1
|
Aung HPP, Issarankura Na Ayudhaya T, Chaichoun K, Taowan J, Saechin A, Buamas S, Buddhirongawatr R. PCR testing of conjunctival swabs to detect feline leukaemia virus in domestic cats in Thailand. Vet Q 2025; 45:1-9. [PMID: 40255021 DOI: 10.1080/01652176.2025.2488025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/24/2025] [Accepted: 03/23/2025] [Indexed: 04/22/2025] Open
Abstract
This study aimed to classify the Feline leukaemia virus (FeLV) infection outcomes in domestic cats in Thailand and determine the accuracy of conjunctival swabs for FeLV proviral DNA detection by comparing results to PCR testing of blood samples. Whole blood and conjunctival swabs were collected from 126 cats with and without clinical signs. Blood specimens were evaluated for p27 FeLV antigen using the SNAP Feline Immunodeficiency Virus (FIV)/FeLV Combo Test, IDEXX Laboratories. The 3'-LTR region of the proviral FeLV was amplified from both blood and conjunctival samples. The prevalence rates of progressive and regressive FeLV infections in this study were 14.3% (95% CI: 8.69-21.63) and 36.5% (95% CI: 28.12-45.55), respectively. Cats older than 12 months of age had a higher probability of being regressively infected than cats younger than 1 year (p-value = 0.039, OR =0.294, 95% CI: 0.092-0.942). Conjunctival swabs used for detecting FeLV proviral DNA demonstrated a sensitivity of 95.3% (95% CI: 86.91-99.02) and a specificity of 100% (95% CI: 94.22-100.00) compared to conventional blood samples. The observed kappa value of 0.956 indicates that conjunctival swabs are reliable and can be used as an alternative to blood venipuncture.
Collapse
Affiliation(s)
- Hsu Po Po Aung
- Faculty of Graduate Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
- Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Tawewan Issarankura Na Ayudhaya
- Faculty of Veterinary Science, Department of Pre-clinic and Applied Animal Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Kridsada Chaichoun
- Faculty of Veterinary Science, Department of Pre-clinic and Applied Animal Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Jarupha Taowan
- Faculty of Veterinary Science, The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Aeknarin Saechin
- Faculty of Veterinary Science, The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Supakit Buamas
- Faculty of Veterinary Science, Prasu-arthorn Animal Hospital, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| | - Ruangrat Buddhirongawatr
- Faculty of Veterinary Science, Department of Clinical Science and Public Health, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Bruno PS, Biggers P, Nuru N, Versaci N, Chirila MI, Darie CC, Neagu AN. Small Biological Fighters Against Cancer: Viruses, Bacteria, Archaea, Fungi, Protozoa, and Microalgae. Biomedicines 2025; 13:665. [PMID: 40149641 PMCID: PMC11940145 DOI: 10.3390/biomedicines13030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the progress made in oncological theranostics, cancer remains a global health problem and a leading cause of death worldwide. Multidrug and radiation therapy resistance is an important challenge in cancer treatment. To overcome this great concern in clinical practice, conventional therapies are more and more used in combination with modern approaches to improve the quality of patients' lives. In this review, we emphasize how small biological entities, such as viruses, bacteria, archaea, fungi, protozoans, and microalgae, as well as their related structural compounds and toxins/metabolites/bioactive molecules, can prevent and suppress cancer or regulate malignant initiation, progression, metastasis, and responses to different therapies. All these small biological fighters are free-living or parasitic in nature and, furthermore, viruses, bacteria, archaea, fungi, and protozoans are components of human and animal microbiomes. Recently, polymorphic microbiomes have been recognized as a new emerging hallmark of cancer. Fortunately, there is no limit to the development of novel approaches in cancer biomedicine. Thus, viral vector-based cancer therapies based on genetically engineered viruses, bacteriotherapy, mycotherapy based on anti-cancer fungal bioactive compounds, use of protozoan parasite-derived proteins, nanoarchaeosomes, and microalgae-based microrobots have been more and more used in oncology, promoting biomimetic approaches and biology-inspired strategies to maximize cancer diagnostic and therapy efficiency, leading to an improved patients' quality of life.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Miruna Ioana Chirila
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
| |
Collapse
|
3
|
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Rovira-Rigau M, Cardona M, Ferrer L, Clotet B, Carrillo J, Aguilar-Gurrieri C, Blanco J. Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses 2024; 16:987. [PMID: 38932278 PMCID: PMC11209239 DOI: 10.3390/v16060987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred C57BL
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Leukemia Virus, Feline/immunology
- Leukemia Virus, Feline/genetics
- Gene Products, gag/immunology
- Gene Products, gag/genetics
- Female
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Humans
- Cats
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Raquel Ortiz
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Barajas
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Anna Pons-Grífols
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, 08916 Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
4
|
Canto-Valdés MC, Bolio González ME, Acevedo-Jiménez GE, Ramírez Álvarez H. What role do endogenous retroviruses play in domestic cats infected with feline leukaemia virus? N Z Vet J 2023. [DOI: https:/doi.org/10.1080/00480169.2022.2131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- MC Canto-Valdés
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - ME Bolio González
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - GE Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| | - H Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| |
Collapse
|
5
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2023. [DOI: https:/doi.org/10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2022; 168:2. [PMID: 36534205 DOI: 10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are globally distributed retroviruses that infect domestic cats and cause various syndromes that can lead to death. The aim of this study was to detect and genotype feline retroviruses in Mexican domestic cats. We used PCR assays to identify proviral DNA and viral RNA in 50 domestic cats with different clinical signs and hematological alterations. Endogenous FeLV (enFeLV) was identified in the genomic DNA of all cats in the study, and we detected transcripts of the LTR region of enFeLV in 48 individuals. Exogenous FeLV (exFeLV) was found in 13 cats. Furthermore, we detected FIV proviral DNA in 10 cats. The enFeLV sequences were shown to be the most variable, while the exFeLV sequences were highly conserved and related to previously reported subgroup A sequences. Sequencing of the FIV gag gene revealed the presence of subtype B in the infected cats.
Collapse
Affiliation(s)
- Gabriel Eduardo Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Rosa Elena Sarmiento-Silva
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rogelio Alejandro Alonso-Morales
- Department of Genetics and Biostatistics, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rodolfo Córdova-Ponce
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Hugo Ramírez-Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico.
| |
Collapse
|
7
|
Canto-Valdés MC, Bolio González ME, Acevedo Jiménez GE, Ramírez Álvarez H. What role do endogenous retroviruses play in domestic cats infected with feline leukaemia virus? N Z Vet J 2022; 71:1-7. [PMID: 36178295 DOI: 10.1080/00480169.2022.2131648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AbstractFeline leukaemia virus (FeLV) is a retrovirus that infects domestic and wild cats around the world. FeLV infection is associated with the development of neoplasms, bone marrow disorders and immunosuppression. Viral subgroups arise from mutations in the FeLV genome or from recombination of FeLV with ancestral endogenous retroviruses in the cat genome. The retroviral endogenisation process has allowed generation of a diversity of endogenous viruses, both functional and defective. These elements may be part of the normal functioning of the feline genome and may also interact with FeLV to form recombinant FeLV subgroups, enhance pathogenicity of viral subgroups, or inhibit and/or regulate other retroviral infections. Recombination of the env gene occurs most frequently and appears to be the most significant in terms of both the quantity and diversification of pathogenic effects in the viral population, as well as affecting cell tropism and types of disease that occur in infected cats. This review focuses on available information regarding genetic diversity, pathogenesis and diagnosis of FeLV as a result of the interaction between endogenous and exogenous viruses.
Collapse
Affiliation(s)
- M C Canto-Valdés
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Yucatán, Mexico
| | - M E Bolio González
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Yucatán, Mexico
| | - G E Acevedo Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, State of Mexico, Mexico
| | - H Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, State of Mexico, Mexico
| |
Collapse
|
8
|
Rungsuriyawiboon O, Jarudecha T, Hannongbua S, Choowongkomon K, Boonkaewwan C, Rattanasrisomporn J. Risk factors and clinical and laboratory findings associated with feline immunodeficiency virus and feline leukemia virus infections in Bangkok, Thailand. Vet World 2022; 15:1601-1609. [PMID: 36185533 PMCID: PMC9394130 DOI: 10.14202/vetworld.2022.1601-1609] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses associated with chronic and neoplastic diseases in domestic and non-domestic cats. There has been increasing interest in the clinical importance of feline retroviruses in Thailand and the identification of associated risk factors in domestic cats. To prevent the spread of retroviral diseases and improve the management of retrovirus-infected cats, risk factors and associated clinical laboratory data must be clearly understood. This study aimed to identify the influence of household, lifestyle, health status, sterilization, clinical presentations, and laboratory findings on FIV- and FeLV-infected cats in Bangkok, Thailand.
Materials and Methods: A total of 480 cats were evaluated for FeLV p27 antigen and FIV antibodies using Witness FeLV-FIV Rapid Test and SNAP FIV/FeLV Combo Test at a veterinary hospital service.
Results: Of the 480 cats tested, 113 were positivefor virus infection, including 60 for FeLV (12.5%), 40 for FIV (8.3%), and 13 for both FeLV and FIV (2.7%). The findings revealed that the risk factors for cats infected with FeLV, FIV, or both FeLV and FIV were significantly different compared with those for non-infected cats (p < 0.05). Multivariate analysis showed that multi-cat ownership is a risk factor for the high prevalence of feline retrovirus infection, as multi-cat households exhibited a higher prevalence of infection than single-cat households. Anemic and sick cats were also at a greater risk of testing positive for specific retrovirus infections. FeLV-infected cats had a higher risk of anemia and low erythrocyte and thrombocyte counts (p ≤ 0.0001), whereas FIV-infected cats were more likely to have anemia and leukocytopenia than controls.
Conclusion: Knowledge of the risk factors for retroviral diseases and associated clinical and laboratory findings can be used to develop strategies to reduce FIV and FeLV infections in cats.
Collapse
Affiliation(s)
- Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Thitichai Jarudecha
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Chaiwat Boonkaewwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Sarver AL, Makielski KM, DePauw TA, Schulte AJ, Modiano JF. Increased risk of cancer in dogs and humans: a consequence of recent extension of lifespan beyond evolutionarily-determined limitations? AGING AND CANCER 2022; 3:3-19. [PMID: 35993010 PMCID: PMC9387675 DOI: 10.1002/aac2.12046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is among the most common causes of death for dogs (and cats) and humans in the developed world, even though it is uncommon in wildlife and other domestic animals. We provide a rationale for this observation based on recent advances in our understanding of the evolutionary basis of cancer. Over the course of evolutionary time, species have acquired and fine-tuned adaptive cancer protective mechanisms that are intrinsically related to their energy demands, reproductive strategies, and expected lifespan. These cancer protective mechanisms are general across species and/or specific to each species and their niche, and they do not seem to be limited in diversity. The evolutionarily acquired cancer-free longevity that defines a species' life history can explain why the relative cancer risk, rate, and incidence are largely similar across most species in the animal kingdom despite differences in body size and life expectancy. The molecular, cellular, and metabolic events that promote malignant transformation and cancerous growth can overcome these adaptive, species-specific protective mechanisms in a small proportion of individuals, while independently, some individuals in the population might achieve exceptional longevity. In dogs and humans, recent dramatic alterations in healthcare and social structures have allowed increasing numbers of individuals in both species to far exceed their species-adapted longevities (by 2-4 times) without allowing the time necessary for compensatory natural selection. In other words, the cancer protective mechanisms that restrain risk at comparable levels to other species for their adapted lifespan are incapable of providing cancer protection over this recent, drastic and widespread increase in longevity.
Collapse
Affiliation(s)
- Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Institute for Health Informatics, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN
| | - Kelly M. Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Taylor A DePauw
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Ashley J. Schulte
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN,Center for Immunology, University of Minnesota, Minneapolis, MN,Stem Cell Institute, University of Minnesota, Minneapolis, MN,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Sacristán I, Acuña F, Aguilar E, García S, José López M, Cabello J, Hidalgo‐Hermoso E, Sanderson J, Terio KA, Barrs V, Beatty J, Johnson WE, Millán J, Poulin E, Napolitano C. Cross-species transmission of retroviruses among domestic and wild felids in human-occupied landscapes in Chile. Evol Appl 2021; 14:1070-1082. [PMID: 33897821 PMCID: PMC8061269 DOI: 10.1111/eva.13181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023] Open
Abstract
Human transformation of natural habitats facilitates pathogen transmission between domestic and wild species. The guigna (Leopardus guigna), a small felid found in Chile, has experienced habitat loss and an increased probability of contact with domestic cats. Here, we describe the interspecific transmission of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) between domestic cats and guignas and assess its correlation with human landscape perturbation. Blood and tissue samples from 102 free-ranging guignas and 262 domestic cats were collected and analyzed by PCR and sequencing. Guigna and domestic cat FeLV and FIV prevalence were very similar. Phylogenetic analysis showed guigna FeLV and FIV sequences are positioned within worldwide domestic cat virus clades with high nucleotide similarity. Guigna FeLV infection was significantly associated with fragmented landscapes with resident domestic cats. There was little evidence of clinical signs of disease in guignas. Our results contribute to the understanding of the implications of landscape perturbation and emerging diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vanessa Barrs
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Julia Beatty
- University of SydneySydneyNew South WalesAustralia
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Warren E. Johnson
- Smithsonian Conservation Biology InstituteNational Zoological ParkWashintonDistrict of ColumbiaUSA
- The Walter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Present address:
The Walter Reed Biosystematics UnitSmithsonian InstitutionSuitlandMarylandUSA
| | - Javier Millán
- Universidad Andres BelloSantiagoChile
- Instituto Agroalimentario de Aragón‐IA2University of Zaragoza‐CITAZaragozaSpain
- Fundación ARAIDZaragozaSpain
| | - Elie Poulin
- Universidad de ChileSantiagoChile
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
| | - Constanza Napolitano
- Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
- Departamento de Ciencias Biológicas y BiodiversidadUniversidad de Los LagosOsornoChile
| |
Collapse
|
11
|
Parr YA, Beall MJ, Levy JK, McDonald M, Hamman NT, Willett BJ, Hosie MJ. Measuring the Humoral Immune Response in Cats Exposed to Feline Leukaemia Virus. Viruses 2021; 13:v13030428. [PMID: 33800090 PMCID: PMC7998633 DOI: 10.3390/v13030428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023] Open
Abstract
Retroviruses belong to an important and diverse family of RNA viruses capable of causing neoplastic disease in their hosts. Feline leukaemia virus (FeLV) is a gammaretrovirus that infects domestic and wild cats, causing immunodeficiency, cytopenia and neoplasia in progressively infected cats. The outcome of FeLV infection is influenced by the host immune response; progressively infected cats demonstrate weaker immune responses compared to regressively infected cats. In this study, humoral immune responses were examined in 180 samples collected from 123 domestic cats that had been naturally exposed to FeLV, using a novel ELISA to measure antibodies recognizing the FeLV surface unit (SU) glycoprotein in plasma samples. A correlation was demonstrated between the strength of the humoral immune response to the SU protein and the outcome of exposure. Cats with regressive infection demonstrated higher antibody responses to the SU protein compared to cats belonging to other outcome groups, and samples from cats with regressive infection contained virus neutralising antibodies. These results demonstrate that an ELISA that assesses the humoral response to FeLV SU complements the use of viral diagnostic tests to define the outcome of exposure to FeLV. Together these tests could allow the rapid identification of regressively infected cats that are unlikely to develop FeLV-related disease.
Collapse
Affiliation(s)
- Yasmin A. Parr
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
- Correspondence: ; Tel.: +44-0-141-330-3444
| | | | - Julie K. Levy
- Maddie’s Shelter Medicine Program, University of Florida, Gainesville, FL 32608, USA;
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Glasgow, Scotland G61 1QH, UK;
| | | | - Brian J. Willett
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK; (B.J.W.); (M.J.H.)
| |
Collapse
|
12
|
FELINE IMMUNODEFICIENCY VIRUS AND FELINE LEUKEMIA VIRUS INFECTION IN FREE-RANGING GUIGNAS (LEOPARDUS GUIGNA) AND SYMPATRIC DOMESTIC CATS IN HUMAN PERTURBED LANDSCAPES ON CHILOÉ ISLAND, CHILE. J Wildl Dis 2015; 51:199-208. [DOI: 10.7589/2014-04-114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|