1
|
Villani C, Sacchetti G, Invernizzi RW. Boosting Serotonin Synthesis Is Not Sufficient to Improve Motor Coordination of Mecp2 Heterozygous Mouse Model of Rett Syndrome. Biomolecules 2024; 14:1230. [PMID: 39456163 PMCID: PMC11506563 DOI: 10.3390/biom14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Motor deficit is a core symptom of Rett syndrome, a rare neurological disease caused in most cases by mutations of the methyl-CpG-binding protein2 (MECP2) gene. Serotonin reuptake inhibitors improve motor coordination in Mecp2 heterozygous (Het) mice and serotonin depletion prevented this effect. Here, we assess alterations in indole levels in various brain regions and whether boosting brain serotonin synthesis with the serotonin precursors tryptophan, 5-hydroxytryptophan and α-lactalbumin rescued motor coordination deficit of Mecp2 Het mice. Motor coordination was assessed in the accelerated rotarod during and after systemic administration of serotonin precursors for 2-3 weeks. Since no data are available, the effect of α-lactalbumin on tryptophan, serotonin and 5-hydroxyindoleacetic acid levels was evaluated in various brain regions in order to identify the dose of ALAC to evaluate on motor coordination. As compared to WT, Mecp2 Het mice show reduced levels of serotonin in the whole brain, hippocampus, brainstem and cerebral cortex, but not the striatum. Reduced levels of 5-hydroxyindoleacetic acid were observed in the hippocampus and brainstem. Doses of serotonin precursors increasing brain tryptophan and/or serotonin production and metabolism had no effect on motor coordination. The results indicate that boosting serotonin synthesis is not sufficient to improve motor coordination of Mecp2 Het mice.
Collapse
Affiliation(s)
| | | | - Roberto W. Invernizzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milan, Italy; (C.V.)
| |
Collapse
|
2
|
Mottolese N, Coiffard O, Ferraguto C, Manolis A, Ciani E, Pietropaolo S. Autistic-relevant behavioral phenotypes of a mouse model of cyclin-dependent kinase-like 5 deficiency disorder. Autism Res 2024; 17:1742-1759. [PMID: 39234879 DOI: 10.1002/aur.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene and characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, the etiological mechanisms underlying CDD are largely unknown and no effective therapies are available. The Cdkl5 knock-out (KO) mouse has been broadly employed in preclinical studies on CDD; Cdkl5-KO mice display neurobehavioral abnormalities recapitulating most CDD symptoms, including alterations in motor, sensory, cognitive, and social abilities. However, most available preclinical studies have been carried out on adult Cdkl5-KO mice, so little is known about the phenotypic characteristics of this model earlier during development. Furthermore, major autistic-relevant phenotypes, for example, social and communication deficits, have been poorly investigated and mostly in male mutants. Here, we assessed the autistic-relevant behavioral phenotypes of Cdkl5-KO mice during the first three post-natal weeks and in adulthood. Males and females were tested, the latter including both heterozygous and homozygous mutants. Cdkl5 mutant pups showed qualitative and quantitative alterations in ultrasonic communication, detected first at 2 weeks of age and confirmed later in adulthood. Increased levels of anxiety-like behaviors were observed in mutants at 3 weeks and in adulthood, when stereotypies, reduced social interaction and memory deficits were also observed. These behavioral effects of the mutation were evident in both sexes, being more marked and varied in homozygous than heterozygous females. These findings provide novel evidence for the autistic-relevant behavioral profile of the Cdkl5 mouse model, thus supporting its use in future preclinical studies investigating CDD pathology and autism spectrum disorders.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- CNRS, EPHE, INCIA, Univ. Bordeaux, Bordeaux, France
| | | | | | | | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | |
Collapse
|
3
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Kaye AD, Allen KE, Smith Iii VS, Tong VT, Mire VE, Nguyen H, Lee Z, Kouri M, Jean Baptiste C, Mosieri CN, Kaye AM, Varrassi G, Shekoohi S. Emerging Treatments and Therapies for Autism Spectrum Disorder: A Narrative Review. Cureus 2024; 16:e63671. [PMID: 39092332 PMCID: PMC11293483 DOI: 10.7759/cureus.63671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) has increased over the last decade. In this regard, many emerging therapies have been described as ASD therapies. Although ASD does not have a cure, there are several management options available that can help reduce symptom severity. ASD is highly variable and, therefore, standard treatment protocols and studies are challenging to perform. Many of these therapies also address comorbidities for which patients with ASD have an increased risk. These concurrent diagnoses can include psychiatric and neurological disorders, including attention deficit and hyperactivity disorder, anxiety disorders, and epilepsy, as well as gastrointestinal symptoms such as chronic constipation and diarrhea. Both the extensive list of ASD-associated disorders and adverse effects from commonly prescribed medications for patients with ASD can impact presenting symptomatology. It is important to keep these potential interactions in mind when considering additional drug treatments or complementary therapies. This review addresses current literature involving novel pharmacological treatments such as oxytocin, bumetanide, acetylcholinesterase inhibitors, and memantine. It also discusses additional therapies such as diet intervention, acupuncture, music therapy, melatonin, and the use of technology to aid education. Notably, several of these therapies require more long-term research to determine efficacy in specific ASD groups within this patient population.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kaitlyn E Allen
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Van S Smith Iii
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria T Tong
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Vivian E Mire
- School of Medicine, Louisiana State University Health New Orleans School of Medicine, New Orleans, USA
| | - Huy Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Zachary Lee
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Maria Kouri
- Anesthesia, National and Kapodistrian University of Athens, Athens, GRC
| | - Carlo Jean Baptiste
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, USA
| | | | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
5
|
Fonteneau M, Brugoux A, Jaccaz D, Donello JE, Banerjee P, Le Merrer J, Becker JA. The NMDA receptor modulator zelquistinel durably relieves behavioral deficits in three mouse models of autism spectrum disorder. Neuropharmacology 2024; 248:109889. [PMID: 38401792 DOI: 10.1016/j.neuropharm.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic β-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.
Collapse
Affiliation(s)
| | - Agathe Brugoux
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Déborah Jaccaz
- Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France; Unité Expérimentale de Physiologie Animale de l'Orfrasière, INRAE UE 0028, Nouzilly, France
| | | | | | - Julie Le Merrer
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Jérôme Aj Becker
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| |
Collapse
|
6
|
Kimi S, Maiti R, Srinivasan A, Mishra BR, Hota D. Efficacy and safety of V 1a receptor antagonists in autism spectrum disorder: A meta-analysis. Int J Dev Neurosci 2024; 84:3-13. [PMID: 37641183 DOI: 10.1002/jdn.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
This meta-analysis has evaluated the efficacy and safety of V1a receptor antagonists in ASD compared to placebo. The reviewers extracted data from four relevant clinical trials after a literature search on databases and clinical trial registries. Quality assessment was done using the risk of bias assessment tool, and the random-effects model was used to estimate effect size. Subgroup analysis, meta-regression and sensitivity analysis were done. PRISMA guidelines were followed in the selection, analysis and reporting of findings. V1a receptor antagonists did not reduce Vineland II Adaptive behaviour composite score significantly (SMD: 0.14; 95% CI: -0.06-0.35; p = 0.16; PI: -0.44-0.73), communication domain subscale score and socialization domain subscale score. The change in daily living skills domain subscale score was significant and favourable for V1a receptor antagonists (SMD: 0.15; 95% CI: 0.03-0.26; p = 0.01). The subgroup analysis revealed a significant improvement in Vineland II Adaptive behaviour composite score with doses <10 mg (SMD: 0.45; 95% CI: 0.11-0.78; p = 0.009). Meta-regression does not show a significant association between SMD of ASD symptom score reduction with the duration and dose of V1a receptor antagonist therapy. Treatment-emergent adverse effects were not serious and dose dependent. Low doses (<10 mg) of V1a receptor antagonist may be effective in reducing the core symptoms of ASD compared to placebo; however, future active-controlled clinical trials are necessary to generate conclusive evidence.
Collapse
Affiliation(s)
- Sneha Kimi
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Anand Srinivasan
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Biswa Ranjan Mishra
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Debasish Hota
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
7
|
Morozova YV, Smirnov VN, Makarov IV, Emelina DA. The Use of Umbilical Cord Blood Nucleated Cells in the Treatment of Regressive Autism: A Case Report. CONSORTIUM PSYCHIATRICUM 2023; 4:39-47. [PMID: 38618635 PMCID: PMC11009972 DOI: 10.17816/cp9300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/07/2023] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Interest in the issue of childhood autism has surged in the recent decades. At the same time, despite the significant progress achieved in understanding the etiological and pathogenetic aspects of the condition, effective ways to treat it have continued to elude us. Stem cell therapy appears to hold great promise in the treatment and rehabilitation of patients with both neurological diseases (cerebral palsy, hydrocephalus) and mental disorders (autism, schizophrenia). METHODS This article presents a case report describing the use of nucleated cord blood cells in a patient with regressive autism and resistance to standard therapies. The child's condition was assessed before treatment and 6 and 12 months after. RESULTS Clinical observation, psychometric, and instrumental diagnostic methods led to a significant improvement in the child's condition in the form of perception development, reduction of somatosensory disorders, normalization of emotional status, and a development of social and communication skills. CONCLUSION We assume that the result obtained may be associated with the normalization of the immunological status of our patient thanks to the cord blood cells therapy and consider it necessary to conduct further studies into the effectiveness of the method, taking the pathogenic mechanisms of autism into account.
Collapse
Affiliation(s)
| | | | - Igor V. Makarov
- V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
- North-Western State Medical University named after I.I. Mechnikov
| | - Darya A. Emelina
- V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology
| |
Collapse
|
8
|
Lei W, Cheng Y, Gao J, Liu X, Shao L, Kong Q, Zheng N, Ling Z, Hu W. Akkermansia muciniphila in neuropsychiatric disorders: friend or foe? Front Cell Infect Microbiol 2023; 13:1224155. [PMID: 37492530 PMCID: PMC10363720 DOI: 10.3389/fcimb.2023.1224155] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.
Collapse
Affiliation(s)
- Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Shandong First Medical University, Jinan, Shandong, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingming Kong
- School of Biological Engineering, Hangzhou Medical College, Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zongxin Ling
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, China
| |
Collapse
|
9
|
Amadori S, Barbuti M, Perugi G. Pharmacotherapy for bipolar disorder in adults with high-functioning autism. Expert Opin Pharmacother 2022; 23:1753-1760. [PMID: 36263803 DOI: 10.1080/14656566.2022.2138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The association between high-functioning autism (HFA) and bipolar disorder (BD) in adult subjects has been confirmed by a growing number of studies. However, identifying and treating BD in this population is a clinical challenge and requires careful assessment and adequate knowledge of both disorders. AREAS COVERED This review aims to provide a clinical presentation of mood episodes in HFA individuals, and an update on the pharmacotherapy of BD in these individuals, sharing with the reader expert opinion on the current state of the art and future perspectives. EXPERT OPINION BD has an atypical clinical presentation in HFA subjects with the possibility of diagnostic and therapeutic mistakes. Despite the absence of controlled studies, the available evidence indicates mood stabilizers, especially lithium, as the first treatment option. HFA subjects are particularly vulnerable to pharmacological side effects, such as extrapyramidal and catatonic symptoms with antipsychotics, or activation syndrome with antidepressants. Accordingly, initial titration of these drugs should be slow and their use should be limited in time. Among antipsychotics, dopamine receptor antagonists with combined serotonergic activity are preferable. Further research is needed to improve the diagnostic process and to delineate the effectiveness of different drugs for BD in HFA subjects.
Collapse
Affiliation(s)
- Salvatore Amadori
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa (PI), Italy
| | - Margherita Barbuti
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa (PI), Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa (PI), Italy
| |
Collapse
|
10
|
Álvarez C. Alteraciones del sueño en trastornos del neurodesarrollo. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
β-arrestin2 mediates the hippocampal dopaminergic system in autistic mouse through the ERK signaling pathway. Behav Brain Res 2022; 428:113888. [DOI: 10.1016/j.bbr.2022.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
12
|
Zhou Y, Liu Y, Peng Q, Li F, Chen F. Deletion of β-arrestin2 alleviates autistic-like behavior caused by dopaminergic system abnormality through an apoptosis pathway in mice. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav Immun 2022; 101:318-332. [PMID: 35065198 DOI: 10.1016/j.bbi.2022.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1β antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1β, RANTES, MCP-1, and fetal brain IL-1β, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.
Collapse
|
14
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Zammarchi G, Conversano C. Application of Eye Tracking Technology in Medicine: A Bibliometric Analysis. Vision (Basel) 2021; 5:56. [PMID: 34842855 PMCID: PMC8628933 DOI: 10.3390/vision5040056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Eye tracking provides a quantitative measure of eye movements during different activities. We report the results from a bibliometric analysis to investigate trends in eye tracking research applied to the study of different medical conditions. We conducted a search on the Web of Science Core Collection (WoS) database and analyzed the dataset of 2456 retrieved articles using VOSviewer and the Bibliometrix R package. The most represented area was psychiatry (503, 20.5%) followed by neuroscience (465, 18.9%) and psychology developmental (337, 13.7%). The annual scientific production growth was 11.14% and showed exponential growth with three main peaks in 2011, 2015 and 2017. Extensive collaboration networks were identified between the three countries with the highest scientific production, the USA (35.3%), the UK (9.5%) and Germany (7.3%). Based on term co-occurrence maps and analyses of sources of articles, we identified autism spectrum disorders as the most investigated condition and conducted specific analyses on 638 articles related to this topic which showed an annual scientific production growth of 16.52%. The majority of studies focused on autism used eye tracking to investigate gaze patterns with regards to stimuli related to social interaction. Our analysis highlights the widespread and increasing use of eye tracking in the study of different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Gianpaolo Zammarchi
- Department of Economics and Business Sciences, University of Cagliari, 09123 Cagliari, Italy;
| | | |
Collapse
|
16
|
Phytochemicals and Their Possible Mechanisms in Managing COVID-19 and Diabetes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the writing of this manuscript, we searched information published from 2000 to 2021, through PubMed, Web of Science, Springer, and Science Direct. Focusing on the effects related to respiratory diseases, in addition to possible direct effects towards SARS-CoV-2, coupled with diabetes. Diabetes is a metabolic disease that is characterized by affecting the function of glucose, in addition to insulin insufficiency. This leads to patients with such pathologies as being at greater risk for developing multiple complications and increase exposure to viruses infections. This is the case of severe acute respiratory disease coronavirus 19 (SARS-CoV-2), which gave rise to coronavirus disease 2019 (COVID-19), declared an international public health emergency in March of 2020 Currently, several strategies have been applied in order to prevent the majority of the consequences of COVID-19, especially in patients with chronic diseases such as diabetes. Among the possible treatment options, we found that the use of phytochemical compounds has exhibited beneficial effects for the prevention and inhibition of infection by SARS-CoV-2, as well as for the improvement of the manifestations of diabetes.
Collapse
|
17
|
Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021; 157:105427. [PMID: 34153466 PMCID: PMC8475276 DOI: 10.1016/j.nbd.2021.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023] Open
Abstract
CGG expansions between 55 and 200 in the 5'-untranslated region of the fragile-X mental retardation gene (FMR1) increase the risk of developing the late-onset debilitating neuromuscular disease Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). While the science behind this mutation, as a paradigm for RNA-mediated nucleotide triplet repeat expansion diseases, has progressed rapidly, no treatment has proven effective at delaying the onset or decreasing morbidity, especially at later stages of the disease. Here, we demonstrated the beneficial effect of the phytochemical sulforaphane (SFN), exerted through NRF2-dependent and independent manner, on pathways relevant to brain function, bioenergetics, unfolded protein response, proteosome, antioxidant defenses, and iron metabolism in fibroblasts from FXTAS-affected subjects at all disease stages. This study paves the way for future clinical studies with SFN in the treatment of FXTAS, substantiated by the established use of this agent in clinical trials of diseases with NRF2 dysregulation and in which age is the leading risk factor.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Amanda Flores
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616;,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yasmeen Mansuri
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Randi J. Hagerman
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA;,Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States of America; Medical Investigations of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis, CA 95817, USA.
| |
Collapse
|
18
|
Mandic-Maravic V, Grujicic R, Milutinovic L, Munjiza-Jovanovic A, Pejovic-Milovancevic M. Dopamine in Autism Spectrum Disorders-Focus on D2/D3 Partial Agonists and Their Possible Use in Treatment. Front Psychiatry 2021; 12:787097. [PMID: 35185637 PMCID: PMC8850940 DOI: 10.3389/fpsyt.2021.787097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of disorders characterized by impairment in social communication and repetitive and stereotyped behaviors. ASD etiology is very complex, including the effect of both genetic and environmental factors. So far, no specific treatment for the core symptoms of ASD has been developed, although attempts have been made for the treatment of repetitive behavior. The pharmacological treatment is aimed at treating non-specific symptoms such as irritability and aggression. Recent studies pointed out to the possible role of altered dopamine signaling in mesocorticolimbic and nigrostriatal circuits in ASD. In addition, several research pointed out to the association of dopamine receptors polymorphism and ASD, specifically repetitive and stereotyped behavior. In this paper, we will provide a review of the studies regarding dopamine signaling in ASD, existing data on the effects of D2/D3 partial agonists in ASD, possible implications regarding their individual receptor profiles, and future perspectives of their possible use in ASD treatment.
Collapse
Affiliation(s)
- Vanja Mandic-Maravic
- Institute of Mental Health, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | - Ana Munjiza-Jovanovic
- Institute of Mental Health, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
19
|
Smirnov V, Neznanov N, Morozova Y, Makarov I, Emelina D, Gasanov R, Bazanovich S. Allogeneic umbilical cord blood cell therapy for children with autism: safety and efficacy of the method. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:31-37. [DOI: 10.17116/jnevro202112111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|