1
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
2
|
Tan YS, Wang L, Wang YY, He QE, Liu ZH, Zhu Z, Song K, Li BZ, Yuan YJ. Protein acetylation regulates xylose metabolism during adaptation of Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:241. [PMID: 34920742 PMCID: PMC8684234 DOI: 10.1186/s13068-021-02090-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND As the second most abundant polysaccharide in nature, hemicellulose can be degraded to xylose as the feedstock for bioconversion to fuels and chemicals. To enhance xylose conversion, the engineered Saccharomyces cerevisiae with xylose metabolic pathway is usually adapted with xylose as the carbon source in the laboratory. However, the mechanism under the adaptation phenomena of the engineered strain is still unclear. RESULTS In this study, xylose-utilizing S. cerevisiae was constructed and used for the adaptation study. It was found that xylose consumption rate increased 1.24-fold in the second incubation of the yYST12 strain in synthetic complete-xylose medium compared with the first incubation. The study figured out that it was observed at the single-cell level that the stagnation time for xylose utilization was reduced after adaptation with xylose medium in the microfluidic device. Such transient memory of xylose metabolism after adaptation with xylose medium, named "xylose consumption memory", was observed in the strains with both xylose isomerase pathway and xylose reductase and xylitol dehydrogenase pathways. In further, the proteomic acetylation of the strains before and after adaptation was investigated, and it was revealed that H4K5 was one of the most differential acetylation sites related to xylose consumption memory of engineered S. cerevisiae. We tested 8 genes encoding acetylase or deacetylase, and it was found that the knockout of the GCN5 and HPA2 encoding acetylases enhanced the xylose consumption memory. CONCLUSIONS The behavior of xylose consumption memory in engineered S. cerevisiae can be successfully induced with xylose in the adaptation. H4K5Ac and two genes of GCN5 and HPA2 are related to xylose consumption memory of engineered S. cerevisiae during adaptation. This study provides valuable insights into the xylose adaptation of engineered S. cerevisiae.
Collapse
Affiliation(s)
- Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Ying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Qi-En He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096 People’s Republic of China
| | - Kai Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
3
|
Brandt BA, García-Aparicio MDP, Görgens JF, van Zyl WH. Rational engineering of Saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:173. [PMID: 34454598 PMCID: PMC8403374 DOI: 10.1186/s13068-021-02021-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The fermentation of lignocellulose hydrolysates to ethanol requires robust xylose-capable Saccharomyces cerevisiae strains able to operate in the presence of microbial inhibitory stresses. This study aimed at developing industrial S. cerevisiae strains with enhanced tolerance towards pretreatment-derived microbial inhibitors, by identifying novel gene combinations that confer resistance to multiple inhibitors (thus cumulative inhibitor resistance phenotype) with minimum impact on the xylose fermentation ability. The strategy consisted of multiple sequential delta-integrations of double-gene cassettes containing one gene conferring broad inhibitor tolerance (ARI1, PAD1 or TAL1) coupled with an inhibitor-specific gene (ADH6, FDH1 or ICT1). The performances of the transformants were compared with the parental strain in terms of biomass growth, ethanol yields and productivity, as well as detoxification capacities in a synthetic inhibitor cocktail, sugarcane bagasse hydrolysate as well as hardwood spent sulphite liquor. RESULTS The first and second round of delta-integrated transformants exhibited a trade-off between biomass and ethanol yield. Transformants showed increased inhibitor resistance phenotypes relative to parental controls specifically in fermentations with concentrated spent sulphite liquors at 40% and 80% v/v concentrations in 2% SC media. Unexpectedly, the xylose fermentation capacity of the transformants was reduced compared to the parental control, but certain combinations of genes had a minor impact (e.g. TAL1 + FDH1). The TAL1 + ICT1 combination negatively impacted on both biomass growth and ethanol yield, which could be linked to the ICT1 protein increasing transformant susceptibility to weak acids and temperature due to cell membrane changes. CONCLUSIONS The integration of the selected genes was proven to increase tolerance to pretreatment inhibitors in synthetic or industrial hydrolysates, but they were limited to the fermentation of glucose. However, some gene combination sequences had a reduced impact on xylose conversion.
Collapse
Affiliation(s)
- Bianca A Brandt
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Maria D P García-Aparicio
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Abstract
Paper and board show many advantages as packaging materials, but the current technologies employed to obtain adequate barrier properties for food packaging use synthetic polymers coating and lamination with plastic or aluminium foils—treatments which have a negative impact on packaging sustainability, poor recyclability and lack of biodegradability. Recently, biopolymers have attracted increased attention as paper coatings, which can provide new combinations in composite formulas to meet the requirements of food packaging. The number of studies on biopolymers for developing barrier properties of packaging materials is increasing, but only a few of them are addressed to food packaging paper. Polysaccharides are viewed as the main candidates to substitute oil-based polymers in food paper coating, due to their film forming ability, good affinity for paper substrate, appropriate barrier to gases and aroma, and positive effect on mechanical strength. Additionally, these biopolymers are biodegradable, non-toxic and act as a matrix for incorporation additives with specific functionalities for coated paper (i.e., active-antimicrobial properties). This paper presents an overview on the availability and application of polysaccharides from vegetal and marine biomass in coatings for foods packaging paper. The extraction methods, chemical modification and combination routes of these biopolymers in coatings for paper packaging are discussed.
Collapse
|
5
|
Jiang H, Xu W, Ding Y, Chen Q. Quantitative analysis of yeast fermentation process using Raman spectroscopy: Comparison of CARS and VCPA for variable selection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117781. [PMID: 31740120 DOI: 10.1016/j.saa.2019.117781] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Yeast is one of the most widely used microbial species in the field of microbiology, and it is crucial that rapid and accurate monitoring of its process. Therefore, this study presents a method using Raman spectroscopy for quantitative analysis of yeast fermentation process. First, a ProSP-Micro2000K Raman measuring system used to obtain the Raman spectra of eight batches of yeast samples during fermentation, and the spectra obtained were pretreated using Savitzky-Golay (SG) smoothing filter and standard normal variate (SNV). Then, two variable selection methods, which were competitive adaptive reweighted sampling (CARS) and variable combination population analysis (VCPA), were compared to search the preprocessed Raman spectroscopy characteristic wavenumber. Finally, support vector machine (SVM) was employed to construct a quantitative monitoring model of yeast fermentation process based on variables from the selected characteristic wavenumbers. The results revealed that the VCPA-SVM model showed the best prediction result with 14 selected characteristic wavelength variables. The coefficient of determination (RP2) of the optimal model was 0.979, while the root mean square error of prediction (RMSEP) was 0.108 in the validation set. The overall results demonstrate that the Raman spectroscopy integrated with chemometric approaches could be utilized as a rapid method to monitor the process of yeast cultivations.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Weidong Xu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuhan Ding
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Cedras G, Kroukamp H, Van Zyl WH, Den Haan R. The
in vivo
detection and measurement of the unfolded protein response in recombinant cellulase producing
Saccharomyces cerevisiae
strains. Biotechnol Appl Biochem 2020; 67:82-94. [DOI: 10.1002/bab.1819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Gillian Cedras
- Department of BiotechnologyUniversity of the Western Cape Bellville South Africa
| | - Heinrich Kroukamp
- Department of Molecular SciencesMacquarie University North Ryde NSW Australia
| | | | - Riaan Den Haan
- Department of BiotechnologyUniversity of the Western Cape Bellville South Africa
| |
Collapse
|
7
|
Molecular simulation of PcCel45A protein expressed from Aspergillus nidulans to understand its structure, dynamics, and thermostability. J Mol Model 2019; 25:317. [PMID: 31598788 DOI: 10.1007/s00894-019-4175-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/19/2019] [Indexed: 10/25/2022]
Abstract
PACS and mathematical subject classification numbers as needed. Molecular dynamic simulation is a very usable tool to understand various factors, including structure temperature dependence, dynamics, and stability for protein structure. The three main components, namely endoglucanase, exoglucanase, and β-glucosidase, effectively convert lignocellulosic biomass into fermentable sugar. Cellulose is the major component of plant cell walls and is the most abundant organic compound on the earth. Somewhat organisms can use cellulose as a food source, possessing cellulases (cellobiohydrolases and endoglucanases) that can catalyze the hydrolysis of the β-(1,4) glycosidic bonds. In this work, we investigated conformational and structural properties of PcCel45A protein by changing at temperatures with 300 K, 333 K, and 352 K. We found that the ASN92 residue was the major contributor to the stability of structure; some other residues correlated significantly with thermal stability. We also compared the theoretical results of the current study with the experimental ones published in previous studies.
Collapse
|
8
|
Myers KS, Riley NM, MacGilvray ME, Sato TK, McGee M, Heilberger J, Coon JJ, Gasch AP. Rewired cellular signaling coordinates sugar and hypoxic responses for anaerobic xylose fermentation in yeast. PLoS Genet 2019; 15:e1008037. [PMID: 30856163 PMCID: PMC6428351 DOI: 10.1371/journal.pgen.1008037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Microbes can be metabolically engineered to produce biofuels and biochemicals, but rerouting metabolic flux toward products is a major hurdle without a systems-level understanding of how cellular flux is controlled. To understand flux rerouting, we investigated a panel of Saccharomyces cerevisiae strains with progressive improvements in anaerobic fermentation of xylose, a sugar abundant in sustainable plant biomass used for biofuel production. We combined comparative transcriptomics, proteomics, and phosphoproteomics with network analysis to understand the physiology of improved anaerobic xylose fermentation. Our results show that upstream regulatory changes produce a suite of physiological effects that collectively impact the phenotype. Evolved strains show an unusual co-activation of Protein Kinase A (PKA) and Snf1, thus combining responses seen during feast on glucose and famine on non-preferred sugars. Surprisingly, these regulatory changes were required to mount the hypoxic response when cells were grown on xylose, revealing a previously unknown connection between sugar source and anaerobic response. Network analysis identified several downstream transcription factors that play a significant, but on their own minor, role in anaerobic xylose fermentation, consistent with the combinatorial effects of small-impact changes. We also discovered that different routes of PKA activation produce distinct phenotypes: deletion of the RAS/PKA inhibitor IRA2 promotes xylose growth and metabolism, whereas deletion of PKA inhibitor BCY1 decouples growth from metabolism to enable robust fermentation without division. Comparing phosphoproteomic changes across ira2Δ and bcy1Δ strains implicated regulatory changes linked to xylose-dependent growth versus metabolism. Together, our results present a picture of the metabolic logic behind anaerobic xylose flux and suggest that widespread cellular remodeling, rather than individual metabolic changes, is an important goal for metabolic engineering.
Collapse
Affiliation(s)
- Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Trey K. Sato
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Mick McGee
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Justin Heilberger
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
9
|
Xia C, Li Z, Xu Y, Yang P, Gao L, Yan Q, Li S, Wang Y, Qu Y, Song X. Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production. Appl Microbiol Biotechnol 2019; 103:2675-2687. [DOI: 10.1007/s00253-018-09612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/18/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
|
10
|
Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Kuglarz M, Alvarado-Morales M, Dąbkowska K, Angelidaki I. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. BIORESOURCE TECHNOLOGY 2018; 265:191-199. [PMID: 29902651 DOI: 10.1016/j.biortech.2018.05.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw.
Collapse
Affiliation(s)
- Mariusz Kuglarz
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, Bielsko-Biala, Poland
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark
| | - Katarzyna Dąbkowska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, ul. Waryńskiego 1, Poland
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark.
| |
Collapse
|
12
|
Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol Biotechnol 2018; 56:174-187. [PMID: 30228792 PMCID: PMC6117988 DOI: 10.17113/ftb.56.02.18.5428] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/11/2018] [Indexed: 11/12/2022] Open
Abstract
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
Collapse
Affiliation(s)
- Katarzyna Robak
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
| | - Maria Balcerek
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
| |
Collapse
|
13
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
14
|
Lee CR, Sung BH, Lim KM, Kim MJ, Sohn MJ, Bae JH, Sohn JH. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol. Sci Rep 2017; 7:4428. [PMID: 28667330 PMCID: PMC5493647 DOI: 10.1038/s41598-017-04815-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6–2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.
Collapse
Affiliation(s)
- Cho-Ryong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kwang-Mook Lim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Mi-Jin Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Min Jeong Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Bae
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng 2017; 123:342-346. [DOI: 10.1016/j.jbiosc.2016.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022]
|
16
|
Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS, Higbee AJ, Sardi M, McIlwain SJ, Ong IM, Breuer RJ, Avanasi Narasimhan R, McGee MA, Dickinson Q, La Reau A, Xie D, Tian M, Reed JL, Zhang Y, Coon JJ, Hittinger CT, Gasch AP, Landick R. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006372. [PMID: 27741250 PMCID: PMC5065143 DOI: 10.1371/journal.pgen.1006372] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. The yeast Saccharomyces cerevisiae is being genetically engineered to produce renewable biofuels from sustainable plant material. Efficient biofuel production from plant material requires conversion of the complex suite of sugars found in plant material, including the five-carbon sugar xylose. Because it does not efficiently metabolize xylose, S. cerevisiae has been engineered with a minimal set of genes that should overcome this problem; however, additional genetic changes are required for optimal fermentative conversion of xylose into biofuel. Despite extensive knowledge of the regulatory networks controlling glucose metabolism, less is known about the regulation of xylose metabolism and how to rewire these networks for effective biofuel production. Here we report genetic mutations that enabled the conversion of xylose into bioethanol by a previously ineffective yeast strain. By comparing altered protein and metabolite abundance within yeast cells containing these mutations, we determined that the mutations synergistically alter metabolic pathways to improve the rate of xylose conversion. One change in a gene with well-characterized aerobic mitochondrial functions was found to play an unexpected role in anaerobic conversion of xylose into ethanol. The results of this work will allow others to rapidly generate yeast strains for the conversion of xylose into biofuels and other products.
Collapse
Affiliation(s)
- Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lucas S. Parreiras
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan J. Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maria Sardi
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rebecca J. Breuer
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ragothaman Avanasi Narasimhan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mick A. McGee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alex La Reau
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mingyuan Tian
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| |
Collapse
|
17
|
Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2016; 100:8241-54. [PMID: 27470141 DOI: 10.1007/s00253-016-7735-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.
Collapse
|
18
|
Balsingh J, Radhakrishna S, Ulaganathan K. Draft Genome Sequence of Bacillus pumilus ku-bf1 Isolated from the Gut Contents of Wood Boring Mesomorphus sp. Front Microbiol 2016; 7:1037. [PMID: 27446065 PMCID: PMC4927586 DOI: 10.3389/fmicb.2016.01037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jatoth Balsingh
- Center for Plant Molecular Biology, Osmania University Hyderabad, India
| | | | | |
Collapse
|
19
|
Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Dos Santos Castro L, de Paula RG, Antoniêto ACC, Persinoti GF, Silva-Rocha R, Silva RN. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis. Front Microbiol 2016; 7:175. [PMID: 26909077 PMCID: PMC4754417 DOI: 10.3389/fmicb.2016.00175] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.
Collapse
Affiliation(s)
- Lilian Dos Santos Castro
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Renato G de Paula
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Amanda C C Antoniêto
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Gabriela F Persinoti
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais Campinas, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Roberto N Silva
- Molecular Biotechnology Laboratory, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Kuglarz M, Alvarado-Morales M, Karakashev D, Angelidaki I. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. BIORESOURCE TECHNOLOGY 2016; 200:639-47. [PMID: 26551652 DOI: 10.1016/j.biortech.2015.10.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 05/03/2023]
Abstract
The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery.
Collapse
Affiliation(s)
- Mariusz Kuglarz
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Dimitar Karakashev
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|