for data derived from high-resolution histological methods. More generally, this approach shows that the cortical spectrum is robust to the specific method used to compare cortical areas, and is therefore a powerful tool to understand the principles of organization of the primate cortex.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | | | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Helen Barbas,
| |
Collapse
|
12
|
Paquola C, Amunts K, Evans A, Smallwood J, Bernhardt B. Closing the mechanistic gap: the value of microarchitecture in understanding cognitive networks. Trends Cogn Sci 2022; 26:873-886. [PMID: 35909021 DOI: 10.1016/j.tics.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Cognitive neuroscience aims to provide biologically relevant accounts of cognition. Contemporary research linking spatial patterns of neural activity to psychological constructs describes 'where' hypothesised functions occur, but not 'how' these regions contribute to cognition. Technological, empirical, and conceptual advances allow this mechanistic gap to be closed by embedding patterns of functional activity in macro- and microscale descriptions of brain organisation. Recent work on the default mode network (DMN) and the multiple demand network (MDN), for example, highlights a microarchitectural landscape that may explain how activity in these networks integrates varied information, thus providing an anatomical foundation that will help to explain how these networks contribute to many different cognitive states. This perspective highlights emerging insights into how microarchitecture can constrain network accounts of human cognition.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany; Cécile and Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Receptor architecture of macaque and human early visual areas: not equal, but comparable. Brain Struct Funct 2021; 227:1247-1263. [PMID: 34931262 PMCID: PMC9046358 DOI: 10.1007/s00429-021-02437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022]
Abstract
Existing cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v). Mean densities of 14 neurotransmitter receptors were quantified in each area, and ensuing receptor fingerprints used for multivariate analyses. The 1st principal component segregated macaque and human early visual areas differ. However, the 2nd principal component showed that within each species, area-specific differences in receptor fingerprints were associated with the hierarchical processing level of each area. Subdivisions of V2 and V3 were found to cluster together in both species and were segregated from subdivisions of V1 and from V4v. Thus, comparative studies like this provide valuable architectonic insights into how differences in underlying microstructure impact evolutionary changes in functional processing of the primate brain and, at the same time, provide strong arguments for use of macaque monkey brain as a suitable animal model for translational studies.
Collapse
|
14
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
15
|
Khan AF, Adewale Q, Baumeister TR, Carbonell F, Zilles K, Palomero-Gallagher N, Iturria-Medina Y. Personalized brain models identify neurotransmitter receptor changes in Alzheimer's disease. Brain 2021; 145:1785-1804. [PMID: 34605898 DOI: 10.1093/brain/awab375] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease (AD) involves many neurobiological alterations from molecular to macroscopic spatial scales, but we currently lack integrative, mechanistic brain models characterizing how factors across different biological scales interact to cause clinical deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as important signaling molecules and potential drug targets, are key mediators of interactions between many neurobiological processes altered in AD. We present a neurotransmitter receptor-enriched multifactorial brain model, which integrates spatial distribution patterns of 15 neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-driven model to a heterogeneous aged population (N = 423, ADNI data), we observed that personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-population variance in longitudinal changes to the six neuroimaging modalities, and up to 39.7% (P < 0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an axis primarily affecting executive function. Notably, based on their contribution to the clinical severity in AD, we found significant functional alterations to glutamatergic interactions affecting tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently affecting neural activity dysfunction, amyloid and tau distributions, as well as significant cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest effect on cognitive impairment (particularly executive function) in our AD cohort (N = 25). Furthermore, we demonstrate the clinical applicability of this approach by characterizing subjects based on individualized 'fingerprints' of receptor alterations. This study introduces the first robust, data-driven framework for integrating several neurotransmitter receptors, multi-modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables further understanding of the mechanistic neuropathological basis of neurodegenerative progression and heterogeneity, and constitutes a promising step towards implementing personalized, neurotransmitter-based treatments.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany.,JARA, Translational Brain Medicine, 52074 Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4.,McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada H3A 2B4.,Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada H3A 2B4
| | | |
Collapse
|
16
|
van Aalst J, Ceccarini J, Sunaert S, Dupont P, Koole M, Van Laere K. In vivo synaptic density relates to glucose metabolism at rest in healthy subjects, but is strongly modulated by regional differences. J Cereb Blood Flow Metab 2021; 41:1978-1987. [PMID: 33444094 PMCID: PMC8327121 DOI: 10.1177/0271678x20981502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated (r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
18
|
Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ, Breakspear M. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat Neurosci 2021; 24:765-776. [PMID: 33958801 DOI: 10.1038/s41593-021-00824-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Decades of neurobiological research have disclosed the diverse manners in which the response properties of neurons are dynamically modulated to support adaptive cognitive functions. This neuromodulation is achieved through alterations in the biophysical properties of the neuron. However, changes in cognitive function do not arise directly from the modulation of individual neurons, but are mediated by population dynamics in mesoscopic neural ensembles. Understanding this multiscale mapping is an important but nontrivial issue. Here, we bridge these different levels of description by showing how computational models parametrically map classic neuromodulatory processes onto systems-level models of neural activity. The ensuing critical balance of systems-level activity supports perception and action, although our knowledge of this mapping remains incomplete. In this way, quantitative models that link microscale neuronal neuromodulation to systems-level brain function highlight gaps in knowledge and suggest new directions for integrating theoretical and experimental work.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Eli J Müller
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Brandon Munn
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | | | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia. .,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
19
|
Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N. Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 2021; 231:117843. [PMID: 33577936 PMCID: PMC8188735 DOI: 10.1016/j.neuroimage.2021.117843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
21
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
22
|
Changeux JP, Goulas A, Hilgetag CC. A Connectomic Hypothesis for the Hominization of the Brain. Cereb Cortex 2021; 31:2425-2449. [PMID: 33367521 PMCID: PMC8023825 DOI: 10.1093/cercor/bhaa365] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive abilities of the human brain, including language, have expanded dramatically in the course of our recent evolution from nonhuman primates, despite only minor apparent changes at the gene level. The hypothesis we propose for this paradox relies upon fundamental features of human brain connectivity, which contribute to a characteristic anatomical, functional, and computational neural phenotype, offering a parsimonious framework for connectomic changes taking place upon the human-specific evolution of the genome. Many human connectomic features might be accounted for by substantially increased brain size within the global neural architecture of the primate brain, resulting in a larger number of neurons and areas and the sparsification, increased modularity, and laminar differentiation of cortical connections. The combination of these features with the developmental expansion of upper cortical layers, prolonged postnatal brain development, and multiplied nongenetic interactions with the physical, social, and cultural environment gives rise to categorically human-specific cognitive abilities including the recursivity of language. Thus, a small set of genetic regulatory events affecting quantitative gene expression may plausibly account for the origins of human brain connectivity and cognition.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France
- Communications Cellulaires, Collège de France, 75005 Paris, France
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, 20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N. Multimodal 3D atlas of the macaque monkey motor and premotor cortex. Neuroimage 2021; 226:117574. [PMID: 33221453 PMCID: PMC8168280 DOI: 10.1016/j.neuroimage.2020.117574] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/16/2023] Open
Abstract
In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, New York
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Takemura H, Palomero-Gallagher N, Axer M, Gräßel D, Jorgensen MJ, Woods R, Zilles K. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. eLife 2020; 9:e55444. [PMID: 32844747 PMCID: PMC7532002 DOI: 10.7554/elife.55444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka UniversityOsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH AachenAachenGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Markus Axer
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - David Gräßel
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of MedicineWinston-SalemUnited States
| | - Roger Woods
- Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- JARA - Translational Brain MedicineAachenGermany
| |
Collapse
|
25
|
Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K. Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 2020; 9:55979. [PMID: 32613942 PMCID: PMC7365665 DOI: 10.7554/elife.55979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an ‘intermediate’ cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniele Impieri
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
26
|
Vasung L, Rollins CK, Velasco-Annis C, Yun HJ, Zhang J, Warfield SK, Feldman HA, Gholipour A, Grant PE. Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development. Cereb Cortex 2020; 30:4438-4453. [PMID: 32147720 PMCID: PMC7325717 DOI: 10.1093/cercor/bhaa033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
The regional specification of the cerebral cortex can be described by protomap and protocortex hypotheses. The protomap hypothesis suggests that the regional destiny of cortical neurons and the relative size of the cortical area are genetically determined early during embryonic development. The protocortex hypothesis suggests that the regional growth rate is predominantly shaped by external influences. In order to determine regional volumes of cortical compartments (cortical plate (CP) or subplate (SP)) and estimate their growth rates, we acquired T2-weighted in utero MRIs of 40 healthy fetuses and grouped them into early (<25.5 GW), mid- (25.5-31.6 GW), and late (>31.6 GW) prenatal periods. MRIs were segmented into CP and SP and further parcellated into 22 gyral regions. No significant difference was found between periods in regional volume fractions of the CP or SP. However, during the early and mid-prenatal periods, we found significant differences in relative growth rates (% increase per GW) between regions of cortical compartments. Thus, the relative size of these regions are most likely conserved and determined early during development whereas more subtle growth differences between regions are fine-tuned later, during periods of peak thalamocortical growth. This is in agreement with both the protomap and protocortex hypothesis.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin K Rollins
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Dagher A, Palomero-Gallagher N. Mapping dopamine with positron emission tomography: A note of caution. Neuroimage 2020; 207:116203. [PMID: 31539589 DOI: 10.1016/j.neuroimage.2019.116203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; C. and O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat 2019; 13:100. [PMID: 31920569 PMCID: PMC6933313 DOI: 10.3389/fnana.2019.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Neurotransmitters and their receptors are key molecules of signal transduction and subject to various changes during pre- and postnatal development. Previous studies addressed ontogeny at the level of neurotransmitters and expression of neurotransmitter receptor subunits. However, developmental changes in receptor densities to this day are not well understood. Here, we analyzed developmental changes in excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) receptors in adjacent sections of the rat brain by means of quantitative in vitro receptor autoradiography. Receptor densities of the ionotropic glutamatergic receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) as well as of the ionotropic GABAA and metabotropic GABAB receptors were investigated using specific high-affinity ligands. For each receptor binding site, significant density differences were demonstrated in the investigated regions of interest [olfactory bulb, striatum, hippocampus, and cerebellum] and developmental stages [postnatal day (P) 0, 10, 20, 30 and 90]. In particular, we showed that the glutamatergic and GABAergic receptor densities were already present between P0 and P10 in all regions of interest, which may indicate the early relevance of these receptors for brain development. A transient increase of glutamatergic receptor densities in the hippocampus was found, indicating their possible involvement in synaptic plasticity. We demonstrated a decline of NMDA receptor densities in the striatum and hippocampus from P30 to P90, which could be due to synapse elimination, a process that redefines neuronal networks in postnatal brains. Furthermore, the highest increase in GABAA receptor densities from P10 to P20 coincides with the developmental shift from excitatory to inhibitory GABA transmission. Moreover, the increase from P10 to P20 in GABAA receptor densities in the cerebellum corresponds to a point in time when functional GABAergic synapses are formed. Taken together, the present data reveal differential changes in glutamate and GABA receptor densities during postnatal rat brain development, which may contribute to their specific functions during ontogenesis, thus providing a deeper understanding of brain ontogenesis and receptor function.
Collapse
Affiliation(s)
- Sabrina Behuet
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | | | - Markus Cremer
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Impieri D, Zilles K, Niu M, Rapan L, Schubert N, Galletti C, Palomero-Gallagher N. Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas. Brain Struct Funct 2019; 224:2733-2756. [PMID: 31392403 PMCID: PMC6778536 DOI: 10.1007/s00429-019-01930-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023]
Abstract
The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area. Multivariate analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their receptor organization. Differences in regional and laminar receptor distributions confirm the location and extent of areas V6, V6Av, V6Ad, PEc, PEci, and PGm as found in cytoarchitectonic and functional studies, but also enable the definition of three subdivisions within area PE. Receptor densities are higher in supra- than in infragranular layers, with the exception of kainate, M2, and adenosine receptors. Glutamate and GABAergic receptors are the most expressed in all areas analysed. Hierarchical cluster analyses demonstrate that SPL areas are organized in two groups, an organization that corresponds to the visual or sensory-motor characteristics of those areas. Finally, based on present results and in the framework of our current understanding of the structural and functional organization of the primate SPL, we propose a novel pattern of homologies between human and macaque SPL areas.
Collapse
Affiliation(s)
- Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Nicole Schubert
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany. .,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| |
Collapse
|
30
|
Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biol 2019; 17:e3000362. [PMID: 31269028 PMCID: PMC6634416 DOI: 10.1371/journal.pbio.3000362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 01/24/2023] Open
Abstract
Human visual cortex is organized with striking consistency across individuals. While recent findings demonstrate an unexpected coupling between functional and cytoarchitectonic regions relative to the folding of human visual cortex, a unifying principle linking these anatomical and functional features of the cortex remains elusive. To fill this gap in knowledge, we combined independent and ground truth measurements of cytoarchitectonic regions and genetic tissue characterization within human occipitotemporal cortex. Using a data-driven approach, we examined whether differential gene expression among cytoarchitectonic areas could contribute to the arealization of occipitotemporal cortex into a hierarchy based on transcriptomics. This approach revealed two opposing gene expression gradients: one that contains a series of genes with expression magnitudes that ascend from posterior (e.g., areas human occipital [hOc]1, hOc2, hOc3, etc.) to anterior cytoarchitectonic areas (e.g., areas fusiform gyrus [FG]1–FG4) and another that contains a separate series of genes that show a descending gradient from posterior to anterior areas. Using data from the living human brain, we show that each of these gradients correlates strongly with variations in measures related to either thickness or myelination of cortex, respectively. We further reveal that these genetic gradients emerge along unique trajectories in human development: the ascending gradient is present at 10–12 gestational weeks, while the descending gradient emerges later (19–24 gestational weeks). Interestingly, it is not until early childhood (before 5 years of age) that the two expression gradients achieve their adult-like mean expression values. Additional analyses in nonhuman primates (NHPs) reveal that homologous genes do not generate the same ascending and descending expression gradients as in humans. We discuss these findings relative to previously proposed hierarchies based on functional and cytoarchitectonic features of visual cortex. Altogether, these findings bridge macroscopic features of human cytoarchitectonic areas in visual cortex with microscopic features of cellular organization and genetic expression, which, despite the complexity of this multiscale correspondence, can be described by a sparse subset (approximately 200) of genes. These findings help pinpoint the genes contributing to healthy cortical development and explicate the cortical biology distinguishing humans from other primates, as well as establishing essential groundwork for understanding future work linking genetic mutations with the function and development of the human brain. The expression of a sparse subset of human genes forms two opposed gradients that capture the processing hierarchy of visual cortex; these transcription gradients emerge at different points during human development and distinguish human from nonhuman primates.
Collapse
|
31
|
Turner R. Myelin and Modeling: Bootstrapping Cortical Microcircuits. Front Neural Circuits 2019; 13:34. [PMID: 31133821 PMCID: PMC6517540 DOI: 10.3389/fncir.2019.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Histological studies of myelin-stained sectioned cadaver brain and in vivo myelin-weighted magnetic resonance imaging (MRI) show that the cerebral cortex is organized into cortical areas with generally well-defined boundaries, which have consistent internal patterns of myelination. The process of myelination is largely driven by neural experience, in which the axonal passage of action potentials stimulates neighboring oligodendrocytes to perform their task. This bootstrapping process, such that the traffic of action potentials facilitates increased traffic, suggests the hypothesis that the specific pattern of myelination (myeloarchitecture) in each cortical area reveals the principal cortical microcircuits required for the function of that area. If this idea is correct, the observable sequential maturation of specific brain areas can provide evidence for models of the stages of cognitive development.
Collapse
Affiliation(s)
- Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Spinoza Centre for Neuroimaging, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Colic L, von Düring F, Denzel D, Demenescu LR, Lord AR, Martens L, Lison S, Frommer J, Vogel M, Kaufmann J, Speck O, Li M, Walter M. Rostral Anterior Cingulate Glutamine/Glutamate Disbalance in Major Depressive Disorder Depends on Symptom Severity. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:1049-1058. [PMID: 31202822 DOI: 10.1016/j.bpsc.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with major depressive disorder (MDD) show glutamatergic deficits in the ventral anterior cingulate cortex. The glutamine/glutamate (Gln/Glu) ratio was proposed to be connected to glutamatergic cycling, which is hypothesized to be dysregulated in MDD. As an indicator of regional metabolite status, this ratio might be a robust state marker sensitive to clinical heterogeneity. METHODS Thirty-two MDD patients (mean age 40.88 ± 13.66 years, 19 women) and control subjects (mean age 33.09 ± 8.24 years, 19 women) were compared for pregenual anterior cingulate cortex levels of Gln/Glu, Gln/total creatine (tCr), Glu/tCr, and gamma-aminobutyric acid/tCr as determined by high-field magnetic resonance spectroscopy. We tested if symptom severity (Hamilton Depression Rating Scale) and anhedonia (Snaith-Hamilton Pleasure Scale) influence the relation of metabolites to clinical symptoms. RESULTS MDD patients showed higher Gln/Glu. This was driven by marginally higher Gln/tCr and nonsignificantly lower Glu/tCr. Groups defined by severity moderated relationship between Gln/Glu and the Hamilton Depression Rating Scale. Moreover, severe cases differed from both control subjects and moderate cases. Groups defined by the Snaith-Hamilton Pleasure Scale also displayed differential relationship between Gln/Glu and levels of anhedonia, predominantly driven by Gln/tCr. CONCLUSIONS We elaborate previous accounts of metabolite deficits in the anterior cingulate cortex toward increased Gln/Glu. There is a moderated relationship between severity and the ratio, which suggests consideration of different mechanisms or disease state for the respective subgroups in future studies.
Collapse
Affiliation(s)
- Lejla Colic
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Felicia von Düring
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany
| | - Dominik Denzel
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany
| | | | - Anton R Lord
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louise Martens
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics Tübingen, Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Sarah Lison
- Department of Psychosomatics and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Joerg Frommer
- Department of Psychosomatics and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Mathias Vogel
- Department of Psychosomatics and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Oliver Speck
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany; German Centre for Neurodegenerative Diseases, Helmholz Association of Germany Research Centres, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany; Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics Tübingen, Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics Tübingen, Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
33
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|